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1 Vocabulary

1.1 Families of sets
1.1.1

In use in Mathematics there are two types of families of sets, which are
always assumed to be subsets of some common set U : indexed and non-
indexed ones. The latter are just subsets E ⊆ P(U) . The former are
mappings

I−→P(U), i 7−→ Ei, (1)
from a certain set I , called the indexing set. Members of I are referred to
as indices. Indexed families are often denoted {Ei}i∈I , or even {Ei} , if the
indexing set is clear from the context.

1.1.2

Non-indexed families, E , can be thought of as indexed ones if one uses
set E to index members of E . In that case, mapping (1) is just the inclu-
sion map

E ↪→P(U).
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1.1.3 Direct product

For any indexed family {Ei}i∈I of subsets of a set U , the set

∏
i∈I

Ei˜ {τ : I−→U | τ(i) ∈ Ei} (2)

is called the (direct) product of the family. subsets {Ei}i∈I .

1.1.4

The Cartesian product of sets E1, . . . , En ,

E1 × · · · × En,

is naturally identified with the direct product:

∏
i∈{1,...,n}

Ei.

1.1.5 The disjoint union

For sets X1 and X1 their disjoint union, X1 t X1 , is constructed as

E1 t E2˜ {(u, i) ∈ (E1 ∪ E2)× {1, 2} | u ∈ Xi}. (3)

This generalizes to any family {Ei}i∈I of subsets of a set U :⊔
i∈I

Ei˜ {(u, i) ∈ U × I | u ∈ Ei}. (4)

1.2 Terminology applicable to mappings
1.2.1

Let X and Y be sets.

Definition 1.1 We say that a mapping f : X−→Y is injective if

for any x, x′ ∈ X, if f (x) = f (x′) , then x = x′ .
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1.2.2 Example: the canonical inclusion mapping

Any subset E ⊆ X provides the injective mapping

ιE : E−→X, e 7−→ ι(e) = e, (5)

which is called the canonical inclusion mapping.

Definition 1.2 We say that a mapping f : X−→Y is surjective if

for any y ∈ Y, there exists x ∈ X such that f (x) = y.

1.2.3 Example: the canonical quotient mapping

Any equivalence relation ∼ on a set X provides the surjective mapping
of X onto the set of equivalence classes X/∼ ,

π∼ : X−→X/∼ , x 7−→ π∼(x) = [x], (6)

which sends an element x of X to the equivalence class

[x]˜ {ξ ∈ X | ξ ∼ x}.
Mapping (6) is called the canonical quotient mapping.

1.2.4 Example: the evaluation map

For any sets X and Y , mappings f : X−→Y form a set, denoted Map(X, Y) ,
which is a subset of the set of all binary relations P(X×Y) .

Let p ∈ X be a fixed element of X . Evaluation at p defines the
mapping

evp : Map(X, Y)−→Y, f 7−→ evp( f )˜ f (x). (7)

We will refer to (7) as the evaluation map (at point p).

Exercise 1 Show that the evaluation map evp is surjective.

Proposition 1.3 (Cantor) For any set X, no mapping f : X−→P(X) is sur-
jective.

More precisely, the set

E f ˜ {x ∈ X | x < f (x)}
is not in the image of f . Indeed, if E f = f (e) for some e ∈ X , then e < E f
which means that e ∈ f (e) = E f . Contradiction.
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1.2.5

The above argument is a reflection of the Liar’s Paradox: ‘Is the man who
is saying “I am lying” speaking truth or not?’

1.2.6

Definition 1.4 We say that a mapping f : X−→Y is bijective if it is both
injective and surjective.

1.2.7

Surjective mappings are often called surjections while bijective mappings are
called bijections.

Exercise 2 Show that if the composition f ◦ g of mappings f : X−→Y and
g : W−→X is injective, then g is injective.

Exercise 3 Show that if the composition f ◦ g of mappings f : X−→Y and
g : W−→X is surjective, then f is surjective.

Exercise 4 Show that if the composition f ◦ g of mappings f : X−→Y and
g : W−→X is bijective, then f is surjective and g is injective.

Exercise 5 Show that the canonical mapping⊔
i∈I

Ei−→
⋃
i∈I

Ei (u, i) 7−→ u, (8)

is surjective.

Exercise 6 State a sufficient and necessary condition for (8) to be injective, and
then prove it.

Exercise 7 State a sufficient and necessary condition for the canonical mapping,⊔
i∈I

Ei−→I (u, i) 7−→ i, (9)

to be surjective, and then prove it.
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1.2.8 Canonical representation of a mapping

Any mapping f : X−→Y can be represented in a canonical manner as a
composite of a surjection folowed by a bijection followed by an injective
mapping. This is represented by the following commuting diagram

X Y

X/∼ f (X)
uu

π

w
f

w
f̄

u

v

ι . (10)

Here ∼ is the equivalence relation:

x ∼ x′ if f (x) = f (x′) (x, x′ ∈ X),

π denotes the canonical quotient map, and ι denotes the canonical inclu-
sion of f (X) , the image of f , into Y .

The mapping f̄ : X/∼−→ f (X) is defined by

f̄ ([x])˜ f (x). (11)

This definition makes sense since the value, f (x) , depends only on the
equivalence class [x] , not on x .

Exercise 8 Show that f̄ is a bijection.

1.2.9

We say that a mapping g : Y−→X is a right inverse of f : X−→Y if

f ◦ g = idY .

Similarly, we say that g is a left inverse of f if

g ◦ f = idX .

Exercise 9 Show that if f possesses a right inverse, say g, and a left inverse,
say h, then they are equal: g = h. In that case we call it the inverse of f , and
denote it f−1 .

Exercise 10 Show that f possesses a left inverse if and only if f is injective.

Exercise 11 Show that if f possesses a right inverse, then f is surjective.
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1.2.10 The Axiom of Choice

The reverse implication,

if f is surjective, then f possesses a right inverse, (12)

cannot be proven on the basis of ordinary axioms of Set Theory and is one
of the equivalent formulations of the additional axiom called the Axiom
of Choice:

Any family E of nonempty subsets of a set U admits
a mapping

σ : E−→U

such that, for any E ∈ E , one has σ(E) ∈ E .

(13)

Mapping σ in (13) is sometimes called a choice function for family E .

Exercise 12 Show that the Axiom of Choice, (13), implies the apparently stronger
statement to the effect that the direct product, (2), of any family of nonempty sets
{Ei}i∈I is nonempty.

Hint. Consider the family of disjoint subsets E = {Ei × {i}} of U × I and
use the existence of the mappings

ρ : I−→E , i 7−→ ρ(i)˜ Ei × {i},

and (8).

Exercise 13 Show that the Axiom of Choice, (13), implies that, for any set X
and any equivalence relation ∼ on X, there exists a subset T ⊆ X which has
exactly one element in common with every equivalence class.

1.2.11 The fiber of a mapping

For any mapping f : X−→Y and an element y ∈ Y , the subset

f−1(y)˜ f−1({y}) = {x ∈ X | f (x) = y} (14)

is called the fiber of f at (or, over) y ∈ Y .
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1.2.12

We can reformulate Definitions 1.1–1.2 as follows:

f is injective if and only if every fiber f−1(y)
has no more than one element,

(15)

and

f is surjective if and only if every fiber f−1(y)
has at least one element.

(16)

Exercise 14 Show that the Axiom of Choice, (13), implies that any surjection
admits a right inverse, cf. (12).

Hint. Consider the family of fibers E = { f−1(y) | y ∈ Y} .

2 Cardinality

2.1 ‘Same cardinality’
2.1.1

Definition 2.1 We say that sets X and Y have the same cardinality if there
exists a bijection f : X−→Y. We express this symbolically by writing

| X |=| Y | .

Note that in Definition 2.2 we do not define the cardinality, | X | , of a
set X .

2.2 ‘Not greater cardinality’
2.2.1

Definition 2.2 Similarly, we could say that a set X has not greater cardi-
nality than a set Y if there exists an injective mapping f : X−→Y. We could
express this symbolically by writing

| X |≤| Y | .
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2.2.2

If X is a subset of Y , then | X |≤| Y | : the canonical inclusion ιX is
injective.

2.2.3

Since any bijection is injective, | X |=| Y | implies | X |≤| Y | .
Moreover, since the composite of two injective mappings is injective

we infer that

if | X |≤ Y | and | Y |≤ Z , then | X |≤ Z | .

Theorem 2.3 (Bernstein–Schröder Theorem) If | X |≤| Y | and | Y |≤ X,
then | X =| Y | .

2.2.4

It is enough to prove the theorem in the case when X is a subset of Y .
Indeed, if f : X−→Y and g : Y−→X are injective, then f ◦ g : Y−→Y

is an injective mapping whose image is obviously contained in f (X) .
Hence, if there exists a bijection χ : f (X)−→Y , then χ ◦ f is the desired
bijection betwen X and Y .

2.2.5 Invariant subsets

Let φ : Y−→Y be any self-mapping of a set Y . A subset W ⊆ Y is said to
be invariant under φ , or φ-invariant, if φ(W) ⊆W .

Exercise 15 Suppose that both W and its complement, Y \W , are φ-invariant.
Show that if φ(y) = φ(y′) , for some y, y′ ∈ Y, then either y and y′ belong both
to W or they belong both to Y \W .

In particular, if φ is injective both on W and on Y \W , then it is injective.

Exercise 16 Show that, for any subset Z ⊆ Y, the set

Z̄˜
∞⋃

n=0
φn(Z) = Z ∪ φ(Z) ∪ φ2(Z) ∪ · · · , (17)
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where φ0 = idY and, for n > 0 ,

φn = φ ◦ · · · ◦ φ (n times),

is φ-invariant. Show that if a φ-invariant subset W ⊆ Y contains Z, then it
also contains Z̄ .

2.2.6 Invariant closure of a subset

In other words, Z̄ is the smallest φ-invariant subset of Y which contains
Z . We shall refer to it as the φ-invariant closure of Z .

2.2.7 The proof of Bernstein–Schröder Theorem

Let φ : Y−→Y be an injective self-mapping whose image is contained in
a subset X . Let us set Z˜Y \ X and define the maping

h : Y−→X, h(y)˜

{
φ(y) if y ∈ Z̄
y otherwise.

(18)

The following exercises complete the proof.

Exercise 17 Show that both Z̄ and Y \ Z̄ are h-invariant.

Exercise 18 Show that h is injective.

Exercise 19 Show that Z̄ ∩ X = φ(Z̄) .

Exercise 20 Show that h is surjective.

2.2.8

Exercise 21 For any set X, show that no mapping f : P(X)−→X is injective.
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