Groups of order 36

Groups with no normal subgroups of order 9

Let G be a group of order 36 with no normal subgroup of order 9. If P is any subgroup of order 9, the action of G on the set of left cosets G/P defines a homomorphism

$$\phi: \mathbf{G} \longrightarrow \operatorname{Sym}(\mathbf{G}/\mathbf{P}) \simeq \mathbf{S}_4. \tag{1}$$

The order of $\phi(G)$ divides both |Sym(G/P)| = 24 and |G| = 36, and is divisible by |G/P| = 4 since G acts transitively on G/P. This leaves us with only two possibilities: $|\phi(G)| = 4$, or 12. In the former case, Ker ϕ would be a normal subgroup of order 9, hence contradicting the hypothesis. Thus, $|\phi(G)| = 12$, and Ker ϕ is a normal subgroup of order 3.

The alternating group A_4 does not admit a nontrivial homomorphism into a group of order 2. Since $|Sym(G/P)/\phi(G)| = 2$, the composite homomorphism

$$\operatorname{Alt}(G/P) \hookrightarrow \operatorname{Sym}(G/P) \longrightarrow \operatorname{Sym}(G/)/\phi(G)$$
 (2)

is trivial showing that $\phi(G)$ coincides with Alt(G/P) $\simeq A_4$.

We have thus established that G fits into an extension

$$C_3 \longrightarrow G \xrightarrow{\pi} A_4$$
. (3)

The adjoint action of G on Ker ϕ induces a homomorphism from $A_4 \simeq G/C_3$ to the group Aut C_3 whose order equals 2. This being trivial, implies that G acts trivially on C_3 . In other words, C_3 is contained in the center Z(G). Since $Z(G)/C_3 \subseteq Z(G/C_3) \simeq Z(A_4) = I$, we infer that $Z(G) = C_3$.

Group A_4 has a unique subgroup W of order 4 and the latter is of the form C_2^2 . Since Ker π is central of order 3, for any $w \in W$, the cube \tilde{w}^3 of an *arbitrary* lift $\tilde{w} \in \pi^{-1}(w)$ depends only on w, and defines a well defined map

$$s: V \longrightarrow G$$
 (4)

which splits π . In particular, s(w) is the *only* element $v \in G$ such that $\pi(v) = w$ and $v^2 = (\tilde{w}^2)^3 = I$. This immediately implies that map (4) is a homomorphism embeding W into G, and that V := s(W) is the unique subgroup of order 4 in G.

In particular, V is normal and the abelian group $C_3 V \simeq C_3 \times V$ is a normal subgroup of G of order 12.

CASE I: G HAS AT LEAST THREE ELEMENTS OF ORDER 3. In this case, at least one of them, u, does not belong to center C₃. The subgroup $H := V\langle u \rangle \subset G$, which has exactly 12 elements, is generated by the set $X := V \cup \{u\}$, and its image $\pi(X)$ generates group A₄ that has the same number of elements as H. It follows, that π restricted to H is an isomorphism of H with A₄. Since $|G| = |C_3H|$, and C₃ is central, we conclude that

$$G = C_3 H \simeq C_3 \times A_4.$$
(5)

CASE 2: G HAS EXACTLY TWO ELEMENTS OF ORDER 3. In this case, any lift to G of any element of order 3 in A_4 has order 9. In particular, by considering the cyclic subgroup of G generated by any element t of order 9, we obtain a representation of G as a *nontrivial*^I semidirect product of a cyclic group of order 9 and the Klein group:

$$\mathbf{G} = \mathbf{C}_9 \mathbf{V} = \mathbf{C}_9 \ltimes \mathbf{V} \simeq \mathbf{C}_9 \ltimes \mathbf{C}_2^2. \tag{6}$$

Since there are only two nontrivial homomorphisms

$$\rho_{i} \colon C_{9} \longrightarrow \operatorname{Aut} C_{2}^{2} \simeq S_{3}, \qquad (i = 1, 2), \tag{7}$$

and $\rho_2(t) = \rho_1(t^{-1})$, there exists only one *nonabelian* semidirect product (6) up to isomorphism. This is thus a *unique nontrivial* central extension of A_4 by C_3 .

In particular, we have proved that there are only two groups of order 36, up to isomorphism, with no normal subgroup of order 9.

Note that in CASE 1, there are exactly 3 elements of order 2 in G, $3 \cdot 8 + 2 = 26$ elements of order 3, $2 \cdot 3 = 6$ elements of order 6, and no elements of order 9.

In CASE 2, there are exactly 2 elements of order 3 in G and $4 \cdot 6 = 24$ elements of order 9. The number of elements of order 2 and 6 is the same as in the other case.

The set of subgroups of order 9 is freely operated by the Klein group V.

¹Otherwise G would have a normal subgroup of order 9.

Groups with a normal subgroup of order 9

There are four cases:

CASE 1: $G \simeq C_9 \rtimes C_4$. There is only one nontrivial homomorphism

$$\rho: C_4 \longrightarrow \operatorname{Aut} C_9, \qquad \mathfrak{m} \longmapsto \rho_{\mathfrak{m}}, \tag{8}$$

where ρ_m sends a generator $g \in C_9$ to $g^{(-1)^m}$. Thus, in this case G is either abelian and then cyclic, or nonabelian, and then isomorphic to the unique nontrivial central extension

$$C_2 \xrightarrow{} G \xrightarrow{\pi} D_9 \tag{9}$$

of dihedral group D_9 by C_2 .

CASE 2: $G \simeq C_9 \rtimes C_2^2$. There is only one, up to an automorphism of C_2^2 , nontrivial homomorphism

$$\rho: C_2^2 \longrightarrow \operatorname{Aut} C_9, \qquad (\mathfrak{m}, \mathfrak{n}) \longmapsto \rho_{(\mathfrak{m}, \mathfrak{n})}, \qquad (10)$$

where $\rho_{(1,0)}$ sends a generator $g \in C_9$ to g^{-1} while $\rho_{(0,1)} = id_{C_9}$. Thus, in this case G is either abelian and then isomorphic to $C_{18} \times C_2$, or nonabelian, and then isomorphic to $D_{18} \simeq D_9 \times C_2$.

Case 3: $G \simeq C_3^3 \rtimes C_4$.

CASE 4: $G \simeq C_3^3 \rtimes C_2^2$. In this and the previous case G is the semidirect product of a Sylow 2-subgroup Q with any two-dimensional representation of Q over the three-element field \mathbb{F}_3 .