Notes on Ordered Sets

An annex to H104, H113, etc.

Mariusz Wodzicki

February 27, 2012

1 Vocabulary

1.1 Definitions

Definition 1.1 A binary relation \leq on a set S is said to be a **partial order** if it is **reflexive**,

$$x \leq x$$
, (1)

weakly antisymmetric,

if
$$x \leq y$$
 and $y \leq x$, then $x = y$, (2)

and transitive,

if
$$x \leq y$$
 and $y \leq z$, then $x \leq z$ (3)

Above *x*, *y*, *z*, are arbitrary elements of *S*.

Definition 1.2 *Let* $E \subseteq S$. *An element* $y \in S$ *is said to be an upper bound for* E *if*

$$x \leq y$$
 for any $x \in E$. (4)

By definition, any element of S is declared to be an upper bound for \emptyset *, the empty subset.*

We shall denote by U(E) the set of all upper bounds for *E*

$$U(E) := \{ y \in S \mid x \leq y \text{ for any } x \in E \}.$$
(5)

Note that $U(\emptyset) = S$.

Definition 1.3 We say that a subset $E \subseteq S$ is **bounded (from) above**, if $U(E) \neq \emptyset$, i.e., when there exists at least one element $y \in S$ satisfying (4).

Definition 1.4 If $y, y' \in U(E) \cap E$, then

$$y \leq y'$$
 and $y' \leq y$.

Thus, y = y', and that unique upper bound of E which belongs to E will be denoted max E and called the **largest element** of E.

It follows that $U(E) \cap E$ is empty when *E* has no largest element, and consists of a single element, namely max *E*, when it does.

If we replace \leq by \geq everywhere above, we shall obtain the definitions of a **lower bound** for set *E*, of the set of all lower bounds,

$$L(E) := \{ y \in S \mid x \succeq y \text{ for any } x \in E \},$$
(6)

and, respectively, of the **smallest element** of *E*. The latter will be denoted min *E*.

1.1.1 The Principle of Duality

Note that the relation defined by

$$x \preceq^{\text{rev}} y \quad \text{if} \quad x \succeq y \tag{7}$$

is also an order relation on *S*. We will refer to it as the **reverse ordering**.

Any general statement about partially ordered sets has the corresponding *dual* statement that is obtained by replacing (S, \preceq) with (S, \preceq^{rev}) . Under this "duality" *upper* bounds become *lower* bounds, maxima becoma minima, suprema become infima, and vice-versa.

Therefore most general theorems about partially ordered sets possess the corresponding *dual* theorems. Below, I will be usually formulating those dual statements for the convenience of reference.

Exercise 1 Show that if $E \subseteq S$ is bounded below and nonempty, then L(E) is bounded above and nonempty.

Dually, if *E* is bounded above and nonempty, then U(E) is bounded below and nonempty.

1.1.2

If $E \subseteq E' \subseteq S$, then

$$\max E' \in U(E) \tag{8}$$

when max E' exists, and, dually,

$$\min E' \in L(E) \tag{9}$$

when min E' exists.

If both max *E* and max E' exist, then

$$\max E \preceq \max E'. \tag{10}$$

Dually, if both min *E* and min E' exist, then

$$\min E' \preceq \min E. \tag{11}$$

Exercise 2 (Sandwich Lemma for maxima) Show that if $E'' \subseteq E \subseteq E'$ and both max E' and max E'' exist and are equal, then max E exists and

$$\max E'' = \max E = \max E'. \tag{12}$$

Dually, if both min E' and min E'' exist and are equal, then min E exists and

$$\min E' = \min E = \min E''. \tag{13}$$

Definition 1.5 When $\min U(E)$ exists it is called the **least upper bound** of *E*, or the **supremum** of *E*, and is denoted sup *E*.

Dually, when $\max L(E)$ exists it is called the **largest lower bound** of E, or the **infimum** of E, and is denoted inf E.

For the supremum of E to exist, subset E must be bounded above. The supremum of E may exist for some bounded above subsets of S and may not exist for others.

1.1.3 Example

Let us consider $S = \mathbb{Q}$, the set of rational numbers, with the usual order. Both the following subset $E_1 \subseteq \mathbb{Q}$,

$$E_1 := \{ x \in \mathbb{Q} \mid x^2 < 1 \}$$
 (14)

and the subset $E_1 \subseteq \mathbb{Q}$,

$$E_2 := \{ x \in \mathbb{Q} \mid x^2 < 2 \},\tag{15}$$

are simultaneously bounded above and below. None of them has either the largest nor the smallest element but

$$\sup E_1 = 1$$
 and $\inf E_1 = -1$

while neither sup E_2 nor inf E_2 exist in $S = \mathbb{Q}$.

Exercise 3 Show that

$$\sup \emptyset = \min S \quad and \quad \inf \emptyset = \max S. \tag{16}$$

In particular, $\sup \emptyset$ exists if and only if *S* has the smallest element; similarly, $\inf \emptyset$ exists if and only if *S* has the largest element.

1.1.4 Intervals $\langle s \rangle$ and $[s \rangle$.

Let (S, \preceq) be a partially ordered set. For each $s \in S$, let

$$\langle s] := \{ x \in S \mid x \preceq s \}. \tag{17}$$

and

$$s\rangle := \{ y \in S \mid s \leq y \}. \tag{18}$$

Exercise 4 *Show that, for* $E \subseteq S$ *, one has*

$$L(E) = \langle s] \qquad \text{for some } s \in S \tag{19}$$

if and only if inf *E exists*. *In this case,*

$$L(E) = \langle \inf E]. \tag{20}$$

Dually,

 $U(E) = [s\rangle$ for some $s \in S$ (21)

if and only if sup *E* exists. In this case,

$$U(E) = [\sup E\rangle. \tag{22}$$

1.1.5 Example

Consider the set of natural numbers,

$$\mathbb{N} := \{0, 1, 2, \dots\},\tag{23}$$

equipped with the ordering given by

$$m \leq n$$
 if $m \mid n$ (24)

("*m* divides *n*").

Exercise 5 Does $(\mathbb{N}, |)$ have the maximum? the minimum? If yes, then what are they?

Exercise 6 For a given $n \in \mathbb{N}$, describe intervals (n] and [n) in $(\mathbb{N}, |)$.

Exercise 7 For given $m, n \in \mathbb{N}$, is set $\{m, n\}$ bounded below? Does it possess infimum? If yes, then describe $\inf\{m, n\}$.

Exercise 8 For given $m, n \in \mathbb{N}$, is set $\{m, n\}$ bounded above? Does it possess supremum? If yes, then describe $\sup\{m, n\}$.

Exercise 9 Does every subset of \mathbb{N} possess infimum in $(\mathbb{N}, |)$? Does every subset of \mathbb{N} possess supremum?

1.1.6 Totally ordered sets

Definition 1.6 We say that a partially ordered set (S, \preceq) is totally, or linearly, ordered if any two elements x and y of S are comparable

either
$$x \leq y$$
 or $y \leq x$. (25)

Totally ordered subsets in any given partially ordered set are called **chains**.

Exercise 10 Let (S, \preceq) be a totally ordered set and $E, E' \subseteq S$ be two subsets. Show that

either
$$L(E) \subseteq L(E')$$
 or $L(E') \subseteq L(E)$. (26)

1.2 Observations

1.2.1

For any subset $E \subseteq S$, one has

$$E \subseteq LU(E) := L(U(E)) \tag{27}$$

and

$$E \subseteq UL(E) := U(L(E)). \tag{28}$$

1.2.2

If $E \subseteq E' \subseteq S$, then

$$U(E) \supseteq U(E') \tag{29}$$

and

$$L(E) \supseteq L(E'). \tag{30}$$

Exercise 11 Show that if $E \subseteq E'$ and both sup E and sup E' exist, then

$$\sup E \preceq \sup E'. \tag{31}$$

Dually, if both $\inf E$ and $\inf E'$ exist, then

$$\inf E' \preceq \inf E. \tag{32}$$

Exercise 12 (Sandwich Lemma for infima) Show that if $E'' \subseteq E \subseteq E'$ and both $\inf E'$ and $\inf E''$ exist and are equal, then $\inf E$ exists and

$$\inf E'' = \inf E = \inf E'. \tag{33}$$

Dually, if both sup E' and sup E'' exist and are equal, then sup E exists and

$$\sup E' = \sup E = \sup E''. \tag{34}$$

1.2.3

By applying (29) to the pair of subsets in (27), one obtains

$$U(E) \supseteq ULU(E) := U(L(U(E)))$$

while (28) applied to subset U(E) yields

$$U(E) \subseteq ULU(E).$$

It follows that

$$U(E) = ULU(E). \tag{35}$$

Dually,

$$L(E) = LUL(E). \tag{36}$$

Note that equality (36) is nothing but equality (35) for the *reverse* ordering.

1.2.4

For any subsets $E \subseteq S$ and $E' \subseteq S$, one has

$$U(E \cup E') = U(E) \cap U(E') \tag{37}$$

and

$$L(E \cup E') = L(E) \cap L(E').$$
(38)

1.2.5

For any $E \subseteq S$, max E exists if and only if sup E exists and belongs to E, and they are equal

$$\sup E = \max E. \tag{39}$$

Dually, $\min E$ exists if and only if $\inf E$ exists and belongs to E, and they are equal

$$\inf E = \min E. \tag{40}$$

Indeed, if max *E* exists, then it is the least element of U(E), cf. Definition (1.4).

If sup *E* exists and is a member of *E*, then it belongs to $U(E) \cap E$ which as we established, cf. Definition (1.4), consists of the single element max *E* when $U(E) \cap E$ is nonempty.

The case of min *E* and inf *E* follows if we apply the already proven to $(S, \preceq^{\text{rev}})$.

1.2.6

For any $E \subseteq S$, inf U(E) exists if and only if sup E exists, and they are equal

$$\max LU(E) = \inf U(E) = \min U(E) = \sup E.$$
(41)

Indeed,

$$\inf U(E) := \max LU(E) \in U(E),$$

in view of $E \subseteq LU(E)$, cf., (27), combined with (8) where F = LU(E). Thus,

$$\inf U(E) = \min U(E)$$

by (39).

Dually,
$$\sup L(E)$$
 exists if and only if $\inf E$ exists, and they are equal

$$\min UL(E) = \sup L(E) = \max L(E) = \inf E.$$
(42)

1.2.7 Example: the power set as a partially ordered set

Let $S = \mathscr{P}(A)$ be the *power set* of a set A:

$$\mathscr{P}(A) :=$$
 the set of all subsets of A . (43)

Containment \subseteq is a partial order relation on $\mathscr{P}(A)$.

Subsets \mathscr{E} of $\mathscr{P}(A)$ are the same as *families* of subsets of A. Since $S = \mathscr{P}(A)$ contains the largest element, namely A, and the smallest element, namely \emptyset , every subset of $\mathscr{P}(A)$ is bounded above and below.

The union of all members of a family $\mathscr E$,

$$\bigcup_{X \in \mathscr{E}} X := \{ a \in A \mid a \in X \text{ for some } X \in \mathscr{E} \}$$
(44)

is the smallest subset of *A* which *contains every member* of family \mathscr{E} . Hence, sup \mathscr{E} exists and equals (44).

Dually, the intersection of all members of family \mathscr{E} ,

$$\bigcap_{X \in \mathscr{E}} X := \{ a \in A \mid a \in X \text{ for all } X \in \mathscr{E} \}$$
(45)

is the largest subset of *A* which is *contained in every member* of family \mathscr{E} . Hence, inf \mathscr{E} exists and equals (45).

The power set provides an example of a partially ordered set in which every subset (including the empty set) possesses both suppremum and infimum.

1.3 Partially ordered subsets

1.3.1

In $S \subseteq T$ is a subset of a partially ordered set (T, \preceq) , then it can be regarded as a partially ordered set in its own right. One has to be cautioned, however, that *S* with the induced order may have vastly different properties.

For a subset $E \subseteq S$, the sets of upper and lower bounds will generally depend on whether one considers *E* as a subset of *S* or *T*. In particular, *E* may be not bounded as a subset of *S* yet be bounded as a subset of *T*.

When necessary, we shall indicate this by subscript S or T. Thus,

$$L_T(E)$$
, $U_T(E)$, $\inf_T E$, $\sup_T E$,

will denote the set of lower bounds, the set of upper bounds, the infimum, and the supremum, when *E* is viewed as a subset of *T*.

Exercise 13 *Show that, for* $E \subseteq S$ *, one has*

$$\sup_{T} E \preceq \sup_{S} E \tag{46}$$

whenever both suprema exist.

Dually, one has

$$\inf_{S} E \leq \inf_{T} E$$
(47)

whenever both infima exist.

Exercise 14 For $E \subseteq S$, suppose that $\sup_T E$ exists and belongs to S. Show that $\sup_S E$ exists and

$$\sup_{S} E = \sup_{T} E. \tag{48}$$

Dually, if $inf_T E$ exists and belongs to *S*, then $inf_S E$ exists and

$$\inf_{S} E = \inf_{T} E. \tag{49}$$

Exercise 15 Let $E \subseteq S$, and suppose that (S, \preceq) is a partially ordered subset of (T, \preceq) . Show that, if $\inf_T E$ exists, then

$$L(E) = \langle \inf_{T} E] \cap S = \{ s \in S \mid s \leq \inf_{T} E \}.$$
(50)

(Here $L(E) = L_S(E)$.)

Dually, one has

$$U(E) = [\sup_{T} E) \cap S = \{s \in S \mid \sup_{T} E \preceq s\}$$
(51)

if $\sup_{T} E$ exists.

Exercise 16 Find examples of pairs $E \subseteq$ S of subsets of \mathbb{Q} such that:

- (a) E is unbounded above in S yet bounded in \mathbb{Q} ;
- (b) E is bounded in S, and $\sup_{O} E$ exists but $\sup_{S} E$ does not;
- (c) E is bounded in S, and $\sup_{S} E$ exists but $\sup_{O} E$ does not;
- (d) both $\sup_{S} E$ and $\sup_{O} E$ exist but $\sup_{S} E \neq \sup_{O} E$.

1.3.2 Density

Definition 1.7 We say that a subset $S \subseteq T$ is sup-dense if every element $t \in T$ equals

$$t = \sup E$$

for some subset $E \subseteq S$.

By replacing sup with inf, one obtains the definition of a inf-dense subset.

1.3.3 Example

Suppose that a partially ordered set (S, \preceq) is the union of three subsets $S = X \cup Y \cup Z$ such that

$$x \leq y$$
 and $x \leq z$ for any $x \in X$, $y \in Y$, and $z \in Z$,

and no $y \in Y$ and $z \in Z$ are comparable. Let $T = S \cup \{v, \zeta\}$ where

$$x \prec v \prec y$$
 for any $x \in X$, $y \in Y$,

and

$$x \prec \zeta \prec y$$
 for any $x \in X$, $z \in Z$.

Note that v and ζ are not comparable. Finally, let T' be the subset $S \cup \{v\}$ of T.

a) (S, \preceq) as a subset of (T, \preceq) . One has $L_T(Y) = \langle v \rangle$ and $L_T(Z) = \langle \zeta \rangle$. It follows that

$$v = \inf_T Y$$
 and $\zeta = \inf_T Z$,

and therefore S is inf-dense in T. In addition,

$$\langle v] \cap S = X = \langle \zeta] \cap S$$

but $v \neq \zeta$, they are not even comparable.

Exercise 17 Show that neither v nor ζ equals $\sup_T E$ for any $E \subseteq S$. In particular, S is inf-dense in T but not \sup -dense.

b) (S, \preceq) as a subset of (T', \preceq) . One has

$$v = \inf_{T'} Y$$

hence *S* is inf-dense in T'. In addition,

$$L(Y) = \langle v] \cap S = X = L(Z)$$

and $v = \inf_{T'} Y$ while $\inf_{T'} Z$ does not exist.

Exercise 18 Let (S, \preceq) be a partially ordered subset of (T, \preceq) . Show that if

$$t = \inf_{T} E \tag{52}$$

for some $E \subseteq S$, then

$$t = \inf_{T}([t\rangle \cap S). \tag{53}$$

Dually, if

$$t = \sup_{T} E' \tag{54}$$

for some $E' \subseteq S$, then

$$t = \sup_{T} (\langle t] \cap S). \tag{55}$$

Exercise 19 (A criterion of equality for infima) Let (S, \preceq) be a partially ordered subset of (T, \preceq) and $E \subseteq S$. Suppose that both inf E and $t = \inf_T E$ exist. Show that if there exists a subset $E' \subseteq S$ such that (54) holds, then

$$\inf_T E = \inf E$$

Exercise 20 Formulate the dual criterion of equality for suprema.

1.4 Morphisms

Definition 1.8 Given two partially ordered sets (S, \preceq) and (S', \preceq') , a mapping $f: S \longrightarrow S'$ which preserves order,

if
$$s \leq t$$
, then $f(s) \leq' f(t)$ $(s, t \in S)$, (56)

is said to be a morphism $(S, \preceq) \longrightarrow (S', \preceq')$.

Definition 1.9 A mapping $\iota: S \longrightarrow S'$ is said to be an order embedding,

$$(S, \preceq) \hookrightarrow (S', \preceq'), \tag{57}$$

if it satisfies a stronger condition

$$s \leq t \text{ if and only if } \iota(s) \leq' \iota(t) \qquad (s, t \in S).$$
 (58)

Exercise 21 Show that an order embedding is injective.

Definition 1.10 A morphism $f: (S, \preceq) \longrightarrow (S', \preceq')$ is said to be an isomorphism if it has an inverse, i.e., if there is a morphism $g: (S', \preceq') \longrightarrow (S, \preceq)$ such that $f \circ g = id_{S'}$ and $g \circ f = id_S$.

Exercise 22 Show that an order embedding, (57), is an isomorphism onto its image, $(\iota(S), \preceq')$.

Definition 1.11 We say that a morphism $f: (S, \preceq) \longrightarrow (S', \preceq')$ is sup-continuous *if f preserves the suprema. More precisely, if it has the following property*

for any
$$E \subseteq S$$
, if $\sup E$ exists, then $\sup f(E)$ exists,
and
 $\sup f(E) = f(\sup E).$ (59)

Here as everywhere else, the subset $f(E) \subseteq S'$ is defined to be the **image** of $E \subseteq S$ under f

$$f(E) := \{ y \in S' \mid y = f(x) \text{ for some } x \in E \}.$$
(60)

Exercise 23 State the dual definition of an inf-continuous morphism.

Exercise 24 For any partially ordered (S, \leq) , let S^* denote the subset obtained by removing max S and min S if they exist. Show that, for any nonempty bounded subset E of S^* ,

$$\sup_{S^*} E = \sup_{S} E$$
 and $\inf_{S^*} E = \inf_{S} E.$ (61)

Exercise 25 (A criterion of continuity) Let (S, \preceq) be a sup-dense subset of (T, \preceq) . Show that the canonical embedding

$$(S, \preceq) \hookrightarrow (T, \preceq) \tag{62}$$

is inf-continuous.

Dually, if (S, \preceq) is a inf-dense subset of (T, \preceq) , then the canonical embedding (62) is sup-continuous.

1.4.1 Example: the canonical embedding into the power set

Let (S, \preceq) be a partially ordered set. For any $s, s' \in S$, one has

$$s \leq s'$$
 if and only if $\langle s] \subseteq \langle s']$. (63)

Thus, the correspondence

$$\langle]: S \longrightarrow \mathscr{P}(S), \qquad s \longmapsto \langle s], \tag{64}$$

is an order embedding of (S, \preceq) onto the partially ordered subset of

```
(\mathscr{P}(S), \subseteq)
```

Exercise 26 *Show that, for any* $E \subseteq S$ *,*

$$\sup\langle E] = \bigcup_{s \in E} \langle s] \tag{65}$$

and

$$\inf\{E\} = L(E) \tag{66}$$

in $\mathscr{P}(S)$.¹

It follows that

 $\sup \langle E] = \langle \sup E]$

in $\mathscr{P}(S)$ if and only if max *E* exists. In particular, the canonical embedding into the power set, (64), is nearly never *sup*-continuous: sup $\langle E$] always exists, it equals (65), but is a *proper* subset of $\langle \sup E]$, except when *E* is an interval of the form (17).

The canonical embedding is, however, inf-continuous.

Exercise 27 Show that the canonical embedding, (64), is inf-continuous.

Exercise 28 *Explain why* $\langle S \rangle$ *is, generally, neither* sup-nor inf-dense in $\mathscr{P}(S)$.

¹Here $\langle E]$ denotes the **image** of a subset $E \subseteq S$ under the canonical embedding, (64), *not* the interval, $\langle E] = \{ X \in \mathscr{P}(S) \mid X \subseteq E \}$, in partially ordered set $\mathscr{P}(S), \subseteq$). The latter coincides with $\mathscr{P}(E)$, the set of all subsets of *E*.

1.5 Closure operations on a partially ordered set

Definition 1.12 Let (S, \preceq) be an ordered set. A self-mapping

$$s \longmapsto \bar{s}, \qquad S \longrightarrow S, \tag{67}$$

is said to be a *closure operation* if it enjoys the following three properties

$$s \leq \bar{s}$$
, (68)

if
$$s \leq t$$
, then $\bar{s} \leq \bar{t}$, (69)

and

$$\bar{\bar{s}} = \bar{s} \tag{70}$$

where *s* and *t* denote arbitrary elements of *S*. In this case, we say that an element $s \in S$ is **closed** if $\bar{s} = s$.

1.5.1 Example: a topology on a set

To give a *topology* on a set *A* is the same as to equip $(\mathscr{P}(A), \subseteq)$ with the closure operation which is inf*-continuous*,

for any family $\mathscr{E} \subseteq \mathscr{P}(A)$, one has

$$\inf \mathscr{E} = \inf \overline{\mathscr{E}} \tag{71}$$

where $\overline{\mathscr{E}}$ is the family of the closures of subsets belonging to \mathscr{E} .

and *finitely* sup-continuous,

for any *finite* family
$$\mathscr{E} \subseteq \mathscr{P}(A)$$
, one has

$$\overline{\sup \mathscr{E}} = \sup \overline{\mathscr{E}}.$$
 (72)

Exercise 29 Show that for any closure operation on $(\mathscr{P}(A), \subseteq)$ which satisfies (72), one has

$$\overline{\emptyset} = \emptyset. \tag{73}$$

Hint. Consider the empty family of subsets.

1.5.2 Example: two closure operations on the power set of a partially ordered set

A partial ordering (S, \preceq) induces two closure operations on $(\mathscr{P}(S), \subseteq)$, the *LU-closure*,

$$E \longmapsto \bar{E}^{LU} := LU(E), \tag{74}$$

and the UL-closure,

$$E \longmapsto \bar{E}^{UL} := UL(E). \tag{75}$$

Indeed, for the *LU-closure*, (27) is property (68), property (69) follows from the combination of (29) and (30), while (36) implies property (70).

Note that, according to (36), a subset *F* of *S* is *LU*-closed if and only if it is of the form F = L(E) for some $E \subseteq S$.

Note that

$$LU(\emptyset) = \begin{cases} \emptyset & \text{if } S \text{ has no least element} \\ \{\min S\} & \text{otherwise.} \end{cases}$$

Dually,

$$UL(\emptyset) = \begin{cases} \emptyset & \text{if } S \text{ has no largest element} \\ \{\max S\} & \text{otherwise.} \end{cases}$$

It follows that \emptyset is *LU*-closed (respectively, *UL*-closed) if and only if *S* has no least element (respectively, no largest element).

On the other hand, *S* is always both *LU*- and *UL*-closed.

2 Dedekind-MacNeille Completion of a Partially Ordered Set

2.1 Completeness

Definition 2.1 We say that a partially ordered set (S, \preceq) has the **largest***lower-bound property* if inf *E* exists for every subset $E \subseteq S$ which is nonempty and bounded below. We shall say in this case that (S, \preceq) is inf-*complete*.

Dually, we say that S has the **least-upper-bound property** if sup E exists for subset $E \subseteq S$ which is nonempty and bounded above. We shall say in this case that (S, \preceq) is sup-complete.

Lemma 2.2 A partially ordered set S has the largest-lower-bound property if and only if it has the least-upper-bound property.

Proof. Suppose that *S* is inf-complete. If $E \subseteq S$ is bounded above and nonempty, then the set of upper bounds, U(E) is nonempty. Since

 $L(U(E)) \supseteq E \neq \emptyset$

subset U(E) is also bounded below. Then $\inf U(E)$ exists in view of our assumption about (S, \preceq) . But then it coincides with $\sup E$ in accordance with (41). This shows that *S* is sup-complete.

The reverse implication,

sup-completeness \Rightarrow inf-completeness

follows by applying the already proven implication

inf-completeness \Rightarrow sup-completeness

to the reverse order on *S*.

Since sup- and inf-completeness are equivalent we shall simply call such sets *complete*.

2.1.1 Lattices

Definition 2.3 *A partially ordered set* (S, \preceq) *is called a pre-lattice if every nonempty finite subset* $E \subseteq S$ *has supremum and infimum.*

Exercise 30 Show that (S, \preceq) is a pre-lattice if and only if, for any $s, t \in S$, both sup $\{s,t\}$ and inf $\{s,t\}$ exist.

Definition 2.4 *A partially ordered set* (S, \preceq) *is called a lattice if every finite subset* $E \subseteq S$ *, including* $\emptyset \subseteq S$ *, has supremum and infimum.*

Complete partially ordered sets with the largest and the smallest elements are the same as *complete lattices*. Note that in such sets every subset is bounded below and above.

For example, the totally ordered set of rational numbers, (\mathbb{Q}, \leq) , is a pre-lattice but not a lattice, and it is not complete.

The power set of an arbitrary set, $(\mathscr{P}(A), \subseteq)$, is an example of a complete lattice. A less obvious example is the subject of the next section.

2.1.2 The set of *LU*-closed subsets of a partially ordered set

Let (S, \preceq) be a partially ordered set. Let $\mathscr{Z}(S) \subseteq \mathscr{P}(S)$ be the subset of the power set which consists of all *LU*-closed subsets of *S*. Recall that $F \subseteq S$ is *LU*-closed if and only if it has the form

$$F = L(E) \tag{76}$$

for some $E \subseteq S$. In fact, one can take E = U(F).

Exercise 31 Show that, for any family $\mathscr{E} \subseteq \mathscr{Z}(S)$ of LU-closed subsets of S, the supremum of \mathscr{E} in $\mathscr{Z}(S)$ exists and equals

$$\sup \mathscr{E} = LU\left(\bigcup_{E\in\mathscr{E}} E\right),\tag{77}$$

i.e., $\sup_{\mathscr{Z}(S)} \mathscr{E}$ *is the LU-closure of* $\sup_{\mathscr{P}(S)} \mathscr{E}$ *,*

$$\sup_{\mathscr{Z}(S)}\mathscr{E} = \overline{\sup_{\mathscr{P}(S)}\mathscr{E}}^{LU}.$$
(78)

Exercise 32 Show that

$$\min \mathscr{Z}(S) = \begin{cases} \emptyset & \text{if } S \text{ has no least element} \\ \{\min S\} & \text{otherwise} \end{cases}.$$
(79)

Thus, every family $\mathscr{E} \subseteq \mathscr{Z}(S)$ is bounded below and, obviously, the infimum of the empty family exists and is equal to

$$\inf \emptyset = \max \mathscr{Z}(S) = S.$$

By invoking Lemma 2.2 we deduce that the infimum of every family $\mathscr{E} \subseteq \mathscr{Z}(S)$ exists in $\mathscr{Z}(S)$, and we established the following fact.

Proposition 2.5 For any partially ordered set (S, \preceq) , the set of LU-closed subsets, $(\mathscr{Z}(S), \subseteq)$ is a complete lattice.

Exercise 33 Show that in $\mathscr{Z}(S)$ one has

$$\sup\{E\} = LU(E) \tag{80}$$

and

$$\inf\{E\} = L(E). \tag{81}$$

2.1.3

Since intervals $\langle s \rangle$ are LU-closed,

 $\langle s] = L(\{s\}),$

the image of set *S* under the canonical embedding, (64), is contained in $\mathscr{Z}(S)$.

Exercise 34 Show that $\langle S \rangle$ is both sup- and inf-dense in $\mathscr{Z}(S)$.

Exercise 35 Show that the embedding

$$\langle] \colon (S, \preceq) \hookrightarrow (\mathscr{Z}(S), \subseteq) \tag{82}$$

is both sup- and inf-continuous.

In other words, show that in $\mathscr{Z}(S)$ one has

$$\sup_{\mathscr{Z}(S)} \langle E] = \langle \sup E] \tag{83}$$

whenever sup *E* exists in (S, \preceq) , and

$$\inf_{\mathscr{Z}(S)} \langle E] = \langle \inf E] \tag{84}$$

whenever inf *E* exists in (S, \preceq) .

By combining the results of Exercises 34 and 35 with Proposition 2.5, we establish the following important fact.

Theorem 2.6 Any partially ordered set (S, \preceq) admits an embedding onto a dense subset of a complete lattice, and this embedding preserves suprema and infima (i.e., is sup- and inf-continuous).

The lattice $\mathscr{Z}(S), \subseteq$) is called the **Dedekind-Macneille envelope** of a partially ordered set (S, \preceq) , or the **Dedekind-Macneille completion** of (S, \preceq) . Strictly speaking, the latter should apply to the embedding, (82), of (S, \preceq) into $\mathscr{Z}(S), \subseteq$).

It is worth noticing that for any subset $E \subseteq S$ which is not bounded above in (S, \preceq) , one has

$$\sup\{E\} = \max \mathscr{Z}(S) = S \tag{85}$$

and, for a subset not bounded below

$$\inf\{E\} = \min \mathscr{Z}(S) = \emptyset \tag{86}$$

(note that min $\mathscr{Z}(S) = \emptyset$ in this case).

2.1.4 A variant

Dedekind-MacNeille completion adds to any partially ordered set all the "missing" suprema and infima, including the suprema and infima for unbouded sets.

A simple variant of the above construction allows to "add" only the suprema of nonempty subsets that are *bounded above*, and the infima of nonempty subsets which are *bounded below* while leaving unbounded sets not bounded.

Let (S, \preceq) be a partially ordered set. Let us consider the subset $\mathscr{Z}^*(S) \subseteq \mathscr{Z}(S)$ which consists of the *LU*-closures of nonempty subsets of *S* which are bounded above.

Exercise 36 Show that $\emptyset \notin \mathscr{Z}^*(S)$.

Exercise 37 Show that $S \in \mathscr{Z}^*(S)$ if and only if S has the largest element.

It follows that

$$\mathscr{Z}(S) = \begin{cases} \mathscr{Z}^*(S) & \text{if both min } S \text{ and max } S \text{ exist} \\ \mathscr{Z}^*(S) \cup \{S\} & \text{if min } S \text{ exists and max } S \text{ does not} \\ \mathscr{Z}^*(S) \cup \{\emptyset\} & \text{if max } S \text{ exists and min } S \text{ does not} \\ \mathscr{Z}^*(S) \cup \{\emptyset, S\} & \text{if neither min } S \text{ nor max } S \text{ exist} \end{cases}$$
(87)

Thus, $\mathscr{Z}^*(S)$ has the same elements as $\mathscr{Z}(S)$ except possibly for the two extremal ones: \emptyset and *S*.

Exercise 38 Show that $\langle S \rangle \subseteq \mathscr{Z}^*(S)$.

By Exercise 24, suprema and infima in $\mathscr{Z}^*(S)$ coincide for nonempty bounded subsets of $\mathscr{Z}^*(S)$ with those in $\mathscr{Z}(S)$, hence $(\mathscr{Z}^*(S), \subseteq)$ is a complete partially ordered set.

In particular, the embedding

$$\langle]: (S, \preceq) \longrightarrow (\mathscr{Z}^*(S), \subseteq) \tag{88}$$

is both sup- and inf-continuous.

Finally, since $\langle S \rangle$ is sup- and inf-dense in $\mathscr{Z}(S)$ it is dense also in $\mathscr{Z}^*(S)$.

We established thus the following variant of Theorem 2.6.

Theorem 2.7 Any partially ordered set (S, \preceq) admits an embedding onto a dense subset of a complete partially ordered set, and this embedding preserves suprema and infima (i.e., is sup- and inf-continuous), and also unboundedness of subsets:

if
$$E \subseteq S$$
 is not bounded above (below) in S *, then* E *is not bounded above (resp., below) in the completion.* (89)

2.1.5

It follows from Exercise 10 that $(\mathscr{Z}(S), \subseteq)$, and therefore also $(\mathscr{Z}^*(S), \subseteq)$, are totally ordered if (S, \preceq) is totally ordered. Thus one can strengthen the statements of Theorems 2.6 and 2.7 by adding that the corresponding completions of totally ordered sets are themselves totally ordered.

2.1.6 \mathbb{R} and $\overline{\mathbb{R}} = [-\infty, \infty]$

In the case of (\mathbb{Q}, \leq) we obtain two totally ordered completions

$$(\mathscr{Z}^*(\mathbb{Q}), \subseteq)$$
 is a model for the set of real numbers, (90)

while

 $(\mathscr{Z}(\mathbb{Q}), \subseteq)$ is a model for the set of extended real numbers

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\} = [-\infty, \infty]. \tag{91}$$

3 Universal Properties of the Dedekind-MacNeille Completion

In this section (S, \preceq) denotes a subset of (T, \preceq) .

3.1 Extending the Canonical Embedding

3.1.1

The correspondence

$$t \longmapsto \langle t] \cap S = \{ s \in S \mid s \preceq t \}$$
(92)

defines a morphism $(T, \preceq) \longrightarrow (\mathscr{P}(S), \subseteq)$ which extends the canonical embedding, $(S, \preceq) \hookrightarrow (\mathscr{P}(S), \subseteq)$, cf. (64), to (T, \preceq) .

Exercise 39 Show that (92) is an order embedding if (S, \preceq) is sup-dense in (T, \preceq) .

In particular,

morphism (92) *is injective if*
$$(S, \preceq)$$
 is sup-dense in (T, \preceq) . (93)

If (S, \preceq) is *not* sup-dense, then (92) is generally not injective. Thus,

$$\langle v] \cap S = \langle \zeta] \cap S$$

in Example 1.3.3.a but $v \neq \zeta$.

3.1.2

If $t = \inf_T E$ for some $E \subseteq S$, then

$$\langle t] \cap S = L(E) \in \mathscr{Z}(S),$$

according to (50). It follows that

the image of morphism (92) is contained in
$$\mathscr{Z}(S)$$
 if (S, \preceq) is inf-dense in (T, \preceq) . (94)

The following example demonstrates that the image of morphism (92) may be contained in $\mathscr{Z}(S)$ even though *no* element of $T \setminus S$ may be of the form $\inf_T E$ for some $E \subseteq S$.

3.1.3 Example

Let $T := \mathbb{Q}\{0, 1\}$ equipped with the usual order. Let

$$S := \{ x \in \mathbb{Q} \mid x < 0 \text{ or } x > 1 \} = \mathbb{Q}_{<0} \cup \mathbb{Q}_{>1}.$$

Then, all $t \in T \setminus S = \{x \in \mathbb{Q} \mid 0 < x < 1\}$ are being sent by morphism (92) to one and the same *LU*-closed subset of *S*:

$$\langle t] \cap S = \mathbb{Q}_{<0} = L(\mathbb{Q}_{>1}).$$

Exercise 40 Show that every $t \in T \setminus S$ is neither of the form $\inf_T E$ nor of the form $\sup_T E$ for some $E \subseteq S$.

3.1.4

When (S, \preceq) is inf-dense in (T, \preceq) , then one can easily describe the image of *T* under morphism (92):

a subset F of $\mathscr{Z}(S)$ is in the image if and only if it is of the form $\langle \inf_T E] \cap S = L_T(E) \cap S = L(E)$ (95)

for some
$$E \subseteq S$$
 which possesses infimum in T .

This is so since every element of *T* equals $\inf_T E$ for a suitable subset $E \subseteq S$ and then $\langle t] = L_T(E)$.

Note, however, that L(E), for a particular subset E, may belong to the image of morphism (92) while $\inf_T E$ may not exist. We only know that there must be another subset $E' \subseteq S$ such that

$$L(E) = L(E')$$
 and $\inf_T E'$ exists.

In Example 1.3.3.b, one has

$$L(Z) = \langle v] \cap S = L(Y)$$

where Y possesses infimum in the larger set, which is denoted there T', while Z does not.

3.1.5

By combining (95) with the assertion of Exercise 39, we deduce the following important universal property of the Dedekind-MacNeille completion.

Theorem 3.1 If (S, \preceq) is a subset of (T, \preceq) which is both inf- and sup-dense, then morphism (92) embeds (T, \preceq) isomorphically onto the subset of $\mathscr{Z}(S)$:

 $\{F \in \mathscr{Z}(S) \mid F = L(E) \text{ for some } E \subseteq S \text{ which possesses infimum in } T\}.$

In particular, if every subset of *S* possesses infimum in *T*, then (92) establishes a canonical isomorphism between (T, \preceq) and the Dedekind-MacNeille completion, $(\mathscr{Z}(S), \subseteq)$ which extends the embedding of (S, \preceq) into $(\mathscr{Z}(S), \subseteq)$. \Box

3.2 Completing a subset in a bigger partially ordered set

3.2.1

In general, there is no largest subset $T' \subseteq T$ such that (S, \preceq) would be sup-dense, inf-dense, or both sup- and inf-dense in (T', \preceq) .

3.2.2 Example

Let $S = \mathbb{Q} \setminus \{0\}$ be equipped with usual order and $T = S \cup \{a, b\}$ with

x < a < y and x < b < y

for any $x \in \mathbb{Q}_{<0}$ and $y \in \mathbb{Q}_{>0}$. In this case, *S* is both sup- and inf-dense in $T_1 = S \cup \{a\}$ and $T_2 = S \cup \{b\}$ but is neither sup-dense nor inf-dense in $T = T_1 \cup T_2$.

Exercise 41 Show that neither a nor b is of the form $\inf_T E$ or $\sup_T E$ for any subset $E \subseteq S$.

Thus, T_1 and T_2 are two distinct *maximal* subsets of *T* in which *S* is dense in any of the three spelled out senses.

3.2.3

For any partially ordered set (T, \preceq) containing (S, \preceq) , there is, however, a subset that is a perfect analog of the Dedekind-MacNeille completion:

$$S_T := \{ t \in T \mid t = \inf_T U(E) \text{ for some } E \subseteq S \}.$$
(96)

If we identify *S* with its isomorphic image $\langle S \rangle$ in $\mathscr{P}(S)$, then

$$\widehat{S}_{\mathscr{P}(S)} = \mathscr{Z}(S) \tag{97}$$

since every $F \in \mathscr{Z}(S)$ is of the form

$$F = LU(E) = \inf_{\mathscr{P}(S)} U(E), \tag{98}$$

cf. equalities (36) and (66).

3.2.4

If $t = \inf_T U(E)$, then

$$E \subseteq LU(E) = L_T(U(E)) \cap S \subseteq L_T(U(E)) = \langle t]$$

This shows that $t \in U_T(E)$.

If another element of S_T , say $t' = \inf_T U(E')$, belongs to $U_T(E)$, then

$$x \preceq t' \preceq y$$

for any $x \in E$ and $y \in U(E')$. It follows that

 $U(E') \subseteq U(E)$

and hence

$$t = \inf_T E \preceq \inf_T E' = t',$$

cf. (32). Thus, *t* is the smallest element of $U_T(E) \cap S_T = U_{S_T}(E)$, i.e., $\sup_{S_T} E$ exists and equals *t*:

$$\sup_{S_T} E = \inf_T U(E).$$
(99)

Note that, in view of (49), the infimum of U(E) in S_T exists and coincides with $\inf_T U(E)$,

$$\inf_{S_T} U(E) = \inf_T U(E). \tag{100}$$

In particular,

$$\sup_{S_{\tau}} E = \inf_{S_{\tau}} U(E).$$
(101)

We established the following fact.

Proposition 3.2 Any subset S of a partially oredered set (T, \preceq) is both supand inf-dense in (S_T^{\frown}, \preceq) .

3.2.5

By the Universal Property of the Dedekind-MacNeille completion cf. Theorem 3.1, the order embedding of (S, \preceq) into $\mathscr{Z}(S), \subseteq)$ then extends to an order embedding

$$(S_T^{\widehat{}}, \preceq) \hookrightarrow (\mathscr{Z}(S), \subseteq).$$
 (102)

3.2.6

If (T, \preceq) is a complete lattice, then embedding (102) is *surjective* since, for every $E \subseteq S$, one has

$$LU(E) = \langle \inf_T U(E)] \cap S,$$

cf. Exercise 15.

In particular, (S_T, \preceq) is isomorphic to the Dedekind-MacNeille completion.

This way we arrive at our final result.

Theorem 3.3 Any order embedding $(S, \preceq) \hookrightarrow (T, \preceq)$ into a complete lattice induces an order embedding of the Dedekind-MacNeille completion,

$$(\mathscr{Z}(S),\subseteq) \hookrightarrow (T,\preceq) \tag{103}$$

which identifies $(\mathscr{Z}(S), \subseteq)$ with (S_T, \preceq) . In particular, (S_T, \preceq) is itself a complete lattice.