Notes on Sets, Mappings, and Cardinality

An annex to H104, H113, etc.

Mariusz Wodzicki

October 18, 2010

1 Vocabulary

1.1 Families of sets

1.1.1

In use in Mathematics there are two types of families of sets, which are always assumed to be subsets of some common set U: *indexed* and *non-indexed* ones. The latter are just subsets $\mathscr{E} \subseteq \mathscr{P}(U)$. The former are mappings

$$I \longrightarrow \mathscr{P}(U), \qquad i \longmapsto E_i,$$
 (1)

from a certain set I, called the *indexing set*. Members of I are referred to as *indices*. Indexed families are often denoted $\{E_i\}_{i\in I}$, or even $\{E_i\}$, if the indexing set is clear from the context.

1.1.2

Non-indexed families, $\mathscr E$, can be thought of as indexed ones if one uses set $\mathscr E$ to index members of $\mathscr E$. In that case, mapping (1) is just the inclusion map

$$\mathscr{E} \hookrightarrow \mathscr{P}(U)$$
.

1.1.3 Direct product

For any indexed family $\{E_i\}_{i\in I}$ of subsets of a set U, the set

$$\prod_{i \in I} E_i := \{ \tau \colon I \longrightarrow U \mid \tau(i) \in E_i \}$$
 (2)

is called the (direct) product of the family. subsets $\{E_i\}_{i\in I}$.

1.1.4

The Cartesian product of sets E_1, \ldots, E_n ,

$$E_1 \times \cdots \times E_n$$
,

is naturally identified with the direct product:

$$\prod_{i\in\{1,\ldots,n\}}E_i.$$

1.1.5 The disjoint union

For sets X_1 and X_1 their **disjoint union**, $X_1 \sqcup X_1$, is constructed as

$$E_1 \sqcup E_2 := \{ (u,i) \in (E_1 \cup E_2) \times \{1,2\} \mid u \in X_i \}. \tag{3}$$

This generalizes to any family $\{E_i\}_{i\in I}$ of subsets of a set U:

$$\bigsqcup_{i \in I} E_i := \{ (u, i) \in U \times I \mid u \in E_i \}. \tag{4}$$

1.2 Terminology applicable to mappings

1.2.1

Let *X* and *Y* be sets.

Definition 1.1 We say that a mapping $f: X \longrightarrow Y$ is injective if

for any
$$x, x' \in X$$
, if $f(x) = f(x')$, then $x = x'$.

1.2.2 Example: the canonical inclusion mapping

Any subset $E \subseteq X$ provides the injective mapping

$$\iota_E : E \longrightarrow X, \qquad e \longmapsto \iota(e) = e,$$
 (5)

which is called the canonical inclusion mapping.

Definition 1.2 We say that a mapping $f: X \longrightarrow Y$ is surjective if

for any
$$y \in Y$$
, there exists $x \in X$ such that $f(x) = y$.

1.2.3 Example: the canonical quotient mapping

Any equivalence relation \sim on a set X provides the surjective mapping of X onto the set of equivalence classes $X_{/\sim}$,

$$\pi_{\sim} \colon X \longrightarrow X_{/\sim}, \qquad x \longmapsto \pi_{\sim}(x) = [x],$$
 (6)

which sends an element x of X to the equivalence class

$$[x] := \{ \xi \in X \mid \xi \sim x \}.$$

Mapping (6) is called the canonical quotient mapping.

1.2.4 Example: the evaluation map

For any sets X and Y, mappings $f: X \longrightarrow Y$ form a set, denoted Map(X, Y), which is a subset of the set of all binary relations $\mathscr{P}(X \times Y)$.

Let $p \in X$ be a fixed element of X. Evaluation at p defines the mapping

$$\operatorname{ev}_p \colon \operatorname{Map}(X,Y) \longrightarrow Y, \qquad f \longmapsto \operatorname{ev}_p(f) := f(x).$$
 (7)

We will refer to (7) as the evaluation map (at point p).

Exercise 1 *Show that the evaluation map* ev_p *is surjective.*

Proposition 1.3 (Cantor) For any set X, no mapping $f: X \longrightarrow \mathcal{P}(X)$ is surjective.

More precisely, the set

$$E_f := \{ x \in X \mid x \notin f(x) \}$$

is not in the image of f. Indeed, if $E_f = f(e)$ for some $e \in X$, then $e \notin E_f$ which means that $e \in f(e) = E_f$. Contradiction.

1.2.5

The above argument is a reflection of the *Liar's Paradox*: 'Is the man who is saying "I am lying" speaking truth or not?'

1.2.6

Definition 1.4 We say that a mapping $f: X \longrightarrow Y$ is bijective if it is both injective and surjective.

1.2.7

Surjective mappings are often called **surjections** while *bijective mappings* are called **bijections**.

Exercise 2 *Show that if the composition* $f \circ g$ *of mappings* $f: X \longrightarrow Y$ *and* $g: W \longrightarrow X$ *is injective, then* g *is injective.*

Exercise 3 *Show that if the composition* $f \circ g$ *of mappings* $f: X \longrightarrow Y$ *and* $g: W \longrightarrow X$ *is surjective, then* f *is surjective.*

Exercise 4 Show that if the composition $f \circ g$ of mappings $f: X \longrightarrow Y$ and $g: W \longrightarrow X$ is bijective, then f is surjective and g is injective.

Exercise 5 Show that the canonical mapping

$$\bigsqcup_{i \in I} E_i \longrightarrow \bigcup_{i \in I} E_i \qquad (u, i) \longmapsto u, \tag{8}$$

is surjective.

Exercise 6 State a sufficient and necessary condition for (8) to be injective, and then prove it.

Exercise 7 State a sufficient and necessary condition for the canonical mapping,

$$\bigsqcup_{i \in I} E_i \longrightarrow I \qquad (u, i) \longmapsto i, \tag{9}$$

to be surjective, and then prove it.

1.2.8 Canonical representation of a mapping

Any mapping $f: X \longrightarrow Y$ can be represented in a canonical manner as a composite of a surjection followed by a bijection followed by an injective mapping. This is represented by the following commuting diagram

$$\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\pi & & \uparrow \\
X_{/\sim} & \xrightarrow{\bar{f}} & f(X)
\end{array} \tag{10}$$

Here \sim is the equivalence relation:

$$x \sim x'$$
 if $f(x) = f(x')$ $(x, x' \in X)$,

 π denotes the canonical quotient map, and ι denotes the canonical inclusion of f(X), the image of f, into Y.

The mapping $\bar{f}: X_{/\sim} \longrightarrow f(X)$ is defined by

$$\bar{f}([x]) := f(x). \tag{11}$$

This definition makes sense since the value, f(x), depends only on the equivalence class [x], not on x.

Exercise 8 *Show that* \bar{f} *is a bijection.*

1.2.9

We say that a mapping $g: Y \longrightarrow X$ is a **right inverse** of $f: X \longrightarrow Y$ if

$$f \circ g = \mathrm{id}_Y$$
.

Similarly, we say that g is a **left inverse** of f if

$$g \circ f = \mathrm{id}_X$$
.

Exercise 9 Show that if f possesses a right inverse, say g, and a left inverse, say h, then they are equal: g = h. In that case we call it the inverse of f, and denote it f^{-1} .

Exercise 10 Show that f possesses a left inverse if and only if f is injective.

Exercise 11 Show that if f possesses a right inverse, then f is surjective.

1.2.10 The Axiom of Choice

The reverse implication,

if
$$f$$
 is surjective, then f possesses a right inverse, (12)

cannot be proven on the basis of ordinary axioms of Set Theory and is one of the equivalent formulations of the additional axiom called the **Axiom** of Choice:

Any family $\mathscr E$ of nonempty subsets of a set U admits a mapping

$$\sigma \colon \mathscr{E} \longrightarrow U$$
 (13)

such that, for any $E \in \mathcal{E}$, one has $\sigma(E) \in E$.

Mapping σ in (13) is sometimes called a *choice function* for family \mathscr{E} .

Exercise 12 Show that the Axiom of Choice, (13), implies the apparently stronger statement to the effect that the direct product, (2), of any family of nonempty sets $\{E_i\}_{i\in I}$ is nonempty.

Hint. Consider the family of disjoint subsets $\mathscr{E} = \{E_i \times \{i\}\}$ of $U \times I$ and use the existence of the mappings

$$\rho: I \longrightarrow \mathscr{E}, \qquad i \longmapsto \rho(i) := E_i \times \{i\},$$

and (8).

Exercise 13 Show that the Axiom of Choice, (13), implies that, for any set X and any equivalence relation \sim on X, there exists a subset $T \subseteq X$ which has exactly one element in common with every equivalence class.

1.2.11 The fiber of a mapping

For any mapping $f: X \longrightarrow Y$ and an element $y \in Y$, the subset

$$f^{-1}(y) := f^{-1}(\{y\}) = \{x \in X \mid f(x) = y\}$$
 (14)

is called the **fiber of** f **at** (or, **over**) $y \in Y$.

1.2.12

We can reformulate Definitions 1.1–1.2 as follows:

$$f$$
 is *injective* if and only if every fiber $f^{-1}(y)$ has no more than one element, (15)

and

$$f$$
 is *surjective* if and only if every fiber $f^{-1}(y)$ has at least one element. (16)

Exercise 14 Show that the Axiom of Choice, (13), implies that any surjection admits a right inverse, cf. (12).

Hint. Consider the family of fibers $\mathscr{E} = \{f^{-1}(y) \mid y \in Y\}.$

2 Cardinality

2.1 'Same cardinality'

2.1.1

Definition 2.1 We say that sets X and Y have the same cardinality if there exists a bijection $f: X \longrightarrow Y$. We express this symbolically by writing

$$\mid X \mid = \mid Y \mid$$
.

Note that in Definition 2.2 we *do not* define the *cardinality*, $\mid X \mid$, of a set X.

2.2 'Not greater cardinality'

2.2.1

Definition 2.2 Similarly, we could say that a set X has not greater cardinality than a set Y if there exists an injective mapping $f: X \longrightarrow Y$. We could express this symbolically by writing

$$\mid X \mid \leq \mid Y \mid$$
.

2.2.2

If *X* is a subset of *Y*, then $\mid X \mid \leq \mid Y \mid$: the canonical inclusion ι_X is injective.

2.2.3

Since any bijection is injective, |X| = |Y| implies $|X| \le |Y|$.

Moreover, since the composite of two injective mappings is injective we infer that

if
$$|X| \le Y$$
 and $|Y| \le Z$, then $|X| \le Z$.

Theorem 2.3 (Bernstein–Schröder Theorem) *If* $|X| \le |Y|$ *and* $|Y| \le X$, *then* |X| = |Y|.

2.2.4

It is enough to prove the theorem in the case when X is a subset of Y. Indeed, if $f: X \longrightarrow Y$ and $g: Y \longrightarrow X$ are injective, then $f \circ g: Y \longrightarrow Y$ is an injective mapping whose image is obviously contained in f(X). Hence, if there exists a bijection $\chi: f(X) \longrightarrow Y$, then $\chi \circ f$ is the desired

bijection betwen X and Y.

2.2.5 Invariant subsets

Let $\phi: Y \longrightarrow Y$ be any self-mapping of a set Y. A subset $W \subseteq Y$ is said to be *invariant under* ϕ , or ϕ -invariant, if $\phi(W) \subseteq W$.

Exercise 15 Suppose that both W and its complement, $Y \setminus W$, are ϕ -invariant. Show that if $\phi(y) = \phi(y')$, for some $y, y' \in Y$, then either y and y' belong both to W or they belong both to $Y \setminus W$.

In particular, if ϕ *is injective both on* W *and on* $Y \setminus W$, *then it is injective.*

Exercise 16 *Show that, for any subset* $Z \subseteq Y$ *, the set*

$$\bar{Z} := \bigcup_{n=0}^{\infty} \phi^n(Z) = Z \cup \phi(Z) \cup \phi^2(Z) \cup \cdots, \tag{17}$$

where $\phi^0 = id_Y$ and, for n > 0,

$$\phi^n = \phi \circ \cdots \circ \phi \qquad (n \text{ times}),$$

is ϕ -invariant. Show that if a ϕ -invariant subset $W \subseteq Y$ contains Z, then it also contains \bar{Z} .

2.2.6 Invariant closure of a subset

In other words, \bar{Z} is the *smallest* ϕ -invariant subset of Y which contains Z. We shall refer to it as the ϕ -invariant closure of Z.

2.2.7 The proof of Bernstein-Schröder Theorem

Let $\phi: Y \longrightarrow Y$ be an injective self-mapping whose image is contained in a subset X. Let us set $Z := Y \setminus X$ and define the maping

$$h: Y \longrightarrow X, \qquad h(y) := \begin{cases} \phi(y) & \text{if } y \in \bar{Z} \\ y & \text{otherwise.} \end{cases}$$
 (18)

The following exercises complete the proof.

Exercise 17 *Show that both* \bar{Z} *and* $Y \setminus \bar{Z}$ *are h-invariant.*

Exercise 18 *Show that h is injective.*

Exercise 19 *Show that* $\bar{Z} \cap X = \phi(\bar{Z})$.

Exercise 20 Show that h is surjective.

2.2.8

Exercise 21 For any set X, show that no mapping $f: \mathscr{P}(X) \longrightarrow X$ is injective.