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1 Vocabulary

1.1 Binary Relations
1.1.1

In these notes we identify binary relations between elements of a set X
and a set Y with subsets E C XxY of their Cartesian product XxY. To
a given relation ~ corresponds the subset:

Ev:={(xy) € XxY [ x~y} (1)
and, vice-versa, to a given subset E C X XY corresponds the relation:

x~py ifandonlyif  (x,y) €E. (2)

1.1.2 The inverse relation

We denote by
E7hi={(y,x) € YxX| (x,y) € E} (3)

the inverse relation.

1.1.3 The identity relation

For any set X, we shall denote by Ay the identity relation {(x,x’) €
XxX | x = x'}. We shall often omit subscript X when set X is clear
from the context.



Exercise 1 Let A and B be subsets of a set X. Show that
(AXB)NA =0 ifand onlyif ANB=0Q, (4)

ie., sets A and B are disjoint.

1.1.4 Sets of E-relatives

For any subset A C Y we shall denote by E(A) the set of left E-relatives
of elements of Y

E(A):={x € X | Jseax ~gs}. (5)

Definition 1.1 We say that an element x € X is E-related to an element
y €Y, and write x ~p vy, if (x,y) € E.

In particular, x ~g y if and only if y ~g-1 x.
We shall also denote by E(y) the set E({y}).

Exercise 2 Show that:

E(@) =0 6)
E(A) = | E(s) (7)

s€A
E(A) CE(B) if ACB 8)
E(A) UE(B) = E(AUB) ©)
E(A)NE(B) D E(ANB) (10)

where A and B are arbitrary subsets of Y. Give an example demonstrating that
E(A)NE(B) # E(ANB)
in general.

Exercise 3 Let A and B be subsets of X and Y respectively, and let E C X xY.
Show that the following conditions are equivalent

there exist a € A and b € B such that a ~g b, (11a)
(AXB)NE #Q, (11b)
ANE(B) +0Q, (11¢)
E-Y(A)NB # . (11d)



1.2 Composition of binary relations
1.2.1

If ECXxYand FCYxZ,then EoF C XxZ is defined as
EoF :={(x,z) € XxZ|3yey (x,y) € Eand (y,z) € F}
={(x,z) € XxZ | 3yey x ~pyand y ~r z}.
1.2.2 Associativity
Composition of binary relations is associative:
Eo(FoG)=(EoF)oG
where G C ZxW. Note also that
AxoE=FE=EoAy

and
(EoF) '=F1loE™L

(12)

(13)

(14)

(15)

In particular, the set of binary relations on a given set X, Z(XxX),

equipped with the operation o, is a monoid.

Exercise 4 Let E C XXY, F CYXZ and T C Z. Show that, forany B C Z,

(Eo F)(B) = E(F(B)).

(16)

Exercise 5 Let A and B be subsets of X and Y respectively, and let E C X XY

and F C Y xZ. Show that the following conditions are equivalent

there exist a € A and b € B such that a ~gop b,
(AXB)N(EoF) #+Q,

AN(EoF)(B)# 0,

E"Y(A)NEF(B) #+Q,

(EoF) Y (A)NB # Q.

(172)
(17b)
(17¢)
(17d)
(17€)



1.2.3 Monotonicity

Composition of binary relations is monotonic in both arguments:

ifECE and FCF, then EoF CE' oF. (18)

1.3 The binary relation associated with a family 4 C &(X)
1.3.1

Any equivalence relation ~ on a set X defines a certain family of subsets
%~ , namely the family of equivalence classes of relation ~.

We can recover the equivalence relation from that family of subsets by
means of the following general construction.

1.3.2

For any family of subsets ¢ of a set X, let us consider the binary relation
on X:

Ay = U CxC. (19)
Ce?

Exercise 6 Show that the union of C € ¢ which contain x € X coincides with
the set of points Ay -close to x:

Ag(x) = U C. (20)

C € € such that x € €

1.3.3
In the special case of the family of all singleton subsets,

2 = {{x}|x € X}, (1)
we obtain the identity relation

Ay = A,



1.3.4

The associated relation is automatically symmetric. It is reflexive pre-
cisely when ¢ is a cover of X.

Exercise 7 Show that relation ~ Ay 18 reflexive, i.e.,
Ay O A
if and only if € covers X.

1.3.5

Let us introduce the following operation on Z(Z(X)), the set of all
families of subsets of X,

¢€o2:={CUD|Ce%, DeZ,and CND #QD}. (22)
It is associative, commutative, and family 27, cf. (21), is its identity.
Exercise 8 Show that, for any € C Z(X),
L oC=C€=CoX.

Exercise 9 Show that

AgoAy UAyoAgy UAgolAy UAgoAy = Ageg. (23)
Deduce from (23) that
Ag o Ng = Doy (24)
Exercise 10 Show that the following conditions are equivalent
relation ~,,, is transitive, (25a)
¢ consists of disjoint subsets, (25b)
CoC =%. (25¢)

1.3.6 Refinement

We shall say that a family ¢/ C 2(X) refines a family ¢ C 2(X) (or,
that it is a refinement of ¢) if

for any C' € €, there exists C € € such that C' C C. (26)
We denote it by ¢’ 3 €.



1.3.7

Refinement is a reflexive and transitive relation on &(Z?((X)). This no-
tion plays an important role in the theory of covers. It should not be
confused, however, with ‘refinement’ in the sense of filters.

Exercise 11 Show that

¢ 3% implies Ayr C Ag. (27)

2  Uniform spaces

2.1 Uniform structures
2.1.1

Definition 2.1 A filter U on X x X is said to be a uniform strucure if it satis-
fies the following conditions

(U1) NU2A;
(U,) if E€ WU, then E71 € U;
(U;) forany E € U, there exists E' € U such that E'oE' C E .

Definition 2.2 A set X equipped with a uniform structure U is called a uni-
form space and the filter U is often referred to as its uniformity.

2.1.2 Entourages

Members of U are usually referred to as entourages. For two points p
and g of X we shall say that they are E-closed if p ~f gq. Thus, E(A) is
the set of points p € X which are emphE-close to a subset A C X.

2.1.3 Symmetric entourages

Since U is a filter, and F = ENE~1 is clearly symmetric, i.e., F = 1,
symmetric entourages form a base of filter U.



2.1.4

Definition 2.3 We say that a subset A C X is E-small if AXA C E, ie., if
any two elements of A are E-close,

Vssea s ~ES. (28)
Exercise 12 Show that E C E o E for any entourage E € U.

Exercise 13 Let E be an entourage. Show that, for any n > 2, there exists
D € U such that
D°":=Do---0D CE. (29)
~—

n

Exercise 14 Let E be a symmetric entourage. Show that, if A C X is E-small,
then E(A) is E o E o E-small.

3 Metrization

3.1 The uniform structure associated with a semi-metric
3.1.1

Suppose p: X x X—[0,00) is a semi-metric on a set X. The sets

Ec:={(p,q) € X x X |dp,q) <€} (30)
form a basis of a filter on X x X.
Note that
[ Ec 2 A, (31)
e>0

Ec = EZ!, and the triangle inequality yields
Ee o Ee’ g E€+€/.

It follows that the filter generated by {E¢ | € > 0} satisfies the three con-
ditions of a uniformity, cf. Definition 2.1.



3.1.2

Function p separates points of X, i.e., is a metric on set X, precisely when

ﬂ Ee = A. (32)

e>0

3.1.3

The uniformity associated with a semi-metric possesses a countable base:
take for example
{El|n::L2p..}

In the next section we will show that any uniformity with a countable
base is the associated uniformity of some semi-metric on X.

3.2 A semi-metric associated with a flag of entourages
3.2.1 A flag of entourages
Let us call a nested sequence of entourages

& XXX=FE2E12E2--- (33)

a flag of entourages.

3.2.2 An associated semi-metric

Given a flag (33), define a function

{% if p € Ey \ Eppq

M=o itpensok,

, (34)

and then produce the corresponding semi-metric by enforcing the Trian-
gle Inequality as described in the Notes on Topology:

n
pe = f', e, %@ﬂ%ﬂﬁ{ZfWAJJWWZ%%ZQ} (35)
i=1
where the infimum is taken over all finite sequences {x;};c (0,...,n} of ele-

ments of X of any length which start at p and terminate at 4.
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3.2.3
One obviously has the inequality

pe < f.

In particular,

1
En € {(p.q) € XxX | ps(p.q) < 2—}

Lemma 3.1 If the flag satisfies the following condition

EnoEnoEngEn_l (1’[21,2,...).

then 1
< .
2f > P&

Proof. We shall prove by induction on n that

l

%f <Y f(pi-1pi)

i=1
for any sequence
po=pP,.--,P1 =4

There is nothing to prove for | = 1.
For a given sequence (39), denote by d the sum

f(pi—1, pi)-

1
i=1

(36)

(37)

(38)

(39)

If d =0, then f(p;_1,pi) =0 foreach i € {1,...,1} which means that

(pi/ Pi+1) € E, for any n. Hence,

(pq) € Eno- -0 Ey C En

| times

for any m < n —log,!. In particular, (p,q) € N &, and thus f(p,q) = 0.



Suppose that d > 0. Denote by m be the largest index in {0,...,1}
such that

m

Zf pi— 1/]91 id

i=1
Note that m < [, and also

1
f(szPm—H) >0 and Z f Pi-1,p d
i=m-+2

—_

Combined with inductive hypothesis we obtain

1 1
fpopm) <2-5d=d  and  f(pui1,q) <2-5d=d

and, obviously, also
f(pms pmsa) < d.
The above inequalities mean that if 7 is the largest integer such that
1
Z_n S d/
then (p, pm), (Pm, Pm+1, and (pm+1,q) all belong to E,. In particular,
(PIQ) € E,oE,0E;, CE;

which means that

d.

N =

f(p.q) <
O

Corollary 3.2 If a flag & satisfies condition (36), then the uniformity it gener-
ates, &, is associated with semi-metric pg.

We arrive at the following important result.

Theorem 3.3 (Metrization Theorem) A uniformity U is associated with some
semi-metric if and only if it possesses a countable base.

Proof. Existence of a countable base is obviously a necessary condition
for &, to be associated with a semi-metric.

If U possesses a countable base, then it possesses a base & satisfying
condition (36). Then,

1
EnC {(p.9) € XxX [ ps(p,g) < 57} SEnr. (1=1,2,...).
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4 Uniform topology

For any uniform space (X, U), we shall define an associated topology on
X. This can be done by defining either the neighborhood filters or the
closure operation.

4.1 The neighborhood filters
4.1.1

Definition 4.1 For any point p € X, we set 4, to be the filter with the base
B,={E(p) | E  U}. (40)

Definition 4.2 We declare a subset U € X to be open if, for any P € U, there
exists E € W such that E(p) C U.

Exercise 15 Show that
g%.={U C X | U is open} (41)

satisfies the axioms of a topology.

4.1.2

The above topology will be referred to as the uniform topology and filters
Ny, cf. Definition 4.1, are the neighborhood filters of this topology.

4.2 The closure operation
4.2.1

Definition 4.3 Define the closure operation on the set, 2(X), of all subsets of
X by
A A= () E(A). (42)
EclU

11



Exercise 16 Show that the operation defined in (42) satisfies the axioms of the
topological closure operation

Sc A (43)
A=A (44)
AUB=AUB (45)
©=0 (46)

where A and B are arbitrary subsets of X.
Definition 4.4 We declare a subset Z C X to be closed if Z = Z.

Proposition 4.5 A subset U C X is open if and only if X \ U is closed.

Proof. Let A be asubset of X. Suppose that p ¢ A. Then p ¢ E(A) for
some E € U. Let D € U be such that Do D C E. Then p ¢ (Do D)(A)
and thus D~!(p) N D(A) = @, cf. Exercise ??. It follows that

D' (p)NA=D""(p)n () F(A) C D '(p)ND(A) =,
Feu

ie, D71(p) € X\ A. Hence X\ A is open.

Let U be an open subset of X and p € U. Then there exists E € U
such that E(p) N (X \ U) = @. The latter is equivalent to

{PynE'(X\U) =0,
cf. Exercise 3. Thus, p ¢ E~'(X \ U). In particular, p ¢ (X \ U). It follows
that

uc X\ (X\U

or equivalently,

X\U D X\U).

In view of X\ U C (X \ U), we infer that X\ U = (X \ U), i.e., X\ U is
closed. O
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4.3 Uniform continuity

4.3.1

For a function f: X—Y let f x f: X x X—Y X Y be the function
(x,x") = (f(x), f(x)). (47)

Definition 4.6 We say that a function f: X—Y between uniform spaces (X, U)
and (Y, 7', is uniformly continuous if (f x f)"1(E) € U forany E € 7.

Exercise 17 Show that f: X—Y is uniformly continuous if and only if it
satisfies the following condition

VeeyIpeuVrex (x ~px' = f(x) ~g f(x')). (48)

4.3.2

A uniformly continuous function is continuous in respective uniform
topologies. The reverse is generally false.

Exercise 18 Prove that the function f: (0,00)—1R,

) =1

is continuous but not uniformly continuous. Here R and its subset (0,00) are
equipped with the usual metric d(x,x") = |x — x/|.

Theorem 4.7 If X is compact in the uniform topology, then any continuous
function from X into a uniform topological space Y is uniformly continuous.

Proof. Let U denote the uniformity of X and 7" denote the uniformity
of Y. For a given E € ¥, let E' € ¥ be a symmetric entourage such that
E'oE' CE.

If f: X—Y is continuous, then for each p € X, there exists an en-
tourage D, € U such that

f(Dp(p)) S E'(f(p)). (49)
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Let D, € U be an entourage such that DyoD, C D;. Since each p € X
belongs to (Dy(p)°), the interiors {(D,(p)°)}pex form an open cover of
X. In view of compactness of X, one has

X = Dp,(p1) U+ -UDp,(pn) (50)

for certain points pyq,...,pn € X.

Set D:= Dy, N---NDp,. The latter is an entourage of X.

Let x and x’ be arbitrary points of X. Suppose that x ~p x". In view
of (50), one has x’ ~D,, Pi for some p;. It follows that x ~DoD,, Pi- Since

D, € D;i and Do D, C Dy, 0D, C D;,l, we obtain
* ~py, Pi and ¥/ ~Dj, Pi- (51)
By combining (51) with (49) we obtain
f(x)~p f(p)) and  f(x') ~p f(pi).
and, since E’ is symmetric, f(x) ~pop f(x'). Recalling that E' o E' C E,

we deduce that f(x) ~g f(x'). m]

5 Uniformization

5.1 The neighborhood filter of the diagonal
5.1.1

Let X be a topological space. The neighborhood filter .4, of the diagonal
obviously satisfies Axiom (Uy).

Exercise 19 Show that .#) satisfies Axiom (U,).

5.1.2

Exercise 20 Show that a family % C (X)) is an open cover of X if and only
if Ay, is a neighborhood of the diagonal.
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5.1.3

For any point p € X and E € .#,, the set of E-relatives of of p is a
neighborhood of p. Indeed, since E is a neighborhood of A, there exists
a pair of open neighborhoods U and V of p such that

UxV CE.

It follows that
U= (UxV)(p) € E(p).

Thus, filter-base

{E(p) | E € A}
generates a filter not finer than .4,.

Proposition 5.1 If a point p € X possesses a fundamental system of closed
neighborhoods, then any open neighborhood of p is of the form E(p) for some
E € M.

In particular,

{E(p) | E € A4} (52)
is a fundamental system of neighborhoods of point p.

Proof. For an open neighborhood U € .4, let N € .4, be a closed
neighborhood such that N C U. Then

% :={U,N}

is an open cover of X, and thus Ay is an open neighborhood of the
diagonal, A. Since p € U and p ¢ N¢, we have

Ay (p) = U,
cf. (20). O

5.2 Uniformizable spaces
5.2.1

A topological space (X,.7) is said to be uniformizable, if there exists a
uniform structure U on X such that .7 is the associated uniform topol-
ogy 7Y, cf. (41).

Exercise 21 Show that a uniformizable space is necessarily regular.
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5.2.2

In view of Proposition 5.1, A regular topological space is uniformizable if
and only if the neighborhood filter of the diagonal, .4, satisfies Axiom

(Us).
Exercise 22 Show that the family
B ={DNy | % is an open cover of X } (53)

is a base of filter 5.

5.2.3
The family

B2 :={Ay oAy | % and ¥ are open covers of X} (54)

is similarly a filter-base and, in view of (23), it generates a filter not finer
than A#,.

The neighborhood filter of the diagonal, .4, satisfies Axiom (Uj;),
and thus is a uniformity on X, precisely when (54) generates .4} .

5.2.4

We shall now show that in a regular topological space pairs of separable
points (p,q) can be separated from the diagonal, A, using neighborhoods
from %°2.

Lemma 5.2 Let p and q be a pair of points in a reqular topological space X such
that AN, # ;. Then, there exists an open cover 7% of X and a neighborhood W
of (p,q), such that

WN (Ay oby) =D, (55)

Proof. In a regular space any pair of points p and q with .4, # A}
can be separated by a pair of open neighborhoods U € .4, and V € 4;:

unv ==ao.

16



In a regular space, closed neighborhoods of a point form a fundamental
system of neighborhoods of that point. Hence, there exist closed neigh-
borhoods M € .4, and N € .4; such that

MCU and NCV.

In particular,
& :={U,V,(MUN)‘}

is an open cover of X. The final two steps of the proof we leave as
exercises.

Exercise 23 Show that
U oU ={M°,N}.

In particular,
Ay oAy = Doyoqy = (M XM) U (NTUNC).
Exercise 24 Describe
XxX\ ((M*xM°) U (N°UN))

and derive from it that
(MXN) NAy oy = D.

Thus, set W = MxN is a desired neighborhood of (p,q) in XxX.
O

Theorem 5.3 (Compact Uniformization Theorem) The neighborhood filter,
N4, of the diagonal 9 C X x X, is a uniform structure on X if X is a compact
reqular space.

Proof. 1f 4} does not satisfy Axiom (Us), then there exists an open
neighborhood E € .4, such that

(DeD)\E#@ (D€ .A). (56)

Thus, the family
@:={(DeD)\E|D < J} (57)
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consists of non-empty subsets, and is directed by reverse inclusion. In
other words, (57) is a filter-base on XxX \ E.

The latter being a closed subset of the product of two compact spaces
is compact by Tichonov’s Theorem. It follows that ¢’ adheres to a certain
point (p,q) € XxX \E.

Note that p is not E-close to g, i.e., the neighborhood E(g) of g does
not contain p and, similarly, the neighborhood E~'(p) of p does not
contain ¢.

By Lemmma 5.2, there exists an open neighborhood D of A such that
D o D is disjoint with a certain neighborhood of (p,q). It follows that
(p,q) cannot be a cluster point of (57).

The contradiction proves that .4} satisfies Axiom (Usj). m]

6 Completeness

6.1 Cauchy filters

6.1.1

Definition 6.1 A filter .# on a uniform space (X, W) is called a Cauchy filter
if, for any E € U, there exists an E-small subset A € .7 .

Exercise 25 Show that, for any filter .7 on X, the collection of sets
#B:={E(A) |E€cUand A e F} (58)

is a base of a filter.

Definition 6.2 The filter generated by A, cf. (58), will be denoted FV.

Exercise 26 Show that .#Y is Cauchy if F is Cauchy.

Exercise 27 Suppose that ¢ C .7 and ¢ is a Cauchy filter. Show that F' C
9.

It follows from Exercises 26 and 27 that .Z! is the smallest Cauchy

subfilter contained in a given Cauchy filter .#. We shall therefore say
that .7 is a minimal Cauchy filter if 7 = Z Y.
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