Notes on Uniform Structures Annex to H104

Mariusz Wodzicki

December 3, 2010

1 Vocabulary

1.1 Binary Relations

1.1.1

In these notes we identify binary relations between elements of a set *X* and a set *Y* with subsets $E \subseteq X \times Y$ of their Cartesian product $X \times Y$. To a given relation \sim corresponds the subset:

$$E_{\sim} := \{ (x, y) \in X \times Y \mid x \sim y \}$$
⁽¹⁾

and, vice-versa, to a given subset $E \subseteq X \times Y$ corresponds the relation:

$$x \sim_E y$$
 if and only if $(x, y) \in E$. (2)

1.1.2 The inverse relation

We denote by

$$E^{-1} := \{ (y, x) \in Y \times X \mid (x, y) \in E \}$$
(3)

the inverse relation.

1.1.3 The identity relation

For any set *X*, we shall denote by Δ_X the **identity** relation $\{(x, x') \in X \times X \mid x = x'\}$. We shall often omit subscript *X* when set *X* is clear from the context.

Exercise 1 Let A and B be subsets of a set X. Show that

 $(A \times B) \cap \Delta = \emptyset$ if and only if $A \cap B = \emptyset$, (4)

i.e., sets A and B are disjoint.

1.1.4 Sets of *E*-relatives

For any subset $A \subseteq Y$ we shall denote by E(A) the set of *left E*-relatives of elements of *Y*:

$$E(A) := \{ x \in X \mid \exists_{s \in A} \ x \sim_E s \}.$$
(5)

Definition 1.1 We say that an element $x \in X$ is *E*-related to an element $y \in Y$, and write $x \sim_E y$, if $(x, y) \in E$.

In particular, $x \sim_E y$ if and only if $y \sim_{E^{-1}} x$. We shall also denote by E(y) the set $E(\{y\})$.

Exercise 2 *Show that:*

$$E(\emptyset) = \emptyset \tag{6}$$

$$E(A) = \bigcup_{s \in A} E(s) \tag{7}$$

$$E(A) \subseteq E(B)$$
 if $A \subseteq B$ (8)

$$E(A) \cup E(B) = E(A \cup B) \tag{9}$$

$$E(A) \cap E(B) \supseteq E(A \cap B) \tag{10}$$

where A and B are arbitrary subsets of Y. Give an example demonstrating that

$$E(A) \cap E(B) \neq E(A \cap B)$$

in general.

Exercise 3 Let A and B be subsets of X and Y respectively, and let $E \subseteq X \times Y$. Show that the following conditions are equivalent

there exist
$$a \in A$$
 and $b \in B$ such that $a \sim_E b$, (11a)

$$(A \times B) \cap E \neq \emptyset, \tag{11b}$$

$$A \cap E(B) \neq \emptyset, \tag{11c}$$

$$E^{-1}(A) \cap B \neq \emptyset. \tag{11d}$$

1.2 Composition of binary relations

1.2.1

If $E \subseteq X \times Y$ and $F \subseteq Y \times Z$, then $E \circ F \subseteq X \times Z$ is defined as

$$E \circ F := \{ (x,z) \in X \times Z \mid \exists_{y \in Y} (x,y) \in E \text{ and } (y,z) \in F \}$$

= $\{ (x,z) \in X \times Z \mid \exists_{y \in Y} x \sim_E y \text{ and } y \sim_F z \}.$ (12)

1.2.2 Associativity

Composition of binary relations is *associative*:

$$E \circ (F \circ G) = (E \circ F) \circ G \tag{13}$$

where $G \subseteq Z \times W$. Note also that

$$\Delta_X \circ E = E = E \circ \Delta_Y \tag{14}$$

and

$$(E \circ F)^{-1} = F^{-1} \circ E^{-1}. \tag{15}$$

In particular, the set of binary relations on a given set *X*, $\mathscr{P}(X \times X)$, equipped with the operation \circ , is a *monoid*.

Exercise 4 Let $E \subseteq X \times Y$, $F \subseteq Y \times Z$ and $T \subseteq Z$. Show that, for any $B \subseteq Z$,

$$(E \circ F)(B) = E(F(B)). \tag{16}$$

Exercise 5 Let A and B be subsets of X and Y respectively, and let $E \subseteq X \times Y$ and $F \subseteq Y \times Z$. Show that the following conditions are equivalent

there exist
$$a \in A$$
 and $b \in B$ such that $a \sim_{E \circ F} b$, (17a)

$$(A \times B) \cap (E \circ F) \neq \emptyset, \tag{17b}$$

$$A \cap (E \circ F)(B) \neq \emptyset, \tag{17c}$$

$$E^{-1}(A) \cap F(B) \neq \emptyset, \tag{17d}$$

$$(E \circ F)^{-1}(A) \cap B \neq \emptyset.$$
(17e)

1.2.3 Monotonicity

Composition of binary relations is *monotonic* in both arguments:

if
$$E \subseteq E'$$
 and $F \subseteq F'$, then $E \circ F \subseteq E' \circ F'$. (18)

1.3 The binary relation associated with a family $\mathscr{C} \subseteq \mathscr{P}(X)$

1.3.1

Any equivalence relation \sim on a set X defines a certain family of subsets \mathscr{C}_{\sim} , namely the family of equivalence classes of relation \sim .

We can recover the equivalence relation from that family of subsets by means of the following general construction.

1.3.2

For any family of subsets \mathscr{C} of a set *X*, let us consider the binary relation on *X*:

$$\Delta_{\mathscr{C}} := \bigcup_{C \in \mathscr{C}} C \times C. \tag{19}$$

Exercise 6 Show that the union of $C \in \mathscr{C}$ which contain $x \in X$ coincides with the set of points $\Delta_{\mathscr{C}}$ -close to x:

$$\Delta_{\mathscr{C}}(x) = \bigcup_{C \in \mathscr{C} \text{ such that } x \in \mathscr{C}} C.$$
(20)

1.3.3

In the special case of the family of all singleton subsets,

$$\mathscr{X} = \{\{x\} \mid x \in X\},\tag{21}$$

we obtain the identity relation

$$\Delta_{\mathscr{X}} = \Delta.$$

1.3.4

The associated relation is automatically symmetric. It is reflexive precisely when \mathscr{C} is a cover of *X*.

Exercise 7 Show that relation $\sim_{\Delta_{\mathscr{C}}}$ is reflexive, i.e.,

 $\Delta_{\mathscr{C}} \supseteq \Delta$

if and only if C covers X.

1.3.5

Let us introduce the following operation on $\mathscr{P}(\mathscr{P}(X))$, the set of all families of subsets of *X*,

$$\mathscr{C} \diamond \mathscr{D} := \{ C \cup D \mid C \in \mathscr{C}, \ D \in \mathscr{D}, \text{ and } C \cap D \neq \emptyset \}.$$
(22)

It is associative, commutative, and family $\mathscr X$, cf. (21), is its identity.

Exercise 8 Show that, for any $\mathscr{C} \subseteq \mathscr{P}(X)$,

$$\mathscr{X}\diamond\mathscr{C}=\mathscr{C}=\mathscr{C}\diamond\mathscr{X}.$$

Exercise 9 Show that

$$\Delta_{\mathscr{C}} \circ \Delta_{\mathscr{C}} \cup \Delta_{\mathscr{C}} \circ \Delta_{\mathscr{D}} \cup \Delta_{\mathscr{D}} \circ \Delta_{\mathscr{C}} \cup \Delta_{\mathscr{C}} \circ \Delta_{\mathscr{D}} = \Delta_{\mathscr{C} \diamond \mathscr{D}}. \tag{23}$$

Deduce from (23) that

$$\Delta_{\mathscr{C}} \circ \Delta_{\mathscr{C}} = \Delta_{\mathscr{C} \diamond \mathscr{C}}.\tag{24}$$

Exercise 10 Show that the following conditions are equivalent

relation
$$\sim_{\Delta_{\mathscr{C}}}$$
 is transitive, (25a)

$$\mathscr{C} \diamond \mathscr{C} = \mathscr{C}. \tag{25c}$$

1.3.6 Refinement

We shall say that a family $\mathscr{C}' \subseteq \mathscr{P}(X)$ refines a family $\mathscr{C} \subseteq \mathscr{P}(X)$ (or, that it is a *refinement* of \mathscr{C}) if

for any
$$C' \in \mathscr{C}'$$
, there exists $C \in \mathscr{C}$ such that $C' \subseteq C$. (26)

We denote it by $\mathscr{C}' \rightarrow \mathscr{C}$.

1.3.7

Refinement is a reflexive and transitive relation on $\mathscr{P}(\mathscr{P}((X)))$. This notion plays an important role in the theory of covers. It should not be confused, however, with 'refinement' in *the sense of filters*.

Exercise 11 Show that

 $\mathscr{C}' \to \mathscr{C} \quad implies \quad \Delta_{\mathscr{C}'} \subseteq \Delta_{\mathscr{C}}.$ (27)

2 Uniform spaces

2.1 Uniform structures

2.1.1

Definition 2.1 A filter U on $X \times X$ is said to be a **uniform strucure** if it satisfies the following conditions

 $(\mathbf{U}_{\mathbf{1}}) \cap \mathcal{U} \supseteq \Delta;$

 $(\mathbf{U_2})$ if $E \in \mathcal{U}$, then $E^{-1} \in \mathcal{U}$;

 (\mathbf{U}_3) for any $E \in \mathcal{U}$, there exists $E' \in \mathcal{U}$ such that $E' \circ E' \subseteq E$.

Definition 2.2 A set X equipped with a uniform structure U is called a uniform space and the filter U is often referred to as its uniformity.

2.1.2 Entourages

Members of \mathcal{U} are usually referred to as **entourages**. For two points p and q of X we shall say that they are *E*-closed if $p \sim_E q$. Thus, E(A) is the set of points $p \in X$ which are emph*E*-close to a subset $A \subseteq X$.

2.1.3 Symmetric entourages

Since \mathcal{U} is a filter, and $F = E \cap E^{-1}$ is clearly *symmetric*, i.e., $F = F^{-1}$, symmetric entourages form a base of filter \mathcal{U} .

2.1.4

Definition 2.3 We say that a subset $A \subseteq X$ is *E*-small if $A \times A \subseteq E$, i.e., if any two elements of A are *E*-close,

$$\forall_{s,s'\in A} \ s \sim_E s'. \tag{28}$$

Exercise 12 Show that $E \subseteq E \circ E$ for any entourage $E \in U$.

Exercise 13 Let *E* be an entourage. Show that, for any $n \ge 2$, there exists $D \in U$ such that

$$D^{\circ n} := \underbrace{D \circ \cdots \circ D}_{n} \subseteq E.$$
⁽²⁹⁾

Exercise 14 Let *E* be a symmetric entourage. Show that, if $A \subseteq X$ is *E*-small, then E(A) is $E \circ E \circ E$ -small.

3 Metrization

3.1 The uniform structure associated with a semi-metric

3.1.1

Suppose $\rho: X \times X \longrightarrow [0, \infty)$ is a semi-metric on a set *X*. The sets

$$E_{\epsilon} := \{ (p,q) \in X \times X \mid d_p, q) < \epsilon \}$$
(30)

form a basis of a filter on $X \times X$.

Note that

$$\bigcap_{\varepsilon>0} E_{\varepsilon} \supseteq \Delta, \tag{31}$$

 $E_{\epsilon} = E_{\epsilon}^{-1}$, and the triangle inequality yields

$$E_{\epsilon} \circ E_{\epsilon'} \subseteq E_{\epsilon+\epsilon'}$$

It follows that the filter generated by $\{E_{\epsilon} \mid \epsilon > 0\}$ satisfies the three conditions of a uniformity, cf. Definition 2.1.

3.1.2

Function ρ separates points of X, i.e., is a metric on set X, precisely when

$$\bigcap_{\epsilon>0} E_{\epsilon} = \Delta. \tag{32}$$

3.1.3

The uniformity associated with a semi-metric possesses a countable base: take for example

$$\Big\{E_{\frac{1}{n}}\mid n=1,2,\dots\Big\}.$$

In the next section we will show that any uniformity with a countable base is the associated uniformity of some semi-metric on *X*.

3.2 A semi-metric associated with a flag of entourages

3.2.1 A flag of entourages

Let us call a nested sequence of entourages

$$\mathscr{E}: \quad X \times X = E_0 \supseteq E_1 \supseteq E_2 \supseteq \cdots \tag{33}$$

a flag of entourages.

3.2.2 An associated semi-metric

Given a flag (33), define a function

$$f(p) := \begin{cases} \frac{1}{2^n} & \text{if } p \in E_n \setminus E_{n+1} \\ 0 & \text{if } p \in \bigcap_{i=0}^{\infty} E_i \end{cases},$$
(34)

and then produce the corresponding semi-metric by enforcing the Triangle Inequality as described in the *Notes on Topology*:

$$\rho_{\mathscr{E}} = f^t, \quad \text{i.e.,} \quad \rho_{\mathscr{E}}(p,q) = \inf\left\{\sum_{i=1}^n f(x_{i-1}, x_i) \mid x_0 = p, x_n = q\right\} \quad (35)$$

where the infimum is taken over all finite sequences $\{x_i\}_{i \in \{0,...,n\}}$ of elements of *X* of any length which start at *p* and terminate at *q*.

3.2.3

One obviously has the inequality

$$\rho_{\mathscr{E}} \leq f.$$

In particular,

$$E_n \subseteq \left\{ (p,q) \in X \times X \mid \rho_{\mathscr{E}}(p,q) < \frac{1}{2^n} \right\}$$

Lemma 3.1 If the flag satisfies the following condition

$$E_n \circ E_n \circ E_n \subseteq E_{n-1} \qquad (n = 1, 2, \dots). \tag{36}$$

then

$$\frac{1}{2}f \le \rho_{\mathscr{E}}.\tag{37}$$

Proof. We shall prove by induction on *n* that

$$\frac{1}{2}f \le \sum_{i=1}^{l} f(p_{i-1}, p_i)$$
(38)

for any sequence

$$p_0 = p, \dots, p_l = q. \tag{39}$$

There is nothing to prove for l = 1. For a given sequence (39), denote by *d* the sum

$$\sum_{i=1}^l f(p_{i-1}, p_i).$$

If d = 0, then $f(p_{i-1}, p_i) = 0$ for each $i \in \{1, ..., l\}$ which means that $(p_i, p_{i+1}) \in E_n$ for any n. Hence,

$$(p,q) \in \underbrace{E_n \circ \cdots \circ E_n}_{l \text{ times}} \subseteq E_m$$

for any $m \le n - \log_3 l$. In particular, $(p,q) \in \bigcap \mathscr{E}$, and thus f(p,q) = 0.

Suppose that d > 0. Denote by *m* be the largest index in $\{0, ..., l\}$ such that

$$\sum_{i=1}^{m} f(p_{i-1}, p_i) \le \frac{1}{2}d$$

Note that m < l, and also

$$f(p_m, p_{m+1}) > 0$$
 and $\sum_{i=m+2}^l f(p_{i-1}, p_i) < \frac{1}{2}d$

Combined with inductive hypothesis we obtain

$$f(p, p_m) \le 2 \cdot \frac{1}{2}d = d$$
 and $f(p_{m+1}, q) \le 2 \cdot \frac{1}{2}d = d$

and, obviously, also

$$f(p_m,p_{m+1})\leq d.$$

The above inequalities mean that if n is the largest integer such that

$$\frac{1}{2^n} \le d,$$

then (p, p_m) , (p_m, p_{m+1}) , and (p_{m+1}, q) all belong to E_n . In particular,

$$(p,q) \in E_n \circ E_n \circ E_n \subseteq E_{n-1}$$

which means that

$$f(p,q)\leq \frac{1}{2}d.$$

Corollary 3.2 If a flag \mathscr{E} satisfies condition (36), then the uniformity it generates, \mathscr{E}_* , is associated with semi-metric $\rho_{\mathscr{E}}$.

We arrive at the following important result.

Theorem 3.3 (Metrization Theorem) A uniformity U is associated with some semi-metric if and only if it possesses a countable base.

Proof. Existence of a countable base is obviously a necessary condition for \mathscr{E}_* to be associated with a semi-metric.

If \mathcal{U} possesses a countable base, then it possesses a base \mathscr{E} satisfying condition (36). Then,

$$E_n \subseteq \left\{ (p,q) \in X \times X \mid \rho_{\mathscr{E}}(p,q) < \frac{1}{2^n} \right\} \subseteq E_{n-1}. \qquad (n = 1, 2, \dots).$$

4 Uniform topology

For any uniform space (X, U), we shall define an associated topology on X. This can be done by defining either the neighborhood filters or the closure operation.

4.1 The neighborhood filters

4.1.1

Definition 4.1 For any point $p \in X$, we set \mathcal{N}_p to be the filter with the base

$$\mathscr{B}_p := \{ E(p) \mid E \in \mathcal{U} \}.$$
(40)

Definition 4.2 We declare a subset $U \in X$ to be **open** if, for any $P \in U$, there exists $E \in U$ such that $E(p) \subseteq U$.

Exercise 15 Show that

$$\mathscr{T}^{\mathcal{U}} := \{ U \subseteq X \mid U \text{ is open} \}$$

$$\tag{41}$$

satisfies the axioms of a topology.

4.1.2

The above topology will be referred to as the **uniform topology** and filters \mathcal{N}_p , cf. Definition 4.1, are the neighborhood filters of this topology.

4.2 The closure operation

4.2.1

Definition 4.3 Define the closure operation on the set, $\mathscr{P}(X)$, of all subsets of *X* by

$$A \longmapsto \overline{A} := \bigcap_{E \in \mathcal{U}} E(A).$$
(42)

Exercise 16 Show that the operation defined in (42) satisfies the axioms of the topological closure operation

$$S \subseteq \overline{A}$$
 (43)

$$\overline{A} = \overline{A} \tag{44}$$

$$\overline{A \cup B} = \overline{A} \cup \overline{B} \tag{45}$$

$$\overline{\emptyset} = \emptyset \tag{46}$$

where A and B are arbitrary subsets of X.

Definition 4.4 We declare a subset $Z \subseteq X$ to be closed if $Z = \overline{Z}$.

Proposition 4.5 A subset $U \subseteq X$ is open if and only if $X \setminus U$ is closed.

Proof. Let *A* be a subset of *X*. Suppose that $p \notin \overline{A}$. Then $p \notin E(A)$ for some $E \in \mathcal{U}$. Let $D \in \mathcal{U}$ be such that $D \circ D \subseteq E$. Then $p \notin (D \circ D)(A)$ and thus $D^{-1}(p) \cap D(A) = \emptyset$, cf. Exercise **??**. It follows that

$$D^{-1}(p) \cap \overline{A} = D^{-1}(p) \cap \bigcap_{F \in \mathcal{U}} F(A) \subseteq D^{-1}(p) \cap D(A) = \emptyset,$$

i.e., $D^{-1}(p) \in X \setminus \overline{A}$. Hence $X \setminus \overline{A}$ is open.

Let *U* be an open subset of *X* and $p \in U$. Then there exists $E \in U$ such that $E(p) \cap (X \setminus U) = \emptyset$. The latter is equivalent to

$$\{p\} \cap E^{-1}(X \setminus U) = \emptyset,$$

cf. Exercise 3. Thus, $p \notin E^{-1}(X \setminus U)$. In particular, $p \notin (X \setminus U)$. It follows that

$$U \subseteq X \setminus \overline{(X \setminus U)}$$

or equivalently,

 $X \setminus U \supseteq \overline{(X \setminus U)}.$

In view of $X \setminus U \subseteq \overline{(X \setminus U)}$, we infer that $X \setminus U = \overline{(X \setminus U)}$, i.e., $X \setminus U$ is closed.

4.3 Uniform continuity

4.3.1

For a function $f: X \longrightarrow Y$ let $f \times f: X \times X \longrightarrow Y \times Y$ be the function

$$(x, x') \longmapsto (f(x), f(x')). \tag{47}$$

Definition 4.6 We say that a function $f: X \longrightarrow Y$ between uniform spaces (X, U) and (Y, \mathcal{V}) , is uniformly continuous if $(f \times f)^{-1}(E) \in U$ for any $E \in \mathcal{V}$.

Exercise 17 Show that $f: X \longrightarrow Y$ is uniformly continuous if and only if it satisfies the following condition

$$\forall_{E \in \mathscr{V}} \exists_{D \in \mathfrak{U}} \forall_{x, x' \in X} \left(x \sim_D x' \Rightarrow f(x) \sim_E f(x') \right).$$
(48)

4.3.2

A uniformly continuous function is continuous in respective uniform topologies. The reverse is generally false.

Exercise 18 *Prove that the function* $f: (0, \infty) \longrightarrow \mathbb{R}$ *,*

$$f(x) = \frac{1}{x}$$

is continuous but not uniformly continuous. Here \mathbb{R} and its subset $(0, \infty)$ are equipped with the usual metric d(x, x') = |x - x'|.

Theorem 4.7 If X is compact in the uniform topology, then any continuous function from X into a uniform topological space Y is uniformly continuous.

Proof. Let \mathcal{U} denote the uniformity of X and \mathscr{V} denote the uniformity of Y. For a given $E \in \mathscr{V}$, let $E' \in \mathscr{V}$ be a symmetric entourage such that $E' \circ E' \subseteq E$.

If $f: X \longrightarrow Y$ is continuous, then for each $p \in X$, there exists an entourage $D'_p \in \mathcal{U}$ such that

$$f\left(D_p(p)\right) \subseteq E'(f(p)). \tag{49}$$

Let $D_p \in \mathcal{U}$ be an entourage such that $D_p \circ D_p \subseteq D'_p$. Since each $p \in X$ belongs to $(D_p(p)^\circ)$, the interiors $\{(D_p(p)^\circ)\}_{p \in X}$ form an open cover of *X*. In view of compactness of *X*, one has

$$X = D_{p_1}(p_1) \cup \dots \cup D_{p_n}(p_n)$$
(50)

for certain points $p_1, \ldots, p_n \in X$.

Set $D := D_{p_1} \cap \cdots \cap D_{p_n}$. The latter is an entourage of *X*.

Let *x* and *x'* be arbitrary points of *X*. Suppose that $x \sim_D x'$. In view of (50), one has $x' \sim_{D_{p_i}} p_i$ for some p_i . It follows that $x \sim_{D \circ D_{p_i}} p_i$. Since $D_{p_i} \subseteq D'_{p_i}$ and $D \circ D_{p_i} \subseteq D_{p_i} \circ D_{p_i} \subseteq D'_{p_i}$ we obtain

$$x \sim_{D'_{p_i}} p_i$$
 and $x' \sim_{D'_{p_i}} p_i$. (51)

By combining (51) with (49) we obtain

$$f(x) \sim_{E'} f(p_i)$$
 and $f(x') \sim_{E'} f(p_i)$.

and, since E' is symmetric, $f(x) \sim_{E' \circ E'} f(x')$. Recalling that $E' \circ E' \subseteq E$, we deduce that $f(x) \sim_E f(x')$.

5 Uniformization

5.1 The neighborhood filter of the diagonal

5.1.1

Let *X* be a topological space. The neighborhood filter \mathcal{N}_{Δ} of the diagonal obviously satisfies Axiom (**U**₁).

Exercise 19 Show that \mathcal{N}_{Δ} satisfies Axiom (U_2) .

5.1.2

Exercise 20 Show that a family $\mathscr{U} \subseteq \mathscr{P}(X)$ is an open cover of X if and only if $\Delta_{\mathscr{U}}$ is a neighborhood of the diagonal.

5.1.3

For any point $p \in X$ and $E \in \mathcal{N}_{\Delta}$, the set of *E*-relatives of of *p* is a neighborhood of *p*. Indeed, since *E* is a neighborhood of Δ , there exists a pair of open neighborhoods *U* and *V* of *p* such that

$$U \times V \subseteq E$$

It follows that

$$U = (U \times V)(p) \subseteq E(p).$$

Thus, filter-base

$$\{E(p) \mid E \in \mathscr{N}_{\Delta}\}$$

generates a filter not finer than \mathcal{N}_p .

Proposition 5.1 If a point $p \in X$ possesses a fundamental system of closed neighborhoods, then any open neighborhood of p is of the form E(p) for some $E \in \mathcal{N}_{\Delta}$.

In particular,

$$\{E(p) \mid E \in \mathscr{N}_{\Delta}\} \tag{52}$$

is a fundamental system of neighborhoods of point p.

Proof. For an open neighborhood $U \in \mathcal{N}_p$ let $N \in \mathcal{N}_p$ be a closed neighborhood such that $N \subseteq U$. Then

$$\mathscr{U} := \{U, N^c\}$$

is an open cover of *X*, and thus $\Delta_{\mathscr{U}}$ is an open neighborhood of the diagonal, Δ . Since $p \in U$ and $p \notin N^c$, we have

$$\Delta_{\mathscr{U}}(p) = U,$$

cf. (20).

5.2 Uniformizable spaces

5.2.1

A topological space (X, \mathscr{T}) is said to be **uniformizable**, if there exists a uniform structure \mathcal{U} on X such that \mathscr{T} is the associated uniform topology $\mathscr{T}^{\mathcal{U}}$, cf. (41).

Exercise 21 Show that a uniformizable space is necessarily regular.

5.2.2

In view of Proposition 5.1, A regular topological space is uniformizable if and only if the neighborhood filter of the diagonal, \mathcal{N}_{Δ} , satisfies Axiom (\mathbf{U}_3) .

Exercise 22 Show that the family

$$\mathscr{B} = \{\Delta_{\mathscr{U}} \mid \mathscr{U} \text{ is an open cover of } X\}$$
(53)

is a base of filter \mathcal{N}_{Δ} .

5.2.3

The family

$$\mathscr{B}^{\circ 2} := \{ \Delta_{\mathscr{U}} \circ \Delta_{\mathscr{V}} \mid \mathscr{U} \text{ and } \mathscr{V} \text{ are open covers of } X \}$$
(54)

is similarly a filter-base and, in view of (23), it generates a filter not finer than \mathcal{N}_{Δ} .

The neighborhood filter of the diagonal, \mathcal{N}_{Δ} , satisfies Axiom (**U**₃), and thus is a uniformity on *X*, precisely when (54) generates \mathcal{N}_{Δ} .

5.2.4

We shall now show that in a regular topological space pairs of separable points (p,q) can be separated from the diagonal, Δ , using neighborhoods from $\mathscr{B}^{\circ 2}$.

Lemma 5.2 Let p and q be a pair of points in a regular topological space X such that $\mathcal{N}_p \neq \mathcal{N}_q$. Then, there exists an open cover \mathscr{U} of X and a neighborhood W of (p,q), such that

$$W \cap (\Delta_{\mathscr{U}} \circ \Delta_{\mathscr{U}}) = \emptyset.$$
(55)

Proof. In a regular space any pair of points p and q with $\mathcal{N}_p \neq \mathcal{N}_q$ can be separated by a pair of open neighborhoods $U \in \mathcal{N}_p$ and $V \in \mathcal{N}_q$:

$$U \cap V = \emptyset$$
.

In a regular space, closed neighborhoods of a point form a fundamental system of neighborhoods of that point. Hence, there exist closed neighborhoods $M \in \mathcal{N}_p$ and $N \in \mathcal{N}_q$ such that

$$M \subseteq U$$
 and $N \subseteq V$.

In particular,

$$\mathscr{U} := \{U, V, (M \cup N)^c\}$$

is an open cover of *X*. The final two steps of the proof we leave as exercises.

Exercise 23 Show that

$$\mathscr{U} \diamond \mathscr{U} = \{M^c, N^c\}.$$

In particular,

$$\Delta_{\mathscr{U}} \circ \Delta_{\mathscr{U}} = \Delta_{\mathscr{U} \diamond \mathscr{U}} = (M^{c} \times M^{c}) \cup (N^{c} \cup N^{c}).$$

Exercise 24 Describe

$$X \times X \setminus \left((M^c \times M^c) \cup (N^c \cup N^c) \right)$$

and derive from it that

$$(M \times N) \cap \Delta_{\mathscr{U} \diamond \mathscr{U}} = \emptyset.$$

Thus, set $W = M \times N$ is a desired neighborhood of (p,q) in $X \times X$.

Theorem 5.3 (Compact Uniformization Theorem) *The neighborhood filter,* \mathcal{N}_{Δ} *, of the diagonal* $\mathcal{D} \subset X \times X$ *, is a uniform structure on* X *if* X *is a compact regular space.*

Proof. If \mathcal{N}_{Δ} does not satisfy Axiom (\mathbf{U}_3) , then there exists an open neighborhood $E \in \mathcal{N}_{\Delta}$ such that

$$(D \circ D) \setminus E \neq \emptyset$$
 $(D \in \mathscr{N}_{\Delta}).$ (56)

Thus, the family

$$\mathscr{C} := \{ (D \circ D) \setminus E \mid D \in \mathscr{N}_{\Delta} \}$$
(57)

consists of non-empty subsets, and is directed by reverse inclusion. In other words, (57) is a filter-base on $X \times X \setminus E$.

The latter being a closed subset of the product of two compact spaces is compact by Tichonov's Theorem. It follows that \mathscr{C} adheres to a certain point $(p,q) \in X \times X \setminus E$.

Note that *p* is not *E*-close to *q*, i.e., the neighborhood E(q) of *q* does not contain *p* and, similarly, the neighborhood $E^{-1}(p)$ of *p* does not contain *q*.

By Lemmma 5.2, there exists an open neighborhood D of Δ such that $D \circ D$ is disjoint with a certain neighborhood of (p,q). It follows that (p,q) cannot be a cluster point of (57).

The contradiction proves that \mathcal{N}_{Δ} satisfies Axiom (**U**₃).

6 Completeness

6.1 Cauchy filters

6.1.1

Definition 6.1 A filter \mathscr{F} on a uniform space (X, U) is called a **Cauchy filter** *if, for any* $E \in U$, *there exists an* E*-small subset* $A \in \mathscr{F}$.

Exercise 25 Show that, for any filter \mathscr{F} on X, the collection of sets

$$\mathscr{B} := \{ E(A) \mid E \in \mathcal{U} \text{ and } A \in \mathscr{F} \}$$
(58)

is a base of a filter.

Definition 6.2 The filter generated by \mathscr{B} , cf. (58), will be denoted F^{U} .

Exercise 26 Show that \mathscr{F}^{U} is Cauchy if F is Cauchy.

Exercise 27 Suppose that $\mathscr{G} \subseteq \mathscr{F}$ and \mathscr{G} is a Cauchy filter. Show that $\mathscr{F}^{U} \subseteq \mathscr{G}$.

It follows from Exercises 26 and 27 that $\mathscr{F}^{\mathfrak{U}}$ is the smallest Cauchy subfilter contained in a given Cauchy filter \mathscr{F} . We shall therefore say that \mathscr{F} is a **minimal** Cauchy filter if $\mathscr{F} = \mathscr{F}^{\mathfrak{U}}$.