
Groups of order 36

Groups with no normal subgroups of order 9
Let G be a group of order 36 with no normal subgroup of order 9. If

P is any subgroup of order 9, the action of G on the set of left cosets G/P

defines a homomorphism

φ : G−→ Sym(G/P)' S4. (1)

The order of φ(G) divides both |Sym(G/P)| = 24 and |G| = 36, and is di-
visible by |G/P| = 4 since G acts transitively on G/P. This leaves us with
only two possibilities: |φ(G)| = 4, or 12. In the former case, Kerφ would
be a normal subgroup of order 9, hence contradicting the hypothesis. Thus,
|φ(G)| = 12, and Kerφ is a normal subgroup of order 3.

The alternating group A4 does not admit a nontrivial homomorphism
into a group of order 2. Since |Sym(G/P)/φ(G)| = 2, the composite homo-
morphism

Alt(G/P) ↪→ Sym(G/P) 9� Sym(G/)/φ(G) (2)

is trivial showing that φ(G) coincides with Alt(G/P)'A4.
We have thus established that G fits into an extension

C3 G A4v w ww
π . (3)

The adjoint action of G on Kerφ induces a homomorphism from A4 '
G/C3 to the group AutC3 whose order equals 2. This being trivial, implies
that G acts trivially on C3. In other words, C3 is contained in the center
Z(G). Since Z(G)/C3⊆Z(G/C3)'Z(A4) = 1, we infer that Z(G) = C3.

Group A4 has a unique subgroup W of order 4 and the latter is of the
form C2

2. Since Kerπ is central of order 3, for any w ∈W, the cube w̃3 of
an arbitrary lift w̃ ∈ π−1(w) depends only on w, and defines a well defined
map

s : V −→G (4)

which splits π. In particular, s(w) is the only element v ∈ G such that
π(v) = w and v2 =

(
w̃2

)3
= 1. This immediately implies that map (4) is

a homomorphism embeding W into G, and that V˜ s(W) is the unique
subgroup of order 4 in G.
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In particular, V is normal and the abelian group C3V 'C3×V is a normal
subgroup of G of order 12.

Case 1: G has at least three elements of order 3. In this case,
at least one of them, u, does not belong to center C3. The subgroup H˜

V〈u〉⊂G, which has exactly 12 elements, is generated by the set X˜V∪ {u},
and its image π(X) generates group A4 that has the same number of elements
as H. It follows, that π restricted to H is an isomorphism of H with A4. Since
|G| = |C3H|, and C3 is central, we conclude that

G = C3H'C3×A4. (5)

Case 2: G has exactly two elements of order 3. In this case, any
lift to G of any element of order 3 in A4 has order 9. In particular, by
considering the cyclic subgroup of G generated by any element t of order
9, we obtain a representation of G as a nontrivial1 semidirect product of a
cyclic group of order 9 and the Klein group:

G = C9V = C9 nV 'C9 nC2
2. (6)

Since there are only two nontrivial homomorphisms

ρi : C9 −→AutC2
2 ' S3, (i = 1, 2), (7)

and ρ2(t) = ρ1(t
−1), there exists only one nonabelian semidirect product (6)

up to isomorphism. This is thus a unique nontrivial central extension of A4
by C3.

In particular, we have proved that there are only two groups of order 36,
up to isomorphism, with no normal subgroup of order 9.

Note that in Case 1, there are exactly 3 elements of order 2 in G, 3 ·8+

2 = 26 elements of order 3, 2 ·3 = 6 elements of order 6, and no elements of
order 9.

In Case 2, there are exactly 2 elements of order 3 in G and 4 · 6 = 24
elements of order 9. The number of elements of order 2 and 6 is the same
as in the other case.

The set of subgroups of order 9 is freely operated by the Klein group V.

1Otherwise G would have a normal subgroup of order 9.
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Groups with a normal subgroup of order 9
There are four cases:

Case 1: G'C9 oC4. There is only one nontrivial homomorphism

ρ : C4 −→AutC9, m 7−→ ρm, (8)

where ρm sends a generator g ∈C9 to g(−1)m. Thus, in this case G is either
abelian and then cyclic, or nonabelian, and then isomorphic to the unique
nontrivial central extension

C2 G D9v w ww
π (9)

of dihedral group D9 by C2.

Case 2: G'C9 oC2
2. There is only one, up to an automorphism of C2

2,
nontrivial homomorphism

ρ : C2
2 −→AutC9, (m,n) 7−→ ρ(m,n), (10)

where ρ(1,0) sends a generator g ∈ C9 to g−1 while ρ(0,1) = idC9. Thus, in
this case G is either abelian and then isomorphic to C18×C2, or nonabelian,
and then isomorphic to D18 'D9×C2.

Case 3: G'C
3
3 oC4.

Case 4: G ' C
3
3 oC2

2. In this and the previous case G is the semidirect
product of a Sylow 2-subgroup Q with any two-dimensional representation
of Q over the three-element field F3.
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