Homework 8

due October 31, 2013

1. Let $f: X \to Y$ be an arbitrary mapping. Suppose $\mathscr{A} \subseteq \mathscr{P}(X)$ and $\mathscr{B} \subseteq \mathscr{P}(Y)$ to be families closed under finite intersection. For each of the following families

 $f_{**} \mathscr{A}, f^{**} \mathscr{A}, f^{*}_{*} \mathscr{B}$ and $f_{*}^{*} \mathscr{B}$

either prove that it has again the same property, or explain why it does not, in general (providing a correct counterexample will do).

Which of your answers would be different if f was assumed to be surjective (respectively, injective)? Provide a correct reason in each case.

- 2. Do the same exercise for families closed under arbitrary unions.
- 3. Do the same exercise for topologies.
- 4. Do the same exercise for families directed below.
- 5. Do the same exercise for filter-bases.
- 6. Do the same exercise for upfamilies.
- 7. Do the same exercise for filters.