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0 Vocabulary

0.1 Γ -diagrams and categories

Recall that an oriented graph

Γ : Γ0
s

⇔
t

Γ1

consists of a pair of sets: Γ0 , whose elements are called vertices, and Γ1 ,
whose elements are called edges, and of a pair of maps s and t; for an edge
e ∈ Γ1 , s(e) is called the source of e, while t(e) is called the target of e.
Morphisms between graphs are defined naturally as pairs of maps

(Γ0
f0−→ Γ ′

0 , Γ1
f1−→ Γ ′

1)

which are compatible with the corresponding source and target maps.
By reversing the direction of all edges we obtain the opposite graph Γop .

One has Γ
op
i = Γi , i = 0 , 1 , but sop = t and top = s.

Definition 0.1 A category structure on a graph Γ , consists of an associative
law of composition for arrows

µ : Γ1 ×Γ0 Γ1 −→ Γ1

where the fibered product of two copies of Γ1 over Γ0 is defined as follows:

Γ1 ×Γ0 Γ1˜ {(e1, e2) | s(e1) = t(e2)} .

The elements of Γ0 are then referred to as objects and the elements of Γ1 as
morphisms, or arrows, of the category.
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The original definition of a category requires, in addition, the existence of
“the identity” morphisms, i.e., that multiplication µ has a neutral element
1 : Γ0 9→ Γ1 , v 79→ 1v .

Formally speaking, we defined above the so called small categories. Gen-
eral categories are defined similarly, but Γi , i = 0 ,1 , are allowed to be classes
instead of being sets. Needless to say, caution is required when operations
on classes are involved.

The underlying graph |C | of a given category C is obtained by forgetting
multiplication µ.

Morphisms between categories are called functors. They are defined nat-
urally as morphisms between the underlying graphs |C | 9→ |C ′| which are
compatible with the corresponding multiplication laws (and take the iden-
tity morphisms to the corresponding identity morphisms).

When we think of functors as morphisms between categories, then small
categories form a category themselves. It is denoted Cat and called the
category of all (small) categories.

Semigroups or, more properly, monoids, are nothing but categories with
a single object (in that case the whole structure reduces to the multiplication
on the set of arrows).

By formally reversing the direction of all arrows in a given category C ,
one obtains the opposite category C op . Note that |C op| = |C |op .

Functors F : C op 9→ D are usually referred to as contravariant functors
from C to D in order to distinguish them from actual functors C 9→ D
which are then referred to as covariant functors.

Definition 0.2 Let Γ be a graph and C be a category. A morphism ∆ : Γ 9
→ |C | is called a Γ -diagram in category C .

Exercise. For a given graph Γ , Γ -diagrams in a category C naturally form a
category, denoted DiagΓ (C ) . Give its definition.

A functor F : C 9→ D transforms Γ -diagrams in category C into Γ -
diagrams in category D ,

∆ 79→ F(∆) (∆ ∈ Ob DiagΓ (C )),

whereas a contravariant functor G : C 9→ D transforms Γ -diagrams C
into Γop -diagrams in D .
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Definition 0.3 We shall say that a graph Γ is sequential if each vertex has
at most one out-going and at most one in-going edge. The connected com-
ponents of sequential graphs are the graphs

Σn : • ← · · · ← • (n vertices). (1)

Γ -diagrams in a category C , where Γ is sequential, will be referred to as
sequences in C .

0.2 Modules

Let R be a ring (always assumed to be associative, unless otherwise stated,
but not necessarily unital), and µ : R× R 9→ R be the corresponding multi-
plication.

Definition 0.4 The opposite ring Rop is defined as follows: as an additive
abelian group it coincides with (R, +), but the multiplication is new:

R× R
µop

- R

R× R

µ
-

τ -

where τ is the involution:

τ(r1, r2) = τ(r2, r2) (r1, r2 ∈ R) .

It is advisable to use the following convention: denote r ∈ R, when it is
viewed as an element of opposite ring Rop , as rop . Then multiplication in
Rop is given by the formula:

rop · sop = (sr)op .

Note that (Rop)op = R.

Definition 0.5 A ring R is commutative if Rop = R.
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Definition 0.6 A left (respectively, right) R-module structure on an abelian
group M is a ring homomorphism

λ : R 9→ EndAb(M), r 79→ λr,

(respectively, a ring homomorphism

ρ : Rop 9→ EndAb(M), rop 79→ ρrop ) .

Traditional notation:
rm˜ λr(m)

in the left R-module case, and

mr˜ ρrop(m)

in the right R-module case.
Note that a right R-module structure on M is the same as a left Rop -

module structure.
If R 3 1 and λ : 1 79→ idA , then the left module is said to be unitary (sim-

ilarly for right modules). All modules over a unital ring are tacitly assumed
to be unitary unless explicitly stated otherwise.

In the rest of this chapter R is assumed to have 1 unless otherwise stated.
The category of (unitary) left R-modules is denoted R-mod while the cate-
gory of (unitary) right R-modules is denoted mod-R.

Definition 0.7 A right R-module M is said to be:

(a) projective if, for any diagram of right R-modules

L0 ��
π

L1

M

�
f

there exists a morphism f̃ : M 9→ L1 such that the triangle

L0 ��
π

L1

	

M

....
....

....
...

f̃
-

�
f
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commutes ( f̃ is called a lifting of f). In other words, if the functor

Hommod-R(M, ) : mod-R 9→ Ab

preserves epimorphisms, i.e., if

Hommod-R(M, L0)
π∗←− Hommod-R(M, L1)

is an epimorphism whenever π is one; here π∗(φ)˜ π ◦ φ.

(b) injective if, for any diagram of right R-modules

L0-
ι

- L1

M
g -

there exists a morphism g̃ : L1 9→M such that the triangle

L0-
ι

- L1

�

M

�...
....

....
...

g̃
g -

commutes (g̃ is an extension of g). In other words, if the functor

Hommod-R( , M) : (mod-R)op 9→ Ab

preserves epimorphisms, i.e., if

Hommod-R(L0, M)
ι∗←− Hommod-R(L1, M)

is an epimorphism whenever ιop is one (this happens precisely when ι

is a monomorphism in mod-R); here ι∗(φ)˜ φ ◦ ι.

(c) a generator (of category mod-R) if, for any right R-module L and
any ` ∈ L, there exists a morphism f : M 9→ L such that ` ∈ f(M).
In other words, if any right R-module L is isomorphic to a quotient
module of

⊕
x∈X M for some set X (take, e.g., X = Hommod-R(M, L)).
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(d) a cogenerator (of category mod-R) if, for any right R-module L and
any ` ∈ L, there exists a morphism g : L 9→M such that g(`) 6= 0 . In
other words, if any right R-module L is isomorphic to a submodule of∏

x∈X M for some set X (take, e.g., X = Hommod-R(L, M)).

(e) free if there exists a subset X ⊆ M such that any element m ∈ M

can be expressed as m =
∑

x∈X xrx for a unique collection rx ∈ R

of finite support. In this situation, X is called a basis of M and the
correspondence m 79→ (rx)x∈X defines an isomorphism of right R-
modules M '

⊕
x∈X R.

The proof of the following lemma is a simple exercise

Lemma 0.8 A right R-module M is:

(a) projective if and only if M is isomorphic to a direct summand of free
module

⊕
x∈X R for some set X;

(b) a generator if and only if rank 1 free module R is isomorphic to a
direct summand of

⊕
x∈X M for some set X. �

0.2.1 Case R = Z

Definition 0.9 An abelian group is said to be divisible if, for any a ∈ A and
positive integer n, there exists a ′ ∈ A such that a = na ′ .

Proposition 0.10 An abelian group is injective if and only if it is divisible.
�

The multiplicative group of complex roots of identity µ∞ ˜ ⋃
n>1 µn ,

where
µn˜ {ζ ∈ C | ζn = 1} ,

is divisible; the correspondence q 79→ e2πq , identifies the additive group
Q/Z with µ∞ .

Proposition 0.11 µ∞ is an injective cogenerator of the category of abelian
groups. �
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0.2.2 Case of a general ring

For any abelian group A and any left (respectively, right) R-module L,
abelian group HomAb(L, A) is equipped with a canonical structure of a right
R-module:

(φr)(`)˜ φ(r`) (r ∈ R; ` ∈ L)

(respectively, left R-module:

(rφ)(`)˜ φ(`r) (r ∈ R; ` ∈ L) .

Definition 0.12 For any R-module L, the module L∗ ˜ HomAb(L, µ∞) is
called the character module of L.

Note that R∗ is both a left and a right R-module.

Proposition 0.13 For any ring R, character module R∗ is an injective cogen-
erator in categories R-mod and mod-R. �

The following is the counterpart of Lemma 0.8

Corollary 0.14 A right R-module M is:

(a) injective if and only if M is isomorphic to a direct summand of the
character module of some free R-module

∏
x∈X R∗ = (

⊕
x∈X R)∗ ;

(b) a cogenerator if and only if character module R∗ is isomorphic to a
direct summand of

∏
x∈X M for some set X. �

0.3 Exactness

Definition 0.15 A connected sequence of R-modules

M0
f1←M1

f2← · · · fn←Mn

is exact if Im fi = Ker fi−1 for all i = 1 , . . . , n. A general sequence S of
R-modules is exact if all of its connected components are such.

The following definitions is particularly important.
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Definition 0.16 A functor F from R-mod, or mod-R, to category of abelian
groups Ab:

(a) preserves exactness (such functors are called exact) if, for any exact
sequence S of R-modules, sequence F(S) is exact;

(b) reflects exactness if, for any sequence S of R-modules, the latter is
exact if F(S) is such.

In the above definition it suffices to consider only Σ3 -sequences (cf. (1)):

M0
f1←M1

f2←M2 (2)

Exercise. Verify that the covariant Hom-functor:

Hommod-R(M, ) : mod-R 9→ Ab, L 79→ Hommod-R(M, L), (3)

and the contravariant Hom-functor:

Hommod-R( , M) : mod-R 9→ Ab, L 79→ Hommod-R(L, M), (4)

preserve the exactness of sequences

0 9→ L0 f0
−→ L1 f1

−→ L2.

Such functors are called left exact and form a very important class of functors.

It follows directly from the respective definitions of a projective and of
an injective module, see Definitions 0.7(a) and 0.7(b), that functor (3) is not
exact if M is not projective, and that functor (4) is not exact if M is not
injective. It turns out that the exactness of the corresponding Hom-functors
characterizes projectivity and, respectively, injectivity.

Proposition 0.17 A right R-module M is:

(a) projective ⇔ functor Hommod-R(M, ) preserves exactness;

(b) injective ⇔ functor Hommod-R( , M) preserves exactness;

(c) a generator ⇔ functor Hommod-R(M, ) reflects exactness;

(d) a cogenerator ⇔ functor Hommod-R( , M) reflects exactness. �
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1 Derivations

1.1 Non-graded case

1.1.1 Split k-algebra extensions

An extension of k-algebras

E : A
π
� B

ι
� J

is said to be split if there exists a morphism of k-algebras

σ : A 9→ B

such that π ◦ ι = idA ; σ is then called a splitting of E . The set of splittings
of extension E will be denoted Split(E ).

When J2 = 0 , the extension ideal J is a bimodule over B/J ' A:

ax˜ σ(a)x and xa˜ xσ(a) (a ∈ A; x ∈ J)

for any splitting σ (the result does not depend on the choice of σ).
For any σ, σ ′ ∈ Split(E ), their difference δ = σ ′ − σ has the following

properties:
δ(a) ∈ J (a ∈ A) ,

since π ◦ δ = π ◦ σ ′ − π ◦ σ = idA − idA = 0 , and

δ(a1a2) = σ ′(a1a2) − σ(a1a2) = σ ′(a1)σ
′(a2) − σ(a1)σ(a2)

= (σ ′(a1) − σ(a1))σ
′(a2) + σ(a1)(σ

′(a2) − σ(a2))

= δ(a1)σ
′(a2) + σ(a1)δ(a2) = δ(a1)a2 + a1δ(a2)

Definition 1.1 A k-linear map δ : A 9→ M of a k-algebra A into an A-
bimodule M is called derivation if

δ(a1a2) = δ(a1)a2 + a1δ(a2) (a1, a2 ∈ A) . (5)

The set of k-linear derivations, denoted DerA/k(M), is a k-module.

Example For any element m ∈M, the correspondence

a 79→ [a, m]˜ am − ma (a ∈ A; m ∈M) (6)
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is a derivation. Such derivations are called inner. They form a k-submodule
of DerA/k(M). The quotient

H1(A; M)˜ DerA/k(M)/Der inn
A/k(M) (7)

is the first Hochschild cohomology group of k-algebra A with coefficients
in bimodule M.

Returning to our discussion of split extensions with J2 = 0 , we note that,
for any σ ∈ Split(E ) and δ ∈ DerA/k(M), we have

(σ + δ)(a1a2) = σ(a1)σ(a2) + δ(a1)a2 + a1δ(a2)

= σ(a1)σ(a2) + δ(a1)σ(a2) + σ(a1)δ(a2)

= (σ(a1) + δ(a1))(σ(a2) + δ(a2)),

i.e., σ + δ is another splitting of E .

Definition 1.2 Let G be a group and X be a set on which G operates (i.e.,
X is a G-set). We say that X is a G-torsor if, for any x, x ′ ∈ X, there exists
a unique g ∈ G such that x ′ = gx.

Thus, we have established

Lemma 1.3 For any split extension E with J2 = 0 , the set of splittings
Split(E ) is a DerA/k(M)-torsor. �

For any A-bimodule M, there exists a canonically split extension of A

by M, called the semidirect product of A by M, and denoted A n M. As a
k-module, it coincides with A

⊕
M while the multiplication is given by

(a, m)(a ′, m ′) = (aa ′, ma ′ + am ′) .

Corollary 1.4 A map δ : A 9→M is a derivation if and only if the map

hδ : A 9→ A n M, a 79→ (a, δ(a)) (a ∈ A; M ∈M) ,

is a k-algebra morphism. Every splitting of the extension

A � A n M � M

is of this form. Thus, the correspondence δ 79→ hδ establishes a natural
isomorphism of k-modules

DerA/k(M) ' Split(A n M) .

�
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1.1.2 The Lie algebra structure on DerA/k(A)

For any δ1 , δ2 ∈ DerA/k(A), their commutator [δ1, δ2] is a derivation too:

[δ1, δ2](a1a2) = δ1(δ2(a1)a2 + a1δ2(a2)) − δ2(δ1(a1)a2 + a1δ1(a2))

= ((δ1δ2)(a1))a2 + δ2(a1)δ1(a2) + δ1(a1)δ2(a2) + a1((δ1δ2)(a2))

− ((δ2δ1)(a1))a2 − δ2(a1)δ1(a2) − δ1(a1)δ2(a2) − a1((δ2δ1)(a2))

= ([δ1, δ2](a1))a2 + a1([δ1, δ2](a2)).

Note that we did not use above associativity of multiplication. Thus, for any
binary k-algebra A, k-module of derivations DerA/k(A) is a Lie subalgebra
of Lie algebra glk(A) of k-linear endomorphisms of k-module A.

1.1.3 Functorial properties of derivations

A homomorphism of k-algebras f : A 9→ B makes any B-bimodule M into
an A-bimodule, and also induces the obvious map of k-modules

f∗ : DerB/k(M) 9→ DerA/k(M), δ 79→ f∗(δ)˜ δ ◦ f ,

whose kernel, DerB/A/k(M), consists of those derivations δ : B 9→ M

which vanish on the image of A in B. We record this fact as

Lemma 1.5 For any homomorphism of k-algebras f : A 9→ B and any
B-bimodule M, one has the following exact sequence

0 9→ DerB/A/k(M) 9→ DerB/k(M)
f∗−→ DerA/k(M) . (8)

All derivations δ : B 9→ M which vanish on A are automatically A-
bimodule maps. If B 3 1 then also the opposite is true:

δ(a) = δ(a · 1) = aδ(1) = 0 ,

since
0 = δ(12) − δ(1) = δ(1)1 + 1δ(1) − δ(1) = δ(1) .

If A is an extension of B with an ideal J:

B
f
� A � J , (9)

then DerB/A/k(M) = 0 and

f∗ : DerB/k(M) ∼−→ {δ ∈ DerA/k(M) | δ|J = 0} .
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1.1.4 Example: Derivations from the tensor algebra

Let E be a bimodule over a unital k-algebra B and M be a bimodule over
the tensor algebra A = T∗BE. The restriction of any derivation δ : T∗BE 9→M

to T 0
BE = B is a derivation δ0 : B 9→M and thus

h0 : B 9→ A n M, B 79→ (b, δ0(b)) (b ∈ B) ,

is a homomorphism of algebras. This endows A n M with a new structure
of a B-bimodule:

b(a, m)˜ (b, δ0(b))(a, m) = (ba, bm + δ0(b)a) (10)

and
(a, m)b˜ (a, m)(b, δ0(b)) = (ab, mb + aδ0(b)) (11)

(b ∈ B; a ∈ T∗BM; m ∈M).
The restriction of δ to T 1BE = E, denoted δ1 , satisfies the pair of iden-

tities
δ1(be) = δ0(b)e + bδ1(e) (12)

and
δ1(eb) = δ1(e)b + eδ0(b) (13)

(b ∈ B; e ∈ E) which express the fact that the map

h1 : E 9→ A n M, e 79→ (e, δ1(e)) (e ∈ E) , (14)

is a morphism of B-bimodules if A n M is given the bimodule structure
described in (12) and (13).

The pair of maps
(B

δ0−→M, E δ1−→M) (15)

determines derivation δ : T∗BE 9→ M uniquely, since T∗BE is generated by
B ∪ E as a k-algebra.

Vice-versa, given a pair like (15), consisting of a derivation δ0 : B 9→M

and of a k-module map δ1 : E 9→ M which satisfies identities (12) and
(13), we obtain B-bimodule map (14) which, by the universal property of
the tensor algebra, extends to a unique B-algebra homomorphism

h : T∗BE 9→ T∗BE n M

13



which splits the extension

T∗BE � T∗BE n M � M .

In other words, h(a) has the form (a, δ(a)) where δ : T∗BE 9→ M is a
(unique) derivation that equals δ0 on B and δ1 on E.

Proposition 1.6 For any T∗BE-bimodule M, there is a natural k-module iso-
morphism between Der (T∗

BE)/k(M) and

{(δ0, δ1) ∈ DerB/k(M)×Homk−bimod(E, M) | δ1 satisfies (12) and (13)} .
(16)

�

In the special case B = k, one has Derk/k(M) = 0 , so δ0 = 0 and
identities (12) and (13) together mean that δ1 : E 9→ M is a map of k-
bimodules. Hence the following

Corollary 1.7 For any T∗kE-bimodule M, the correspondence δ 79→ δ1 de-
fines a natural k-module isomorphism

Der (T∗
kE)/k(M) ' Homk-bimod(E, M) (17)

1.1.5 Variant: Derivations from the symmetric algebra

Let E be a module over a unital commutative k-algebra B and M be a
bimodule over the symmetric algebra A = S∗BE.

Derivations S∗BE 9→M are the same as derivations T∗BE 9→M satisfying
the identity

[δ(e1), e2] + [e1, δ(e2)] = 0 (e1, e2 ∈ E) (18)

which expresses the fact that δ([e1, e2]) = δ(e1⊗ e2) − δ(e2⊗ e1) = 0 . Thus,
the following statement is a corollary of Proposition 1.6.

Proposition 1.8 For any S∗BE-bimodule M, there is a natural k-module iso-
morphism between Der (S∗

BE)/k(M) and

{(δ0, δ1) ∈ DerB/k(M)×Homk−bimod(E, M) | δ1 satisfies (12), (13) and (18)} .
(19)

�
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In the special case B = k, we have the following analog of Corollary 1.7

Corollary 1.9 For any S∗kE-bimodule M, the correspondence δ 79→ δ1 de-
fines a natural k-module isomorphism

Der (S∗
kE)/k(M) ' {δ1 ∈ Homk-bimod(E, M) | δ1 satisfies (18)} . (20)

1.1.6 Variant: Derivations from the exterior algebra

Let E be a module over a unital commutative k-algebra B and M be a
bimodule over the exterior algebra A = Λ∗

BE.
Derivations Λ∗

BE 9→ M are the same as derivations T∗BE 9→ M satisfy-
ing the identity

δ(e)e + eδ(e) = 0 (e ∈ E) (21)

which expresses the fact that δ(e⊗ e) = 0 . Thus, the following statement is
a corollary of Proposition 1.6.

Proposition 1.10 For any Λ∗
BE-bimodule M, there is a natural k-module

isomorphism between Der (Λ∗
BE)/k(M) and

{(δ0, δ1) ∈ DerB/k(M)×Homk−bimod(E, M) | δ1 satisfies (12), (13) and (21)} .
(22)

�

1.1.7 The universal derivation

For any k-algebra A, the kernel of the multiplication map

I∆(A)˜ Ker(A⊗k A
µ−→ A), µ(a1 ⊗ a2)˜ a1a2 . (23)

is an A-sub-bimodule of A. We will call it the diagonal ideal of A. The
terminology stems from the fact that I∆ = I∆(A) is a left ideal in algebra
A⊗Aop (all tensor products over k unless indicated otherwise).

Assumption: in this subsection A is assumed to be unital.

Lemma 1.11 The correspondence

d∆ : a 79→ d∆a˜ 1⊗ a − a⊗ 1 (24)

is a k-linear derivation A 9→ I∆ .

15



Indeed,

d∆(a1a2) = 1⊗ (a1a2) − (a1a2)⊗ 1
= (1⊗ (a1a2) − a1 ⊗ a2) + (a1 ⊗ a2 − (a1a2)⊗ 1)
= (1⊗ a1 − a1 ⊗ 1)a2 + a1(1⊗ a2 − a2 ⊗ 1)
= d∆(a1)a2 + a1d∆(a2) .

Observation 1.12 If α =
∑`

i=1 a ′
i ⊗ a ′′

i ∈ I∆ , then

α =
∑̀
i=1

a ′
id∆(a ′′

i ) . (25)

Indeed, ∑̀
i=1

a ′
i ⊗ a ′′

i =
∑̀
i=1

a ′
id∆(a ′′

i ) + (
∑̀
i=1

a ′
ia

′′
i )⊗ 1 .

Proposition 1.13 For any derivation δ : A 9→ M from A into an A-
bimodule M, there exists a unique A-bimodule map δ̄ : I∆ 9→ M such
that the following triangle commutes:

A
δ

- M

	

I∆

....
....

....
....

δ̄
-

d
∆ -

Proof. The pairing A × A 9→ M, (a0, a1) 79→ a0δ(a1), is biadditive and
k-balanced, hence induces a map

A⊗A 9→M, a0 ⊗ a1 79→ a0δ(a1), (26)

which is clearly left A-linear. The restriction of (26) to I∆ is also right
A-linear. Indeed,∑̀

i=1

a ′
iδ(a ′′

i b) =
∑̀
i=1

a ′
iδ(a ′′

i )b + (
∑̀
i=1

a ′
ia

′′
i )δb (27)

and the right hand sum in (27) vanishes if
∑`

i=1 a ′
i ⊗ a ′′

i ∈ I∆ .
The uniqueness of δ̄ follows from the fact that I∆ is generated by d∆A,

the image of A in I∆ , as a left A-module, while δ̄ is requested to be A-
linear. �
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Corollary 1.14 The correspondence f 79→ f◦d∆ defines a canonical isomor-
phism of k-modules:

HomA-bimod(I∆, M) ' DerA/k(M) . (28)

�

1.1.8 Point derivations

Definition 1.15 A point of a k-algebra A (more precisely, a k−point) is a
k-algebra homomorphism p : A 9→ k. The set of k-points will be denoted
Speck(A) and called the k-spectrum of A.

When talking about points, it is customary to write a(p) instead of p(a),
for a ∈ A, as if the elements of A where functions on the spectrum of A

and the homomorphism A 9→ k were the “evaluation at point p”.
For a given point p, the set

mp˜ {a ∈ A | a(p) = 0} (29)

is an ideal in A (‘ideal’ will always mean ‘two-sided ideal’, unless stated
otherwise).

A choice of a point p equips k with a structure of an A-bimodule:

ac˜ a(p)c, ca˜ ca(p) (a ∈ A; c ∈ k) .

The corresponding derivations v : A 9→ k form the tangent space, TpA, to
A at point p. We shall call them point derivations (at p), or tangent vectors
to A at p.

From now on we assume A to be unital.

The correspondence

a 79→ (a(p), ∆pa) (a ∈ A) ,

where ∆pa˜ a − a(p), defines a splitting of k-module A into a direct sum
k⊕mp .

Proposition 1.16 (a) For any point p of A, the correspondence

dp : a 79→ class of ∆pa modulo m2
p

17



defines a derivation A 9→ m/m2
p .

(b) Derivation dp is universal for all point derivations at point p. More
precisely, for any tangent vector v ∈ TpA, there exists a unique A-bimodule
map v̄ such that the triangle commutes:

A
v

- k

	

mp/m2
p

....
....

....
...

v̄
-

d
p -

Proof. Part (a) is an immediate consequence of the identity

∆p(a1a2) = (∆pa1)a2 + a1(∆pa2) − (∆pa1)(∆pa2) (a1, a2 ∈ A) .

For a tangent vector v ∈ TpA and a ∈ A,

v(a) = v(a(p)) + v(∆pa) = v(∆pa)

and the right hand term depends only on the class of ∆pa modulo m2
p , since

v vanishes on m2
p :

v(ab) = v(a)b(p) + a(p)v(b) = v(a)0 + 0v(b) = 0 .

Since any element of mp/m2
p is of the form dpa for some a ∈ A, this implies

that the correspondence v̄ : dpa 79→ v(a) produces a well defined k-linear
map v̄ : mp/m2

p 9→ k. Noting that the action of A on both mp/m2
p and k

factorizes through A/mp ' k, we obtain the canonical isomorphism:

Homk-mod(mp/m2
p, k) = HomA-bimod(mp/m2

p, k) ' TpA . (30)

�

Definition 1.17 We call dpa ∈ mp/m2
p the differential of a ∈ A at point p.

We shall denote mp/m2
p either ΩA/k,p or ΩA/k(p).

The space of differentials at a given point p plays the role of the cotan-
gent space in Analysis on Manifolds. There, it is defined as the dual, (Tp)∗ ,
of the tangent space. As we have seen, it is rather the tangent space which
appears as the dual of the space of differentials of a ∈ A (“functions”) at
point p.

18



The canonical A-bimodule map I∆ 9→ mp/m2
p , which sends a0d∆a1

to a(p)dpa1 , is the restriction to I∆ of the tensor product of the canonical
quotient maps

(A � A/mp)⊗k (A � A/m2
p)

viewed as an A-bimodule map A⊗A 9→ k⊗ (A/m2
p) ' A/m2

p .

1.2 Graded case

Suppose that algebra A is Z-graded, i.e.,

A =
⊕
i∈Z

Ai and AiAj ⊆ Ai+j (i, j ∈ Z) ,

and that M is a Z-graded A-bimodule, i.e.,

M =
⊕
i∈Z

Mi and AiMj ⊆Mi+j ⊇MiAj.

A nonzero element a ∈ A is said to be homogeneous of degree i if a ∈ Ai

(by ã we shall denote the parity of the degree of a; thus ã = 0 or 1).
Similarly for elements of M.

Definition 1.18 For any graded A-bimodule M and j ∈ Z, the j-shifted
bimodule [j]M is defined as follows:

([j]M)i = Mi−j (i ∈ Z)

with the left and right actions of A given by

([j]m)a = [j](ma), a([j]m) = (−1)ij[j](am) (ai ∈ Ai; m ∈M) .

Definition 1.19 A map between Z-graded modules f : L 9→ M is said to
have degree d ∈ Z if f(Li) ⊆Mi+d , i ∈ Z. Maps of degree 0 are also called
graded maps.

Note that the shift map [j] : M 9→ [j]M, m 79→ [j]m, has degree j, and that
the composition f ◦ g of maps of degree d and, respectively, e has degree
d + e.
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Definition 1.20 A map δ : A 9→ M of degree d is said to be a k-linear
derivation of degree d if, [−d]δ, i.e., the composition with shift [−d] ◦ δ, is
a k-linear derivation [−d]δ : A 9→ [−d]M.

Equivalently, δAi ⊆Mi+d for all i ∈ Z and

δ(a1a2) = (δ(a1))a2 + (−1)ida1(δ(a2) (ai ∈ Ai, a2 ∈ A) .

The following is a version of Corollary 1.4 for graded bimodules.

Corollary 1.21 A map δ : A 9→M is a derivation of degree d if and only if

a 79→ (a, [−d]δ(a))

is a graded k-algebra homomorphism A 9→ A n [−d]M. �

1.2.1 Example: Derivations from the exterior algebra

Let E be a module over a unital commutative k-algebra A and M be a
graded module over the exterior algebra A = Λ∗

A(E).
Note that Λ∗

A(E) = S∗A([1]E), provided 1
2 ∈ k; here E is treated as a

graded module whose i-components, for i 6= 0 , are zero.
Let δ : Λ∗

A(E) 9→ M be a derivation of degree d. Its 0-th component
δ0 : A = Λ0

A(E) 9→Md satisfies the condition that the correspondence

a 79→ (a, δ0(a)) (31)

is a homomorphism of k-algebras

A 9→ A n Md

(note that AnMd is the 0-th component of graded algebra Λ∗
A(E)n[−d]M).

Equivalently, δ0 is a derivation.
The component δ1 : E = Λ1

A(E) 9→Md+1 satisfies the identity

δ1(ae) = δ0(a)e + aδ1(e) (a ∈ A; e ∈ E) (32)

and, since e2 = 0 for any e ∈ E, also the identity

δ1(e)e + (−1)−deδ1(e) = 0 (e ∈ E) . (33)

Conversely, for any derivation δ0 : A 9→ Md , correspondence (31)
defines a morphism of k-algebras A 9→ Λ∗

A(E) n [−d]M which makes
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Λ∗
A(E) n [−d]M an A-algebra, and thus an A-module. Identity (32) then

esxpresses the fact that the correspondence

e 79→ (e, [−d]δa(e)) (34)

which maps E into

E⊕Md+1 = (Λ∗
A(E) n [−d]M)1 ,

defines an A-linear map h1 : E 9→ Λ∗
A(E) n [−d]M. The unique extension

of h1 to a homomorphism of graded A-algebras

h : T∗A(E) 9→ Λ∗
A(E) n [−d]M

annihilates elements e⊗ e ∈ T 2
A(E), This follows from the formula precisely

when δ1 satisfies identity (33).

h(e⊗ e) = h1(e)
2 = (e, [−d]δ1(e))

2

= (e ∧ e, [−d](δ1(e)e + (−1)−deδ1(e)))

= (0, [−d](δ1(e)e + (−1)−deδ1(e))) ,

If so, then homomorphism h passes to the quotient algebra Λ∗
A(E) and the

obtained graded k-algebra homomorphism

h : Λ∗
A(E) 9→ Λ∗

A(E) n [−d]M

is then of the form
h(α) = (α, [−d]δ ′(α))

for some derivation δ ′ : Λ∗
A(E) 9→ M of degree d. Since δ ′i = δi , for

i = 0, 1 , we have

δ ′(ae1 ∧ · · ·∧ en) = δ0(a) ∧ e1 ∧ · · ·∧ en (35)

+

n∑
i=1

(−1)(i−1)dae1 ∧ · · ·∧ δ1(ei) ∧ · · ·∧ en

= δ(ae1 ∧ · · ·∧ en) ,

i.e., δ ′ = δ. Identities (35) mean, in particular, that any derivation δ of
degree d is uniquely determined by its components δ0 : A 9→ Md and
δ1 : E 9→Md+1 .

We have thus established
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Proposition 1.22 For any graded Λ∗
A(E)-bimodule M, there is a natural

bijective correspondence between derivations δ : Λ∗
A(E) 9→ M of degree d

and pairs of k-linear maps

(A
δ0−→Md, E

δ1−→Md+1) (36)

such that δ0 is a derivation and δ1 satisfies identities (32) and (33). �

Exercise. Prove the following variant of Proposition 1.22:

For any graded T∗A(E)-bimodule M , there is a natural bijective correspondence
between derivations δ : T∗A(E) 9→ M of degree d and pairs of k-linear maps (36)
such that δ0 is a derivation and δ1 satisfies identity (32).

2 Differential forms

Unless otherwise stated, A represents in this section and the next section a
unital commutative k-algebra and M an A-module treated as a symmetric
A-bimodule:

am = ma (a ∈ A; m ∈M) .

We shall give in this chapter three realizations of the derivation that is
universal in the class of unital commutative algebras and modules over them.

2.1 Kähler’s realization

Let A〈da | a ∈ A〉 be the A-module freely generated by the set whose
elements are formal symbols da, for all a ∈ A.

Definition 2.1 The A-module of Kähler differentials (or, Kähler differential
1-forms) of a unital commutative k-algebra A is the quotient module

ΩA/k˜A〈da | a ∈ A〉/N (37)

by the A-submodule N generated by elements of three types

(a) d(a1 + a2) − da1 − da2 ,

(b) d(ca) − cda,
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(c) d(a1a2) − a2da1 − a1da2 ,

where a1 , a2 ∈ A, and c ∈ k.

It follows tautologically from the definition that

d : A 9→ ΩA/k, d : a 79→ da , (38)

is a derivation universal in the class of unital commutative algebras and
modules over them.

2.2 Hochschild’s realization

2.2.1 A-linearization of k-linear maps

Any k-linear map f from a k-module E into an A-module M induces a
unique A-linear map f̃ : A⊗k E 9→M such that the triangle commutes:

E
f

- M

	

A⊗k E

....
....

....
....

f̃
-ε⊗
id

E
-

where ε : k 9→ A is the structural homomorphism 1k 79→ 1A . We can ex-
press this also by saying that there is a canonical isomorphism of k-modules

Homk-mod(E, M) ' HomA−mod(A⊗k E, M)) . (39)

Definition 2.2 An A-module is relatively free if there exists a k-module E

and a k-module map f : E9→M such that f̃ is an isomorphism.

Consider the linearization, δ̃ : A⊗A 9→M, of a k-module map δ : A 9
→M. Note that:

(δa1)a2 = a2(δa1) = δ̃(a2 ⊗ a1) ,

and
a1(δa2) = δ̃(a1 ⊗ a2) ,

as well as
δ(a1a2) = δ̃(1A ⊗ a1a2) .
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It follows that

(δa1)a2 + a1(δa2) − δ(a1a2) = δ̃(a1 ⊗ a2 − 1A ⊗ a1a2 + a2 ⊗ a1) . (40)

The three-term expression in parentheses on the right hand side of (40) is
related to a very important object introduced below.

2.2.2 Hochschild homology

For any A-bimodule M over an arbitrary k-algebra A, let

Cn(A; M)˜M⊗A⊗n (41)

and maps bn : Cn(A; M) 9→ Cn−1(A; M), n > 1 , be defined as follows:

bn(m⊗ a1 ⊗ · · · ⊗ an) = ma1 ⊗ a2 ⊗ · · · ⊗ an (42)

+

n−1∑
i=1

m⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an

+ (−1)nanm⊗ a1 ⊗ · · · ⊗ an−1 .

The following lemma is established by a straightforward calculation.

Lemma 2.3 Sequence of k-modules and k-linear maps (C∗(A; M), b∗) is a
chain complex, i.e., bn−1bn = 0 for all n > 1 . �

Definition 2.4 (C∗(A; M), b∗) is called the Hochschild complex of a k-al-
gebra A with coefficients in an A bimodule M, and its homology groups
H∗(A; M) are called the Hochschild homology groups of A with coefficients
in M. Maps bn are called the Hochschild boundary maps,

When M = A (and A is unital), then HH∗(A)˜H∗(A; A) is called the
Hochschild homology of algebra A.

One has
HH0(A; M) = M/[A, M] (43)

where [A, M] denotes the commutator space

[A, M]˜ {
∑`

i=1(aimi − miai) | ai ∈ A, mi ∈M} (44)
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Comment When A is commutative and M is a symmetric A-bimodule, then
the Hochschild boundary maps are A-linear and, consequently, groups H∗(A; M)

are A-modules.

Now, returning to the case of commutative A and symmetric module
M, identity (40) can be rewritten as

(δa1)a2 + a1(δa2) − δ(a1a2) = (δ̃ ◦ b2)(1A ⊗ a1 ⊗ a2) (45)

where b2 : A⊗3 9→ A⊗2 is the corresponding Hochschild boundary map in
C∗(A; A).

Since A is commutative, we have

a0b2(1A ⊗ a1 ⊗ a2) = b2(a0 ⊗ a1 ⊗ a2) (ai ∈ A) ,

and thus we conclude that δ is a derivation if and only if δ̃ vanishes on
b2A

⊗3 . In the latter case, δ̃ induces an A-linear map δ̄ : HH1(A) 9→M.

For any a ∈ A, let

dHa˜ the class of 1A ⊗ a modulo b2A
⊗3 . (46)

We note that 1⊗ a = 1⊗ a − a⊗ 1 + b2(a⊗ 1⊗ 1), i.e., dHa is the image
in HH1(A) of diagonal differential d∆a, cf. (24).

We also note that a1dHa2 − dH(a1a2) + a2dHa1 coincides with the class
modulo b2A

⊗3 of

a1 ⊗ a2 − 1A ⊗ a1a2 + a1 ⊗ a2 = b2(1A ⊗ a1 ⊗ a2) ,

i.e., vanishes. Thus we have

Proposition 2.5 The map dH : A 9→ HH1(A), a 9→ dHa, is a derivation
and, for any derivation δ : A 9→ M, there exists a unique A-linear map
δ̄ : HH1(A) 9→M such that the triangle

A
δ

- M

	

HH1(A)

....
....

....
....

δ̄
-

d
H -

commutes. In other words, dH : A 9→ HH1(A) is a universal derivation in
the class of unital commutative algebras and modules over them. �
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The uniqueness, up to a unique isomorphism, of the universal derivation
(in the class of unital commutative algebras and modules), plus the fact
that both Kähler’s and Hochschild’s derivations are universal, result in the
following

Corollary 2.6 The correspondence a0da1 79→ a0dHa1 defines a canonical
isomorphism of A-modules

ΩA/k ' HH1(A) . (47)

2.3 Serre’s realization

Let d̃∆ : A 9→ I∆/I2
∆ be the diagonal derivation, d∆ : a 9→ I∆ , followed by

the canonical quotient map I∆ � I∆/I2
∆ . Since the latter is an A-bimodule

map, the result is a derivation A 9→ I∆/I2
∆ .

Lemma 2.7 I∆/I2
∆ is a symmetric A-bimodule; more precisely:

I2
∆ = [A, I∆] (48)

(cf. (44)). In particular,

I∆/I2
∆ = I2

∆/[A, I∆] = HH0(A; I∆) . (49)

Proof. One has the following identity in A⊗A:

[a1, d∆a2] = a1 ⊗ a2 − a1a2 ⊗ 1 − 1⊗ a2a1 + a2 ⊗ a1 (50)
= −(1⊗ a1a2 − a1 ⊗ a2 − a2 ⊗ a1 + a1a2 ⊗ 1)
= −(d∆a1)(d∆a2) ,

which, in view of commutativity of A, implies that

[a, α] = (d∆a)α ∈ I2
∆ (a ∈ A; α ∈ I∆)

(cf. representation (25) of elements of I∆ ).

Vice-versa,

a0(d∆a1)(d∆a2) = [a0(d∆a1), a2] ∈ [I∆, A] = [A, I∆] ,

and I2
∆ is additively spanned by products

a0(d∆a1)(d∆a2) . (51)

This proves equality (48), and (49) follows with help of equality (43).
�
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Proposition 2.8 Derivation d̃∆ : A 9→ I∆/I2
∆ is universal in the class of

unital commutative algebras and modules over them. In particular, the cor-
respondence a0d̃∆a1 79→ a0dHa1 establishes a canonical isopmorphism of
A-modules:

I∆/I2
∆ = H0(A; I∆) ' HH1(A) . (52)

Proof. In view of the universality of dH : A 9→ HH1(A), the correspondence
a0dHa1 79→ a0d̃∆a1 yields a well defined a-module map HH1(A) 9→ I∆/I2

∆ .
The universality of d∆ : A 9→ I∆ in the class of all A-bimodules yields
an A-bimodule map I∆ 9→ HH1(A) which sends a0d∆a1 to a0dHa1 . It
remains to show that this last map passes to I∆/I2

∆ or, equivalently, that
d∆(I2

∆) ⊆ b2A
⊗3 . This follows from the identity

a0(d∆a1)(d∆a2) = a0 ⊗ a1a2 − a2a0 ⊗ a1 + a0a1a2 ⊗ 1 − a0a1 ⊗ a2 (53)
= b2(a0a1a2 ⊗ 1⊗ 1 − a0 ⊗ a1 ⊗ a2) .

�

In what follows we shall be freely identifying all three models of the
module of differential 1-forms, and we shall be using notation ΩA/k and
da irrespective of the model chosen.

2.4 Functorialities

2.4.1 First Fundamental Exact Sequence

Let f : A 9→ B be a homomorphism of unital commutative k-algebras. The
composite dB/k ◦ f : A 9→ ΩB/k is a derivation (where ΩB/k is given an
A-module structure via f : A 9→ B). In view of the universal property of
derivation dA/k : A 9→ ΩA/k , there exists a unique A-module morphism

f• : ΩA/k 9→ ΩB/k

such that the following square

A
f

- B

	

ΩA/k

dA/k

?
.............

f•
- ΩB/k

dB/k

?
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commutes. Let f∗ : B⊗A ΩA/k 9→ ΩB/k be its B-linearization:

f∗(b⊗ a0da1) = a0bd(f(a)) (a0, a1 ∈ A; b ∈ B) ,

see Section 2.2.1. The image of f∗ coincides with the B-submodule gener-
ated by dA, while a glance at Kähler’s definition of the module of differ-
ential forms shows that the quotient ΩB/k/BdA canonically identifies with
ΩB/A . Thus, we obtain the First Fundamental Exact Squence:

B⊗A ΩA/k
f∗−→ ΩB/k 9→ ΩB/A 9→ 0 (54)

whose dual form we already encountered in more general situation, cf. (8).

2.4.2 Second Fundamental Exact Sequence

Suppose f is an epimorphism, i.e., A is an extension of B by some ideal
J ⊂ A, see (9). In this case, ΩB/A = 0 and therefore f∗ is surjective.
By tensoring ΩA/k with exact sequence (9), we obtain the following exact
sequence:

J⊗A ΩA/k 9→ A⊗A ΩA/k 9→ B⊗A ΩA/k 9→ 0 (55)

which shows that B-module B ⊗A ΩA/k is canonically isomorphic to the
quotient module ΩA/k/JdA. Since d(J2) ⊆ JdJ ⊂ JdA, the restriction of
dA/k to J induces a map

d̄ : J/J2 9→ ΩA/k/JdA ' B⊗A ΩA/k ,

and
Coker d̄ ' ΩA/k/(JdA + dJ) .

Note that ΩA/k/(JdA+dJ) is a B-module and that the composite derivation

A
dA/k−−−→ ΩA/k � ΩA/k/(JdA + dJ)

vanishes on J, and thus induces a derivation

δ : B 9→ ΩA/k/(JdA + dJ) .

The latter induces a B-module map

δ̄ : ΩB/k 9→ ΩA/k/(JdA + dJ) . (56)
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For any a ∈ A, let da denote the class of da modulo JdA + dJ. Then f∗
sends da to d(f(a)) ∈ ΩB/k , and δ̄ sends d(f(a)) to da. In other words,
B-linear maps f∗ and δ̄ supply mutually inverse correspondences between
set dA, which generates B-module ΩA/k/(JdA + dJ, and set dB, which
generates B-module ΩB/k .

We conclude that f∗ induces an isomorphism

Coker d̄ ' ΩB/k

which establishes the Second Fundamental Exact Sequence

J/J2 d̄−→ B⊗A ΩA/k
f∗−→ ΩB/k 9→ 0 . (57)

We shall sometimes be using it in the form

Proposition 2.9 For any extension (9) of unital commutative k-algebras,
the epimorphism ΩA/k � ΩB/k induces a canonical isomorphism of B-
modules

ΩA/k/(J dA + dJ) ' ΩB/k . (58)

2.5 Examples

2.5.1 The symmetric algebra

Let A = S∗kE be the symmetric algebra of a k-module E and M be any
S∗kE-module. Corollary 1.9, combined with canonical isomorphism (39),
yields in this case the canonical isomorphisms

HomS∗
kE-mod(ΩS∗

kE/k, M) ' Homk-mod(E, M) ' HomS∗
kE-mod(S

∗
kE⊗ E, M) ,

which show that
ΩS∗

kE/k ' S∗kE⊗ E (59)

(it suffices to take M = ΩS∗
kE/k ). Under (59), differentials de, e ∈ E,

correspond to elements 1⊗e ∈ S∗kE⊗E. We notice that ΩS∗
kE/k is a relatively

free S∗kE-module, cf. Definition 2.2.

If E is a free k-module with basis ((ei)i∈I), then S∗kE⊗ E is a free S∗kE-
module with the same basis. In this case, ΩS∗

kE/k is a free S∗kE-module with
basis ((dei)i∈I):

ΩS∗
kE/k = S∗k〈dei | i ∈ I〉 . (60)
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In the special case E = kn , symmetric algebra S∗kE becomes the k-
algebra of polynomials in n variables:

S∗kE = k[X1, . . . , Xn] ,

and the formula for the differential

d : k[X1, . . . , Xn] 9→ Ωk[X1,...,Xn]/k

takes the familiar form

df =

n∑
i=1

∂f

∂Xi

dXi (61)

for f ∈ k[X1, . . . , Xn].

When k-module E is projective, S∗kE-module S∗kE⊗ E is projective, and
thus also ΩS∗

kE/k .

2.5.2 Affine algebra A = k[X1, . . . , Xn]/(F1, . . . , Fm).

Let kn ˜ k[X1, . . . , Xn] and Ωn ˜ Ωkn/k . As a kn -module, the latter is
freely generated by differentials of variables dX1 , . . . , dXn . According to
(58), ΩA/k is canonically isomorphic to the quotient of Ωn by the kn -
submodule

(F1, . . . , Fm)Ωn + kndF1 + . . . + kndFm . (62)

Example: Plane curve XY = c For a given c ∈ k, let Ac˜ k[X, Y]/(XY −

c). If c is invertible then the correspondence T 79→ c−1X induces a k-algebra
isomorphism:

k[T , T−1] ' k[X, Y]/(XY − c)

where k[T , T−1] is the algebra of Laurent polynomials with coefficients in k.

2.6 The algebra of differential forms

Definition 2.10 The exterior algebra Ω∗
A/k˜Λ∗

AΩA/k is called the Kähler-
de Rham algebra of a unital commutative k-algebra A. Elements of Ω

q
A/k =

Λ
q
AΩA/k are called differential q-forms.

Note that
Ω0

A/k = A and Ω1
A/k = ΩA/k .
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Proposition 2.11 There exists a unique extension of derivation d : A 9→
Ω1

A/k to a derivation of degree 1 of N-graded k-algebra

d : Ω∗
A/k 9→ Ω∗

A/k (63)

such that
d ◦ d : A 9→ Ω2

A/k is zero. (64)

Proof. According to Proposition 1.22, derivations d∗ : Ω∗
A/k 9→ Ω∗

A/k of
degree 1 are in bijective correspondence with pairs:

(d0 ) a k-linear derivation d0 : A 9→ Ω1
A/k ;

(d1 ) a k-linear map d1 : Ω1
A/k 9→ Ω2

A/k which satisfies the identity

d1(aϕ) = d0a ∧ ϕ + ad1ϕ

Identity (33) is automatically satisfied:

d1ϕ ∧ ϕ + (−1)−1ϕ ∧ d1ϕ = d1ϕ ∧ ϕ − d1ϕ ∧ ϕ = 0 ,

since d1ϕ has degree 2 , and thus commutes with all elements of Ω∗
A/k .

We shall construct d1 as follows. The k-bilinear pairing

A×A 9→ Ω2
A/k, (a0, a1) 79→ da0 ∧ da1 (a0, a1 ∈ A) ,

induces a k-linear map
A⊗A 9→ Ω2

A/k . (65)

Since a0(d∆a1)(d∆a2) is sent by (65) to

da0 ∧ d(a1a2) − d(a0a2) ∧ da1 − d(a0a1) ∧ da2 + d(a0a1a2) ∧ d1
= (a2da0 ∧ da1 + a1da0 ∧ da2)

− (a2da0 ∧ da1 + a0da2 ∧ da1)

− (a1da0 ∧ da2 + a0da1 ∧ da2) = 0 ,

and elements (51) additively span I2
∆ , map (65) vanishes on I2

∆ . Denote the
induced map

Ω1
A/k ' I∆/I2

∆ ↪→ A⊗2/I2
∆ 9→ Ω2

A/k (66)
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by d1 and notice that d1(a0(a1da2)) is the image of a0a1⊗a2 − a0a1a2⊗ 1
under map (65):

d(a0a1) ∧ da2 − d(a0a1a2) ∧ d1 = da0 ∧ (a1da2) + a0da1 ∧ da2

= da0 ∧ (a1da2) + a0 ∧ (a1da2) .

Thus, our d1 : Ω1
A/k 9→ Ω2

A/k satisfies condition (32), and

(d1 ◦ d0)(a) = d1(1⊗ a − a⊗ 1) = d1 ∧ da − da ∧ d1 = 0 ,

which proves the existence of the desired derivation d : Ω∗
A/k 9→ Ω∗

A/k .

The uniqueness follows from Leibniz’ identity combined with condition
(64):

d(a0da1 ∧ · · ·∧ daq) = da0 ∧ da1 ∧ · · ·∧ daq (67)
+ a0d

2a1 ∧ · · ·∧ daq

− a0da1 ∧ d2a2 ∧ · · ·∧ daq + · · ·
= da0 ∧ da1 ∧ · · ·∧ daq .

�

Comment One has d ◦ d = 0 on forms of any degree as follows imme-
diately from formula (67). In particular, (Ω∗

A/k, d) is a cochain complex of
k-modules.

Definition 2.12 We will refer to (Ω∗
A/k, d) as the Kähler-de Rham complex

(or, just the de Rham complex) of a unital commutative k-algebra A. Its
cohomology, H∗

dR(A/k), will be called the de Rham cohomology of A.

De Rham cohomology H∗
dR(A/k) is a very important invariant of alge-

bra A.

32


