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1 Vocabulary

1.1 Binary Relations

1.1.1

In these notes we identify binary relations between elements of a set X
and a set Y with subsets E ⊆ X×Y of their Cartesian product X×Y . To
a given relation ∼ corresponds the subset:

E∼˜ {(x, y) ∈ X×Y | x ∼ y} (1)

and, vice-versa, to a given subset E ⊆ X×Y corresponds the relation:

x ∼E y if and only if (x, y) ∈ E. (2)

1.1.2 The inverse relation

We denote by
E−1
˜ {(y, x) ∈ Y×X | (x, y) ∈ E} (3)

the inverse relation.

1.1.3 The identity relation

For any set X , we shall denote by ∆X the identity relation {(x, x′) ∈
X×X | x = x′} . We shall often omit subscript X when set X is clear
from the context.
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Exercise 1 Let A and B be subsets of a set X. Show that

(A×B) ∩ ∆ = ∅ if and only if A ∩ B = ∅, (4)

i.e., sets A and B are disjoint.

1.1.4 Sets of E-relatives

For any subset A ⊆ Y we shall denote by E(A) the set of left E-relatives
of elements of Y :

E(A)˜ {x ∈ X | ∃s∈A x ∼E s}. (5)

Definition 1.1 We say that an element x ∈ X is E-related to an element
y ∈ Y, and write x ∼E y, if (x, y) ∈ E.

In particular, x ∼E y if and only if y ∼E−1 x .
We shall also denote by E(y) the set E({y}) .

Exercise 2 Show that:

E(∅) = ∅ (6)

E(A) =
⋃

s∈A
E(s) (7)

E(A) ⊆ E(B) if A ⊆ B (8)

E(A) ∪ E(B) = E(A ∪ B) (9)

E(A) ∩ E(B) ⊇ E(A ∩ B) (10)

where A and B are arbitrary subsets of Y . Give an example demonstrating that

E(A) ∩ E(B) , E(A ∩ B)

in general.

Exercise 3 Let A and B be subsets of X and Y respectively, and let E ⊆ X×Y.
Show that the following conditions are equivalent

there exist a ∈ A and b ∈ B such that a ∼E b, (11a)

(A×B) ∩ E , ∅, (11b)

A ∩ E(B) , ∅, (11c)

E−1(A) ∩ B , ∅. (11d)
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1.2 Composition of binary relations

1.2.1

If E ⊆ X×Y and F ⊆ Y×Z , then E ◦ F ⊆ X×Z is defined as

E ◦ F ˜ {(x, z) ∈ X×Z | ∃y∈Y (x, y) ∈ E and (y, z) ∈ F}
= {(x, z) ∈ X×Z | ∃y∈Y x ∼E y and y ∼F z}.

(12)

1.2.2 Associativity

Composition of binary relations is associative:

E ◦ (F ◦ G) = (E ◦ F) ◦ G (13)

where G ⊆ Z×W . Note also that

∆X ◦ E = E = E ◦ ∆Y (14)

and
(E ◦ F)−1 = F−1 ◦ E−1. (15)

In particular, the set of binary relations on a given set X , P(X×X) ,
equipped with the operation ◦ , is a monoid.

Exercise 4 Let E ⊆ X×Y, F ⊆ Y×Z and T ⊆ Z. Show that, for any B ⊆ Z,

(E ◦ F)(B) = E(F(B)). (16)

Exercise 5 Let A and B be subsets of X and Y respectively, and let E ⊆ X×Y
and F ⊆ Y×Z. Show that the following conditions are equivalent

there exist a ∈ A and b ∈ B such that a ∼E◦F b, (17a)

(A×B) ∩ (E ◦ F) , ∅, (17b)

A ∩ (E ◦ F)(B) , ∅, (17c)

E−1(A) ∩ F(B) , ∅, (17d)

(E ◦ F)−1(A) ∩ B , ∅. (17e)

3



1.2.3 Monotonicity

Composition of binary relations is monotonic in both arguments:

if E ⊆ E′ and F ⊆ F′ , then E ◦ F ⊆ E′ ◦ F′ . (18)

1.3 The binary relation associated with a family C ⊆P(X)

1.3.1

Any equivalence relation ∼ on a set X defines a certain family of subsets
C∼ , namely the family of equivalence classes of relation ∼ .

We can recover the equivalence relation from that family of subsets by
means of the following general construction.

1.3.2

For any family of subsets C of a set X , let us consider the binary relation
on X :

∆C ˜
⋃

C∈C

C×C. (19)

Exercise 6 Show that the union of C ∈ C which contain x ∈ X coincides with
the set of points ∆C -close to x :

∆C (x) =
⋃

C ∈ C such that x ∈ C

C. (20)

1.3.3

In the special case of the family of all singleton subsets,

X = {{x} | x ∈ X}, (21)

we obtain the identity relation

∆X = ∆.
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1.3.4

The associated relation is automatically symmetric. It is reflexive pre-
cisely when C is a cover of X .

Exercise 7 Show that relation ∼∆C
is reflexive, i.e.,

∆C ⊇ ∆

if and only if C covers X.

1.3.5

Let us introduce the following operation on P(P(X)) , the set of all
families of subsets of X ,

C �D˜ {C ∪ D | C ∈ C , D ∈ D , and C ∩ D , ∅}. (22)

It is associative, commutative, and family X , cf. (21), is its identity.

Exercise 8 Show that, for any C ⊆P(X) ,

X � C = C = C �X .

Exercise 9 Show that

∆C ◦ ∆C ∪ ∆C ◦ ∆D ∪ ∆D ◦ ∆C ∪ ∆C ◦ ∆D = ∆C �D . (23)

Deduce from (23) that
∆C ◦ ∆C = ∆C �C . (24)

Exercise 10 Show that the following conditions are equivalent

relation ∼∆C
is transitive, (25a)

C consists of disjoint subsets, (25b)

C � C = C . (25c)

1.3.6 Refinement

We shall say that a family C ′ ⊆ P(X) refines a family C ⊆ P(X) (or,
that it is a refinement of C ) if

for any C′ ∈ C ′ , there exists C ∈ C such that C′ ⊆ C. (26)

We denote it by C ′ J C .
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1.3.7

Refinement is a reflexive and transitive relation on P(P((X)) . This no-
tion plays an important role in the theory of covers. It should not be
confused, however, with ‘refinement’ in the sense of filters.

Exercise 11 Show that

C ′ J C implies ∆C ′ ⊆ ∆C . (27)

2 Uniform spaces

2.1 Uniform structures

2.1.1

Definition 2.1 A filter U on X×X is said to be a uniform strucure if it satis-
fies the following conditions

(U1)
⋂
U ⊇ ∆ ;

(U2) if E ∈ U , then E−1 ∈ U ;

(U3) for any E ∈ U , there exists E′ ∈ U such that E′ ◦ E′ ⊆ E .

Definition 2.2 A set X equipped with a uniform structure U is called a uni-
form space and the filter U is often referred to as its uniformity.

2.1.2 Entourages

Members of U are usually referred to as entourages. For two points p
and q of X we shall say that they are E-closed if p ∼E q . Thus, E(A) is
the set of points p ∈ X which are emphE-close to a subset A ⊆ X .

2.1.3 Symmetric entourages

Since U is a filter, and F = E ∩ E−1 is clearly symmetric, i.e., F = F−1 ,
symmetric entourages form a base of filter U .
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2.1.4

Definition 2.3 We say that a subset A ⊆ X is E-small if A×A ⊆ E, i.e., if
any two elements of A are E-close,

∀s,s′∈A s ∼E s′. (28)

Exercise 12 Show that E ⊆ E ◦ E for any entourage E ∈ U .

Exercise 13 Let E be an entourage. Show that, for any n ≥ 2 , there exists
D ∈ U such that

D◦n˜D ◦ · · · ◦ D︸          ︷︷          ︸
n

⊆ E. (29)

Exercise 14 Let E be a symmetric entourage. Show that, if A ⊆ X is E-small,
then E(A) is E ◦ E ◦ E-small.

3 Metrization

3.1 The uniform structure associated with a semi-metric

3.1.1

Suppose ρ : X× X−→[0, ∞) is a semi-metric on a set X . The sets

Eε˜ {(p, q) ∈ X× X | dp, q) < ε} (30)

form a basis of a filter on X× X .
Note that ⋂

ε>0
Eε ⊇ ∆, (31)

Eε = E−1
ε , and the triangle inequality yields

Eε ◦ Eε′ ⊆ Eε+ε′ .

It follows that the filter generated by {Eε | ε > 0} satisfies the three con-
ditions of a uniformity, cf. Definition 2.1.
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3.1.2

Function ρ separates points of X , i.e., is a metric on set X , precisely when⋂
ε>0

Eε = ∆. (32)

3.1.3

The uniformity associated with a semi-metric possesses a countable base:
take for example {

E 1
n
| n = 1, 2, . . .

}
.

In the next section we will show that any uniformity with a countable
base is the associated uniformity of some semi-metric on X .

3.2 A semi-metric associated with a flag of entourages

3.2.1 A flag of entourages

Let us call a nested sequence of entourages

E : X×X = E0 ⊇ E1 ⊇ E2 ⊇ · · · (33)

a flag of entourages.

3.2.2 An associated semi-metric

Given a flag (33), define a function

f (p)˜

{
1

2n if p ∈ En \ En+1

0 if p ∈ ⋂∞
i=0 Ei

, (34)

and then produce the corresponding semi-metric by enforcing the Trian-
gle Inequality as described in the Notes on Topology:

ρE = f t, i.e., ρE (p, q) = inf
{ n

∑
i=1

f (xi−1, xi) | x0 = p, xn = q
}

(35)

where the infimum is taken over all finite sequences {xi}i∈{0,...,n} of ele-
ments of X of any length which start at p and terminate at q .
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3.2.3

One obviously has the inequality

ρE ≤ f .

In particular,

En ⊆
{
(p, q) ∈ X×X | ρE (p, q) <

1
2n

}
Lemma 3.1 If the flag satisfies the following condition

En ◦ En ◦ En ⊆ En−1 (n = 1, 2, . . . ). (36)

then
1
2

f ≤ ρE . (37)

Proof. We shall prove by induction on n that

1
2

f ≤
l

∑
i=1

f (pi−1, pi) (38)

for any sequence
p0 = p, . . . , pl = q. (39)

There is nothing to prove for l = 1.
For a given sequence (39), denote by d the sum

l

∑
i=1

f (pi−1, pi).

If d = 0, then f (pi−1, pi) = 0 for each i ∈ {1, . . . , l} which means that
(pi, pi+1) ∈ En for any n . Hence,

(p, q) ∈ En ◦ · · · ◦ En︸           ︷︷           ︸
l times

⊆ Em

for any m ≤ n− log3 l . In particular, (p, q) ∈ ⋂ E , and thus f (p, q) = 0.
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Suppose that d > 0. Denote by m be the largest index in {0, . . . , l}
such that

m

∑
i=1

f (pi−1, pi) ≤
1
2

d.

Note that m < l , and also

f (pm, pm+1) > 0 and
l

∑
i=m+2

f (pi−1, pi) <
1
2

d

Combined with inductive hypothesis we obtain

f (p, pm) ≤ 2 · 1
2

d = d and f (pm+1, q) ≤ 2 · 1
2

d = d

and, obviously, also
f (pm, pm+1) ≤ d.

The above inequalities mean that if n is the largest integer such that
1
2n ≤ d,

then (p, pm) , (pm, pm+1 , and (pm+1, q) all belong to En . In particular,

(p, q) ∈ En ◦ En ◦ En ⊆ En−1

which means that
f (p, q) ≤ 1

2
d.

�

Corollary 3.2 If a flag E satisfies condition (36), then the uniformity it gener-
ates, E∗ , is associated with semi-metric ρE .

We arrive at the following important result.

Theorem 3.3 (Metrization Theorem) A uniformity U is associated with some
semi-metric if and only if it possesses a countable base.

Proof. Existence of a countable base is obviously a necessary condition
for E∗ to be associated with a semi-metric.

If U possesses a countable base, then it possesses a base E satisfying
condition (36). Then,

En ⊆
{
(p, q) ∈ X×X | ρE (p, q) <

1
2n

}
⊆ En−1. (n = 1, 2, . . . ).

�
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4 Uniform topology

For any uniform space (X,U) , we shall define an associated topology on
X . This can be done by defining either the neighborhood filters or the
closure operation.

4.1 The neighborhood filters

4.1.1

Definition 4.1 For any point p ∈ X, we set Np to be the filter with the base

Bp˜ {E(p) | E ∈ U}. (40)

Definition 4.2 We declare a subset U ∈ X to be open if, for any P ∈ U , there
exists E ∈ U such that E(p) ⊆ U .

Exercise 15 Show that

T U
˜ {U ⊆ X | U is open} (41)

satisfies the axioms of a topology.

4.1.2

The above topology will be referred to as the uniform topology and filters
Np , cf. Definition 4.1, are the neighborhood filters of this topology.

4.2 The closure operation

4.2.1

Definition 4.3 Define the closure operation on the set, P(X) , of all subsets of
X by

A 7−→ A˜
⋂

E∈U
E(A). (42)
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Exercise 16 Show that the operation defined in (42) satisfies the axioms of the
topological closure operation

S ⊆ A (43)

A = A (44)

A ∪ B = A ∪ B (45)

∅ = ∅ (46)

where A and B are arbitrary subsets of X .

Definition 4.4 We declare a subset Z ⊆ X to be closed if Z = Z.

Proposition 4.5 A subset U ⊆ X is open if and only if X \U is closed.

Proof. Let A be a subset of X . Suppose that p < A . Then p < E(A) for
some E ∈ U . Let D ∈ U be such that D ◦ D ⊆ E . Then p < (D ◦ D)(A)
and thus D−1(p) ∩ D(A) = ∅ , cf. Exercise ??. It follows that

D−1(p) ∩ A = D−1(p) ∩
⋂

F∈U
F(A) ⊆ D−1(p) ∩ D(A) = ∅,

i.e., D−1(p) ∈ X \ A . Hence X \ A is open.

Let U be an open subset of X and p ∈ U . Then there exists E ∈ U

such that E(p) ∩ (X \U) = ∅ . The latter is equivalent to

{p} ∩ E−1(X \U) = ∅,

cf. Exercise 3. Thus, p < E−1(X \U) . In particular, p < (X \U) . It follows
that

U ⊆ X \ (X \U)

or equivalently,
X \U ⊇ (X \U).

In view of X \U ⊆ (X \U) , we infer that X \U = (X \U) , i.e., X \U is
closed. �
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4.3 Uniform continuity

4.3.1

For a function f : X−→Y let f × f : X× X−→Y×Y be the function

(x, x′) 7−→ ( f (x), f (x′)). (47)

Definition 4.6 We say that a function f : X−→Y between uniform spaces (X,U)
and (Y, V ) , is uniformly continuous if ( f × f )−1(E) ∈ U for any E ∈ V .

Exercise 17 Show that f : X−→Y is uniformly continuous if and only if it
satisfies the following condition

∀E∈V ∃D∈U∀x,x′∈X
(
x ∼D x′ ⇒ f (x) ∼E f (x′)

)
. (48)

4.3.2

A uniformly continuous function is continuous in respective uniform
topologies. The reverse is generally false.

Exercise 18 Prove that the function f : (0, ∞)−→R ,

f (x) =
1
x

is continuous but not uniformly continuous. Here R and its subset (0, ∞) are
equipped with the usual metric d(x, x′) = |x− x′| .

Theorem 4.7 If X is compact in the uniform topology, then any continuous
function from X into a uniform topological space Y is uniformly continuous.

Proof. Let U denote the uniformity of X and V denote the uniformity
of Y . For a given E ∈ V , let E′ ∈ V be a symmetric entourage such that
E′ ◦ E′ ⊆ E .

If f : X−→Y is continuous, then for each p ∈ X , there exists an en-
tourage D′p ∈ U such that

f
(

Dp(p)
)
⊆ E′( f (p)). (49)
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Let Dp ∈ U be an entourage such that Dp ◦ Dp ⊆ D′p . Since each p ∈ X
belongs to (Dp(p)◦) , the interiors {(Dp(p)◦)}p∈X form an open cover of
X . In view of compactness of X , one has

X = Dp1(p1) ∪ · · · ∪ Dpn(pn) (50)

for certain points p1, . . . , pn ∈ X .
Set D˜Dp1 ∩ · · · ∩ Dpn . The latter is an entourage of X .
Let x and x′ be arbitrary points of X . Suppose that x ∼D x′ . In view

of (50), one has x′ ∼Dpi
pi for some pi . It follows that x ∼D◦Dpi

pi . Since
Dpi ⊆ D′pi

and D ◦ Dpi ⊆ Dpi ◦ Dpi ⊆ D′pi
we obtain

x ∼D′pi
pi and x′ ∼D′pi

pi. (51)

By combining (51) with (49) we obtain

f (x) ∼E′ f (pi) and f (x′) ∼E′ f (pi).

and, since E′ is symmetric, f (x) ∼E′◦E′ f (x′) . Recalling that E′ ◦ E′ ⊆ E ,
we deduce that f (x) ∼E f (x′) . �

5 Uniformization

5.1 The neighborhood filter of the diagonal

5.1.1

Let X be a topological space. The neighborhood filter N∆ of the diagonal
obviously satisfies Axiom (U1) .

Exercise 19 Show that N∆ satisfies Axiom (U2) .

5.1.2

Exercise 20 Show that a family U ⊆P(X) is an open cover of X if and only
if ∆U is a neighborhood of the diagonal.
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5.1.3

For any point p ∈ X and E ∈ N∆ , the set of E-relatives of of p is a
neighborhood of p . Indeed, since E is a neighborhood of ∆ , there exists
a pair of open neighborhoods U and V of p such that

U×V ⊆ E.

It follows that
U = (U×V)(p) ⊆ E(p).

Thus, filter-base
{E(p) | E ∈ N∆}

generates a filter not finer than Np .

Proposition 5.1 If a point p ∈ X possesses a fundamental system of closed
neighborhoods, then any open neighborhood of p is of the form E(p) for some
E ∈ N∆ .

In particular,
{E(p) | E ∈ N∆} (52)

is a fundamental system of neighborhoods of point p.

Proof. For an open neighborhood U ∈ Np let N ∈ Np be a closed
neighborhood such that N ⊆ U . Then

U ˜ {U, Nc}

is an open cover of X , and thus ∆U is an open neighborhood of the
diagonal, ∆ . Since p ∈ U and p < Nc , we have

∆U (p) = U,

cf. (20). �

5.2 Uniformizable spaces

5.2.1

A topological space (X, T ) is said to be uniformizable, if there exists a
uniform structure U on X such that T is the associated uniform topol-
ogy T U , cf. (41).

Exercise 21 Show that a uniformizable space is necessarily regular.
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5.2.2

In view of Proposition 5.1, A regular topological space is uniformizable if
and only if the neighborhood filter of the diagonal, N∆ , satisfies Axiom
(U3) .

Exercise 22 Show that the family

B = {∆U | U is an open cover of X} (53)

is a base of filter N∆ .

5.2.3

The family

B◦2˜ {∆U ◦ ∆V | U and V are open covers of X} (54)

is similarly a filter-base and, in view of (23), it generates a filter not finer
than N∆ .

The neighborhood filter of the diagonal, N∆ , satisfies Axiom (U3) ,
and thus is a uniformity on X , precisely when (54) generates N∆ .

5.2.4

We shall now show that in a regular topological space pairs of separable
points (p, q) can be separated from the diagonal, ∆ , using neighborhoods
from B◦2 .

Lemma 5.2 Let p and q be a pair of points in a regular topological space X such
that Np , Nq . Then, there exists an open cover U of X and a neighborhood W
of (p, q) , such that

W ∩ (∆U ◦ ∆U ) = ∅. (55)

Proof. In a regular space any pair of points p and q with Np , Nq
can be separated by a pair of open neighborhoods U ∈ Np and V ∈ Nq :

U ∩V = ∅.
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In a regular space, closed neighborhoods of a point form a fundamental
system of neighborhoods of that point. Hence, there exist closed neigh-
borhoods M ∈ Np and N ∈ Nq such that

M ⊆ U and N ⊆ V.

In particular,
U ˜ {U, V, (M ∪ N)c}

is an open cover of X . The final two steps of the proof we leave as
exercises.

Exercise 23 Show that
U �U = {Mc, Nc}.

In particular,

∆U ◦ ∆U = ∆U �U = (Mc×Mc) ∪ (Nc ∪ Nc).

Exercise 24 Describe

X×X \
(
(Mc×Mc) ∪ (Nc ∪ Nc)

)
and derive from it that

(M×N) ∩ ∆U �U = ∅.

Thus, set W = M×N is a desired neighborhood of (p, q) in X×X .
�

Theorem 5.3 (Compact Uniformization Theorem) The neighborhood filter,
N∆ , of the diagonal D ⊂ X×X, is a uniform structure on X if X is a compact
regular space.

Proof. If N∆ does not satisfy Axiom (U3) , then there exists an open
neighborhood E ∈ N∆ such that

(D ◦ D) \ E , ∅ (D ∈ N∆). (56)

Thus, the family
C ˜ {(D ◦ D) \ E | D ∈ N∆} (57)
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consists of non-empty subsets, and is directed by reverse inclusion. In
other words, (57) is a filter-base on X×X \ E .

The latter being a closed subset of the product of two compact spaces
is compact by Tichonov’s Theorem. It follows that C adheres to a certain
point (p, q) ∈ X×X \ E .

Note that p is not E-close to q , i.e., the neighborhood E(q) of q does
not contain p and, similarly, the neighborhood E−1(p) of p does not
contain q .

By Lemmma 5.2, there exists an open neighborhood D of ∆ such that
D ◦ D is disjoint with a certain neighborhood of (p, q) . It follows that
(p, q) cannot be a cluster point of (57).

The contradiction proves that N∆ satisfies Axiom (U3) . �

6 Completeness

6.1 Cauchy filters

6.1.1

Definition 6.1 A filter F on a uniform space (X,U) is called a Cauchy filter
if, for any E ∈ U , there exists an E-small subset A ∈ F .

Exercise 25 Show that, for any filter F on X, the collection of sets

B˜ {E(A) | E ∈ U and A ∈ F} (58)

is a base of a filter.

Definition 6.2 The filter generated by B , cf. (58), will be denoted FU .

Exercise 26 Show that FU is Cauchy if F is Cauchy.

Exercise 27 Suppose that G ⊆ F and G is a Cauchy filter. Show that FU ⊆
G .

It follows from Exercises 26 and 27 that FU is the smallest Cauchy
subfilter contained in a given Cauchy filter F . We shall therefore say
that F is a minimal Cauchy filter if F = FU .
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