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1 Functions

1.1 The concept of a function

1.1.1

A function consists of a pair of sets X and Y , and a relation between the
elements of X and Y such that

for any x ∈ X there is exactly one y ∈ Y related to x . (1)

1.1.2 Notation

General functions are usually denoted by single letters of Latin or Greek
alphabet. A very common notation for a function is f (since it is the first
letter of the word function.)

1.1.3 Terminology

If the function is denoted f , then the set X is referred to as the domain of
f and Y could be called the target of f . For this reason, we shall also refer
to X as the source of f . Notation

f : X −→ Y (2)

shows you in one glimpse that the function is denoted f , its source is X
and its target is Y .

1.1.4 The value of f at x

If x is an element of X , then the unique element y of Y that is related to x
is denoted f (x) and called the value of f on (or at x ).

1.1.5

The rules specifying the value of f at x can be given in many different
ways.

1.1.6 Equality of functions

We say that functions

f : X −→ Y and g : V −→W
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are equal if
X = V, Y = W,

and
f (x) = g(x) for every x ∈ X.

In other words, two functions are equal if they have the same domain, the
same target and take the same values on all all elements of the domain.

1.1.7 Example: the inclusion functions iXY

If X is a subset of Y , then the function with X as its domain, Y as its
target and the values given by

f (x)˜ x (x ∈ X) (3)

is the associated inclusion function. Note that the “rule” determining the
value is common to all such inclusion functions but the two inclusion
functions: for a subset X ⊆ Y and for a subset V of another set W , are
equal if and only if

X = V and Y = W.

1.1.8 The identity functions idX

In the special case when X = Y , the inclusion function is called the identity
function of a set X .

1.1.9 A special case: the empty domain

A special case when the domain is empty merits special attention. In this
case no relation is involved since X has no elements, thus the only piece of
data that one needs in order to specify a function from the empty set to a
set Y is the target, i.e., set Y itself. In particular, there is no more than a
single function

∅ −→ Y (∅ is the standard notation for the empty set).

Such a function exists: it is the inclusion function of ∅ viewed as a subset
of Y .
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1.1.10 The image of a subset under a function

For a subset A of the domain of f , the set formed by the values f (x) for
all x ∈ A ,

f (A)˜ {y ∈ Y | y = f (x) for some x ∈ A}, (4)

is called the image of A under f .

1.1.11 The range of a function

The image f (X) of the domain under f is often called the range of f .

1.1.12 The preimage of a subset under a function

For a subset B of the target of f , the set formed by all x ∈ X such that the
value f (x) belongs to B ,

f−1(B)˜ {x ∈ X | f (x) ∈ B}, (5)

is called the preimage of B under f .

1.1.13

You should think of the image under f and the preimage under f as two
operations on sets which are induced by the function. The notation used
is traditional and logical but you must not confuse f (A) with being the
value of f : here A is a subset of the domain, not an element.

Exercise 1 What is the image of the empty set ∅ under f ?

Exercise 2 What is the preimage of the empty set ∅ under f ?

Exercise 3 Let X and B be subsets of a set Y . Describe the preimage of B under
the inclusion function iXY .

Exercise 4 Is f−1( f (A)
)
= A?

1.1.14 A comment about exercises in the form of a question

You are expected not as much to provide an answer as to provide an
explanation of your answer. Giving an answer without being able to
provide an explanation that is relevant has little value.

Exercise 5 Is f
(

f−1(B)
)
= B?
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1.2 Composition of functions

1.2.1

Given two functions f : X −→ Y and g : Y −→ Z , we can compose them.
The result is the function denoted g ◦ f . Its value at x ∈ X is obtained by
evaluating f first, then evaluating g ,

g( f (x)).

Note that the domain of the composite function g ◦ f is the domain of f
(the function applied first), while the target of g ◦ f is the target of g (the
function applied last).

1.2.2

Note that the rule specifying the value of g ◦ f is applicable to all elements
of the domain of f if the range of g is contained in the domain of f . This is
less restrictive than asking that the target of g equals the domain of f .

You are allowed to compose such functions but you should understand
that in order to do that, you are restricting the domain of f and the target
of g to a common set containing the range of g .

1.2.3

Composition is perhaps the most important operation involving functions.

1.2.4

For a function g : Y → X , one can form both

g ◦ f and f ◦ g.

The first of these composite functions is a function X −→ X , the second
one is a function Y −→ Y .

Exercise 6 Explain why

idY ◦ f = f = f ◦ idX . (6)
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1.3 The inverse function

1.3.1

A function g : Y −→ X is said to be an inverse to f if

g ◦ f = idX (7)

and
f ◦ g = idY . (8)

1.3.2 Uniqueness

If such a function exists, then it is unique. Indeed, suppose h : Y −→ X is
another function that is inverse to f . Then,

g = g ◦ idY = g ◦ ( f ◦ h) = (g ◦ f ) ◦ h = idX ◦ h = h. (9)

1.3.3

In view of its uniqueness, a function that is inverse to f is referred to as
the inverse function and is denoted f−1 . Functions f : X −→ Y for which
such a function exists are said to be invertible.

1.3.4

For a subset B ⊆ Y you must not confuse its preimage f−1(B) with being
the value of the inverse function: here B is a subset of Y , not an element.
Moreover, the inverse function f−1 exists only for invertible functions and
f−1(y) makes sense only when f is invertible. In contrast, the preimage of
a subset B of Y makes sense for any function.

Exercise 7 Let f : X −→ Y be a function. Suppose that a function g : Y −→ X
exists that satisfies (7). Explain why f is “one-to-one”, i.e., it satisfies the following
property

if f (x1) = f (x2) , then x1 = x2 . (10)

1.3.5

Note that condition (10) is equivalently stated as

if x1 , x2 , then f (x1) , f (x2) . (11)
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Exercise 8 Explain why a function f is “one-to-one” if and only if the preimage
of any singleton set B = {y} has no more than a single element.

Exercise 9 Let f : X −→ Y be a function. Suppose that a function g : Y −→ X
exists that satisfies (8). Explain why f is “onto”, i.e., it satisfies the following
property

for any y ∈ Y, there is x ∈ X such that y = f (x) . (12)

Exercise 10 Explain why a function f is “onto” if and only if the preimage of
any nonempty subset B ⊆ Y is not empty.

1.3.6 More elegant terminology

Functions that are “onto” are also said to to be surjective while functions
that are “one-to-one” are said to to be injective.

1.3.7 Bijections

It follows from Exercises 7 and 9 that an invertible function is simulta-
neously injective and surjective. Such functions are said to be bijections
between elements of a set X and of a set Y .

This condition is not only necessary but is also sufficient: if f is bijective,
then the correspondence

y 7−→ the unique x ∈ X such that y = f (x) ,

defines a function inverse to f .

1.4 Functions encountered in Calculus

1.4.1

In one-dimensional Calculus, X and Y are usually subsets of the real line
R . Calculus as taught at American universities and colleges at the freshmen
level reflects the approach and habits that go back several centuries ago. It
is, for example, a common practice to assume by default that the target of
a real valued function is R if it is not explicitly indicated.

1.4.2

If the domain of f is not explicitly indicated, then it is assumed to be the
largest subset of the real line for which the rule determining the value of f
at x makes sense. We shall refer to it as the natural domain of f .
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1.4.3

For example, if one encounters in Calculus a function whose value is given
by the formula

f (x)˜

√
x− 1

x(x + 1)
, (13)

and no information about the domain is given, then one should consider it
as being defined on the set X of real numbers for which the right-hand-side
of (13) is defined. This is the set of those real numbers x for which

x(x + 1) , 0 and
x− 1

x(x + 1)
≥ 0.

One could think of f as the composition g ◦ h of functions

g(x) =
√

x

and
h(x) =

x− 1
x(x + 1)

but the range of h is not contained in the domain of g . The natural domain
of g is [0, ∞) = {x ∈ R | x ≥ 0} while the natural domain of h is the set

{x ∈ R | x , −1, 0}

which is the union of three open intervals

(−∞,−1), (−1, 0) and (0, ∞).

Function h takes positive values on (−1, 0) and nonnegative values on
[1, ∞) . At other points of the domain of h it takes negative values. There-
fore the natural domain of f is the union of the following two intervals

(−1, 0) ∪ [1, ∞).

1.4.4

The above example illustrates the practice common in Calculus. We com-
pose functions g : Y −→ R and f : X −→ R even when they are, strictly
speaking, not composable. In order to define g ◦ f , we determine first those
points of the domain of f , for which the value g( f (x) is defined. They
form the natural domain of g ◦ f .
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From this point of view, one can say that any two real valued functions
with the domains being subsets of the real line can be composed. It can
happen that the domain of such a composite function is very small or even
empty.

Exercise 11 Let a be a real number and f (x) = a−
√

x . What is the domain of
f ◦ f ?

1.4.5 Operations on real valued functions

Given two real valued functions f : X → R and g : X → R with the same
domain X , we define

f + g, f g, f − g and
f
g

(14)

by performing the corresponding operations on the values. Thus, the value
of the function f + g on x is the sum of the values of f and g on x ,

( f + g)(x)˜ f (x) + g(x)

and similarly for thre other operations. The domain of

f + g, , f g and f − g (15)

equals X . The domain of
f
g

(16)

is obtained by removing those x ∈ X where the denominator function
vanishes,

{x ∈ X | g(x) , 0}.

1.4.6

To perform these operations on real valued functions, the common domain
can be an arbitrary set. It does not need to be a subset of the real line. In
Calculus, we apply these operations even when the domains of f and g
differ. The domain of either of the three functions in (15) is understood to
be the intersection of the domains of f and g ,

Domain ( f ) ∩Domain (g) ,

whereas for (16) it is understood to be the intersection of the two domains
from which the points where g vanishes are removed,

Domain
(

f
g

)
= {x ∈ Domain ( f ) ∩Domain (g) | g(x) , 0}.
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1.5 Monotonic functions

1.5.1 Increasing functions

Let X be a set of real numbers. A function f : X → R is said to be increasing
on a subset A ⊆ X if

f (x) < f (x′) whenever a < a′ and a, a′ ∈ A .

1.5.2 Nondecreasing functions

A function f : X → R is said to be nondereasing on a subset A ⊆ X if

f (x) ≤ f (x′) whenever a < a′ and a, a′ ∈ A .

Exercise 12 By analogy, state the definitions of functions that are decreasing
(respectively, nonincreasing) on a subset A of the domain.

Exercise 13 Suppose that I = (a′, a′′) is an interval contained in the domain of
an increasing function f . What is its image under f ?

Exercise 14 How does the answer change if we assume that f is only nondecreas-
ing?

Exercise 15 How does the answer change if f is decreasing?
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2 Limits and neighborhoods

2.1 The intuition about the limit of a function at a point

2.1.1

A typical “definition” of the limit of a function reads like this

A point q ∈ Y is the limit of a function f : X → Y at a point p ∈ X if

f (x) approches q whenever x approaches p. (17)

First, one needs to point out that whatever “x approaches p” means, x is
not allowed to equal p . Secondly, one needs to make precise the meaning
of the phrase:

f (x) approches q whenever x approaches p. (18)

One way of doing that is:

f (x) is as close to q as one wishes whenever x is sufficiently close to p. (19)

This is still not precise but making it precise is not difficult. For this we
need a concept of neighborhoods of a point.

2.1.2 A set equipped with a neighborhood structure

Let X be a set. Suppose that, for every element p ∈ X , somebody specified
a family of subsets Nbhds(p) of X whose members are referred to as
neighborhoods of p . The precise meaning of (19) then becomes clear:

For any neighborhood N of q , there exists a neighborhood M of p,
such that

f (x) ∈ N whenever x ∈ M.
(20)

2.1.3

Recalling that we are supposed to exclude p from those points “sufficiently
close to p”, the precise definition of “q being the limit of f at p” reads:

A point q ∈ Y is the limit of a function f : X → Y at p ∈ X if, for any
neighborhood N of q , there exists a neighborhood M of p, such that

f (x) ∈ N whenever x belongs to M and x , p.
(21)
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2.1.4 Additional comments

In the definition of the limit at a point p the point itself does not need to
belong to the domain of f . More than that, it is clear that if p does belong
to the domain, then we proceed by ignoring the value of f at p . This is the
same as narrowing the domain of f by removing point p from it. We do
this before we look at what f does with neighborhoods of p .

2.1.5

We need just one property from a point p itself in order to be able to talk
about the limit of f at p . If D is a subset of X on which f is defined, then
we assume that

for any neighborhood M of p, there is a point x in it that is in
the domain of f and which is different from p. (22)

In other words, for any neighborhood of p ,

M ∩Domain ( f )

must contain at least one point different from p . If this is so, we say that a
point p of X is a limit point of a subset D ⊆ X .

2.1.6 The definition of the limit made precise

Let f be a function from a subset D of X to a set Y . We assume that both
X and Y are equipped with a neighborhood structure. Let p be a limit
point of D .

A point q ∈ Y is the limit of a function f : X → Y at p ∈ X if, for any
neighborhood N of q , there exists a neighborhood M of p, such that

f (x) ∈ N whenever x belongs to M and x , p.

(23)
We denote this fact by writing

lim
x→p

f (x) = q. (24)

2.1.7 A simple but important observation

The following fact must be stressed: the limit of f at a point p is the limit
of f restricted to D′˜D \ {p} .
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2.1.8

Before proceeding any further, let us record a simple observation about the
limit.

Proposition 2.1 Suppose that (24) holds and D′ is a subset of D such that p is
also a limit point of D′ . Then the restriction of f to D′ has the same limit at p :

lim
x→p

f (x) = lim
x→p

f|D′(x) (25)

Indeed, if N is a neighborhood of q and M is a neighborhood of p
such that

f
(

M ∩ D \ {p}
)
⊆ N,

then obviously also
f
(

M ∩ D′ \ {p}
)
⊆ N

since
M ∩ D′ \ {p} is contained in M ∩ D \ {p}

2.1.9 Terminology

Sometimes we are more interested in knowing whether the limit of f at a
point p exists at all than in determining the actual value of the limit. So,
if there exists a point q ∈ Y such that (24) holds, then we say that f has a
limit at p or, that the limit of f at p exists.

2.1.10 A few warnings

Saying “the limit of a given function at a given point exits” and saying “the
concept of the limit exists” are two different things. The former makes
sense and may be true or may be false. The latter, on the other hand, is
nonsense.

2.1.11

Saying “q is a limit point of a subset E of Y” has very different meaning
from saying “q is the limit of a function f at some point p”.

Exercise 16 Explain the difference.
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2.1.12

Observe also that we use an indefinite article “a” when talking about limit
points of subsets and the definite article “the” when talking about the limits
of functions at various points.

2.2 One-sided limits

2.2.1

For a function defined on a subset D ⊆ R of the real line, and a point
a ∈ R , let

D′˜ {x ∈ D | x < a} and D′′˜ {x ∈ D | a < x}.

The limit at a of f restricted to D′ is called the left limit of f at a , and is
denoted

lim
x→a−

f (x) or lim
x↗a

f (x).

This is one of the two one-sided limits, it is also called the limit-from-below
at a .

2.2.2

The right limit, also called the limit-from-above at a , is defined similarly, as
the limit at at point a of f restricted to D′′ . It is denoted

lim
x→a+

f (x) or lim
x↘a

f (x).

2.2.3

Point a may be a limit point of D but not of D′ or D′′ . In particular,
limx→a f (x) may make sense but not necessarily the left or the right limit,
as the obvious example of a function defined on the interval D = [a, b]
demonstrates: here D′ is empty.

2.2.4

When a is a limit point of both D′ and D′′ , and

lim
x→a

f (x) = c
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exists, then both limx→a− f (x) and limx→a+ f (x) exist and their values are
equal,

lim
x→a−

f (x) = c = lim
x→a+

f (x).

This is an immediate corollary of Proposition 2.1.

2.2.5

Vice-versa, if the one-sided limits exist but are not equal, then the limit
limx→a f (x) does not exist.

2.3 What is expected of a family of neighborhoods?

2.3.1

We made the definition of the limit of a function possible by using the
notion of the families of neighborhoods of p ∈ X and q ∈ Y but we did
not say which families of subsets qualify to be called neighborhoods of the
corresponding points. There are remarkably few things that one needs to
assume about a family of subsets in order that is qualified to serve as the
family of neighborhoods of a point.

2.3.2

We expect that

point p belongs to each of its neighborhoods. (26)

We also expect that

a subset N′ ⊆ X is a neighborhood of p if
it already contains a neighborhood N of p.

(27)

2.3.3

One more condition is normally expected:

the intersection of two neighborhoods N1 ∩ N2 of p is a neighborhood of p .
(28)
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2.4 The neighborhood structure of the real line

2.4.1 Neighborhoods of a point

Let us say first that any open interval I = (a′, a′′) of the real line is declared
to be a neighborhood of every a ∈ I . One does not need to say anything
else, this alone completely determines the neighborhood structure of the real
line.

Indeed, according to Property (27), a subset of the real line N is then
a neighborhood of a if and only if it contains an open interval I whose
member is a .

2.4.2

Such an interval can always to be chosen so that a is at its center. To
describe I one then needs just to specify the distance of the endpoints of I
from a . If that distance is ρ > 0, then

I = (a− ρ, a + ρ). (29)

Exercise 17 Explain why (29) coincides with the set

{x ∈ R | |x− a| < ρ}. (30)

2.4.3

Property (28) is automatically satisfied too. This is so because the intersec-
tion of two open intervals I1 and I2 is either empty or an open interval itself.
If a is a member of both, then their intersection is not empty, therefore it is
an open interval whose member is a .

Thus, if N1 contains an interval I1 while N2 contains an interval I2 ,
and a is a member of both, then N1 ∩ N2 contains open interval I1 ∩ I2
whose member is a .

2.4.4 A few observations

Any neighborhood of a point p on the real line contains other points
beyond p . Indeed, such a neighborhood contains an open interval and
every open interval has infinitely many points and all but one are distinct
from p .
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2.4.5

Given two different points p , q of the real line, there is a neighborhood
M of p and a neighborhood N of q , such that they are disjoint, i.e., they
have no points in common:

M ∩ N = ∅. (31)

This property of the neighborhood structure of the real line is called the
separability (“distinct points can be separated by their neighborhoods”).

Exercise 18 Let ρ = 1
2 |p− q| . Show that the intervals M = (p− ρ, p+ ρ) and

N = (q− ρ, q + ρ) have no points in common.

2.4.6

The separability of the real line has an important consequence. If a function
f : X → R has number b as its limit at a point p , then it cannot have a
different number b as it limit at p .

Indeed, let N and N′ be neighborhoods of b and b′ , respectively, such
that they are disjoint. If

lim
x→p

f (x) = b,

then there is a neighborhood M of p such that

f
(

M \ {p}
)
⊆ N.

If
lim
x→p

f (x) = b′,

then there is a neighborhood M′ of p such that

f
(

M′ \ {p}
)
⊆ N′.

It follows that M ∩M′ is a neighborhood of p such that

f
(

M ∩M′ \ {p}
)

is contained in both N and N′ . Since they have no points in common, the
image of M ∩M′ \ {p} is empty. This is possible only when M ∩M′ \ {p}
is empty, i.e., when M∩M′ has only one point, namely p . This contradicts
the fact that every neighborhood of a point p on the real line has points
other than p .
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2.4.7

Another consequence of separability of the real line is the following corol-
lary of Proposition 2.1.

Theorem 2.2 Let f : D → R be function with the domain D ⊆ X and let D′

and D′′ be two subsets of D, each having p as its limit point. If f has the limit
b′ , when restricted to D′ , and the limit b′′ , when restricted to D′′ , and if

b′ , b′′,

then f has no limit at p .

Indeed, if
lim
x→p

f (x)

exists, then, according to Proposition 2.1 one has

b′ = lim
x→p

f|D′(x) = lim
x→p

f (x) = lim
x→p

f|D′′(x) = b′′

and this contradicts the hypothesis that b′ , b′′ .

2.4.8

I would like you to observe how elegant is the argument that allowed us
to establish this very useful fact. An attempt to demonstrate Theorem 2.2
directly would likely lead into quite a complex reasoning.

You are seeing here how one should be doing analysis: collect various
general observations first about the concepts you are studying, record them
for the future use, and later use them as you use tools—to achieve various
tasks.

The process of “collecting the tools” is essentially where 80% of your
learning process should go.

2.4.9 An example: f (x) = sin 1
x

We shall now demonstrate how powerful is the theorem we established.
The function

f (x) = sin
1
x

(32)

is defined on D = R \ {0} . Consider the following two subsets of D :

D′ =
{

1
π

,
1

2π
,

1
3π

, . . .
}

and D′′ =
{

2
π

,
2

5π
,

2
9π

, . . .
}

.
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The point 0 is a limit point of both. Function (32) when restricted to D′

becomes the constant function

f (x) = 0 (x ∈ D′).

When restricted to D′′ , it becomes the constant function

f (x) = 1 (x ∈ D′′).

In particular,

lim
x→0

f|D′(x) = 0 and lim
x→0

f|D′′(x) = 1.

It follows that
lim
x→0

sin
1
x

does not exist.

Exercise 19 For each of the following subsets D ⊆ R find the set of its limit
points:

(a) D = (a, b) (here and below a < b),

(b) D = (a, b] ,

(c) D = [a, b) ,

(d) D = [a, b] ,

(e) D = (0, 1) ∪ (1, 2) ,

(f) D = [0, 1] ∩ [1, 2] ,

(g) D =
{

1, 1
2 , 1

3 , . . . ,
}

,

(h) D = R \
{

1, 1
2 , 1

3 , . . . ,
}

.

(i) D is the set of all integers Z = {. . . ,−2,−1, 0, 1, 2, . . . } .
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2.4.10 An example: limx→a x2 = a2

Let us assume that a > 0. If N is a neighborhood of a2 , it contains an
interval I = (a′, a′′) such that

0 < a′ < a2 < a′′.

Then
0 <
√

a′ < a <
√

a′′

and since the function f (x) = x2 is increasing on [0, ∞) , the image of the
interval

M =
(√

a′,
√

a′′
)

is contained in I (in fact, is equal to I ). In particular, f (M) ⊆ N . This
shows that

lim
x→a

x2 = a2

for a > 0.

Exercise 20 Modify the above argument for a < 0 .

Exercise 21 Show that limx→0 x2 = 0 .

2.4.11 Functions bounded around a point

We say that a function f : D −→ R is bounded around a point p if there
exists a positive number B > 0 and a neighborhood M of p such that

| f (x)| < B

for all x belonging to M ∩ D .

Exercise 22 Suppose that a real valued function f has a limit at a point p.
Explain why such a function is bounded around p. (You can, if you wish, assume
that the domain of f is a subset of the real line. This will neither make this exercise
easier nor will make it more difficult, however.)

Exercise 23 Suppose that the limit is not zero. Explain why there exists a neigh-
borhood M of p such that

f (x) , 0
(
x ∈ M \ {p}

)
.
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3 Arithmetic operations on real valued functions and
the operation of passing to the limit

3.1 A certain property of arithmetic operations on real numbers

3.1.1 Addition

Suppose that the sum of two real numbers b1 + b2 belongs to an interval

(c′, c′′).

The pairs y1 and y2 of real numbers such that

y1 + y2 ∈ (c′, c′′)

form the region in the plane located strictly between the lines

y1 + y2 = c′ and y1 + y2 = c′′,

see Figure 1 where the two lines are marked thick red.

3.1.2

As one can clearly see from Figure 1, if one takes sufficiently small open
intervals I1 and I2 around points b1 and b2 , the corresponding rectangle

I1 × I2 = {(y1, y2) | y1 ∈ I1 and y2 ∈ I2} (33)

fits entirely inside this region. This means that

y1 + y2 ∈ (c′, c′′)

for all y1 ∈ I1 and y2 ∈ I2 .

Exercise 24 Let b1 and b2 be a pair of real numbers whose sum satisfies the
double inequality

1 < b1 + b2 < 2.

Find open intervals I1 and I2 containing b1 and, respectively, b2 , such that

1 < y1 + y2 < 2

for all y1 ∈ I1 and y2 ∈ I2 .
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y1

y2

y1 + y2 = c′

y1 + y2 = c′′

b1

I1

b2I2

Figure 1: Points inside the region between the red lines correspond to pairs
of points of the real line such that y1 + y2 ∈ (c′, c′′) . Sufficiently small
intervals I1 and I2 around b1 and b2 have the property that their sum
y1 + y2 belongs to (c′, c′′) for all y1 ∈ I1 and y2 ∈ I2 .
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3.1.3 Multiplication

A similar property holds for multiplication. Suppose that the product of
two real numbers b1b2 belongs to an interval

(c′, c′′).

The pairs y1 and y2 of real numbers such that

y1y2 ∈ (c′, c′′)

form the region in the plane located strictly between the curves

y1y2 = c′ and y1y2 = c′′,

see Figure 2.

3.1.4

As one can clearly see from Figure 2, if one takes sufficiently small open
intervals I1 and I2 around points b1 and b2 , rectangle (33) fits entirely
inside the mentioned region which means that

y1y2 ∈ (c′, c′′)

for all y1 ∈ I1 and y2 ∈ I2 .

Exercise 25 Let b1 and b2 be a pair of real numbers whose sum satisfies the
double inequality

2 < b1b2 < 3.

Find open intervals I1 and I2 containing b1 and, respectively, b2 , such that

2 < y1y2 < 3

for all y1 ∈ I1 and y2 ∈ I2 . Consider first the case when b1 and b2 are both
positive, then consider the case when they are both negative.

3.1.5 Division

Exactly the same property holds also for idivision. Suppose that the ratio
of two real numbers b1/b2 belongs to an interval

(c′, c′′).
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y1

y2

y1y2 = c′

y1y2 = c′′

b1

I1

b2I2

Figure 2: Points inside the region between the red curves correspond to
pairs of points of the real line such that y1y2 ∈ (c′, c′′) . Sufficiently small
intervals I1 and I2 around b1 and b2 have the property that their product
y1y2 belongs to (c′, c′′) for all y1 ∈ I1 and y2 ∈ I2 .
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The pairs y1 and y2 of real numbers such that

y1/y2 ∈ (c′, c′′)

form the region in the plane located strictly between the lines

y1/y2 = c′ and y1/y2 = c′′,

see Figure 3.

3.1.6

As one can clearly see from Figure 3, if one takes sufficiently small open
intervals I1 and I2 around points b1 and b2 , rectangle (33) fits entirely
inside the mentioned region which means that

y1/y2 ∈ (c′, c′′)

for all y1 ∈ I1 and y2 ∈ I2 .

Exercise 26 Let b1 and b2 be a pair of real numbers whose sum satisfies the
double inequality

2 < b1/b2 < 3.

Find open intervals I1 and I2 containing b1 and, respectively, b2 , such that

2 < y1/y2 < 3

for all y1 ∈ I1 and y2 ∈ I2 . Consider first the case when b1 and b2 are both
positive, then consider the case when they are both negative.

3.1.7 Subtraction

Exercise 27 State the corresponding property for subtraction of real numbers and
illustrate it by drawing the appropriate picture.

3.1.8 Exponentiation

Later we shall see that this property is also shared by the operation of
exponentiation yy2

1 .
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y1

y2

y1/y2 = c′

y1/y2 = c′′

b1

I1

b2I2

Figure 3: Points inside the region between the red lines correspond to
pairs of points of the real line such that y1/y2 ∈ (c′, c′′) . Sufficiently small
intervals I1 and I2 around b1 and b2 have the property that their ratio
y1/y2 belongs to (c′, c′′) for all y1 ∈ I1 and y2 ∈ I2 .
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3.2 The Limit Laws

3.2.1

Theorem 3.1 Suppose that f1 and f2 are two real valued functions with the
same domain D. Suppose that

lim
x→p

f1(x) = b1 and lim
x→p

f2(x) = b2. (34)

Then
lim
x→p

(
f1(x) + f2(x)

)
= b1 + b2 (35)

and
lim
x→p

(
f1(x) f2(x)

)
= b1b2. (36)

If limx→p f2(x) , 0 , then also

lim
x→p

f1(x)
f2(x)

=
b1

b2
. (37)

3.2.2

Indeed, if (c′, c′′) is an interval containing point b1 + b2 , there exist open
intervals I1 and I2 containing points b1 and b2 such that

y1 + y2 ∈ (c′, c′′)

holds for all y1 ∈ I1 and y2 ∈ I2 , cf. Section 3.1.2.

3.2.3

Since limx→p f1(x) = b1 , there is a neighborhood M1 of p such that

f1(x) ∈ I1 (38)

for all x belonging to M1 ∩ D \ {p} .

3.2.4

Similarly, since limx→p f2(x) = b2 , there is a neighborhood M2 of p such
that

f2(x) ∈ I2 (39)

for all x belonging to M2 ∩ D \ {p} .
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3.2.5

It follows that M1 ∩M2 is the desired neighborhood: for all x belonging
to M1 ∩M2 ∩ D \ {p} , both (38) and (39) hold, and therefore

f1(x) + f2(x) ∈ (c′, c′′).

3.2.6

This completes the demonstration of the Limit Law for Addition. The Limit
Law for Multiplication is demonstrated exactly same way, by replacing
everywhere the sums by the corresponding products.

3.2.7

In the case of division, we first notice that that f2 does not vanish on some
neighborhood of p , cf. Exercise 23. The argument is otherwise exactly the
same as in the cases of addition and multiplication, with the sums being
everywhere replaced by the corresponding ratios.

3.2.8

Note the unifying principle that allowed us to derive the limit laws for the
arithmetic operations involving real numbers: it is the common property
that they share, cf. Sections 3.1.2, 3.1.4 and 3.1.6.
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4 Improper limits

4.1 The extended real line

4.1.1 Infinite intervals

You have already encountered symbols ∞ and −∞ in the notation em-
ployed for infinite open intervals

(a, ∞) ˜ {x ∈ R | a < x}, (−∞, a) ˜ {x ∈ R | x < a}, (40)

and for infinite closed intervals

[a, ∞) ˜ {x ∈ R | a ≤ x}, (−∞, a] ˜ {x ∈ R | x ≤ a}, (41)

4.1.2

What if we treat ∞ and −∞ as actual points of the extended real line? They
are ideal points in the sense that they are not real numbers, they represent
the fact that every neighborhood of every point p of the real line has two
sides—one consisting the points to the right of p , the other one consisting
the points to the left of p .

4.1.3

In the extended real line real numbers form the infinite open interval

(−∞, ∞). (42)

4.1.4 The neighborhood systems of the ideal points

We declare the infinite intervals

(a, ∞] ˜ (a, ∞) ∪ {∞} (43)

to be neighborhoods of ∞ . Likewise, we declare the infinite intervals

[−∞, a) ˜ {−∞} ∪ [−∞, a) (44)

to be neighborhoods of −∞ . This completely determines which subsets of
the extended real line are considered neighborhoods of ∞ or −∞ . Thus, a
subset E of the extended real line is a neighborhood of ∞ if there exists
such a real number a such that E contains all points greater than a .
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Exercise 28 Which subsets E of the extended real line are neighborhoods of −∞?

Exercise 29 Which subsets D ⊆ R of the real line have ∞ as their limit point?
Answer the same question also for −∞ .

4.2 Extended arithmetic

4.2.1 Extended addition and subtraction

We shall extend the operation of addition of real numbers as follows as
follows;

adding or subtracting a real number a to ±∞ yields ±∞ . (45)

We also declare

∞ + ∞ = ∞− (−∞) = ∞ and (−∞) + (−∞) = −∞−∞ = −∞ (46)

but we do not declare the values of

∞−∞, (−∞) + ∞ or ∞ + (−∞) . (47)

4.2.2 Extended multiplication

We shall extend the operation of multiplication of real numbers as follows

multiplying a positive real number a by ±∞ yields ±∞ (48)

while

multiplying a negative real number a by ±∞ yields ∓∞ . (49)

We also declare

∞ ·∞ = (−∞) · (−∞) = ∞ and (−∞) ·∞ = ∞ · (−∞) = −∞ (50)

but we do not declare the values of

0 · ±∞ or ±∞ · 0 . (51)
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4.2.3 Extended division

We shall extend the operation of division of real numbers as follows

dividing ±∞ by a positive real number yields ±∞ (52)

and
dividing ±∞ by a negative real number yields ±∞ (53)

but we do not declare the values of
±∞
±∞

or
e
0

(54)

where e can be any point of the extended real line.

4.3

4.3.1

We shall be viewing real valued functions as functions with the target being
the extended real line [−∞, ∞] , whose range is contained in (−∞, ∞) .

4.3.2

For such functions,
lim
x→p

f (x) = ∞

has the obvious meaning:

for any real number c′ , there exists a neighborhood M of p, such that

c′ < f (x) whenever x belongs to M and x , p.
(55)

4.3.3

Similarly obvious is the meaning of

lim
x→p

f (x) = ∞ ,

namely:

for any real number c′′ , there exists a neighborhood M of p, such that

f (x) < c′′ whenever x belongs to M and x , p.
(56)
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4.3.4 The limits at ±∞ .

For functions defined on subsets of the real line f : D → Y , we can also
talk about the limits at ∞ or −∞ . For example,

lim
x→∞

f (x) = q (57)

has the obvious meaning:

for any neighborhood N of point q , there exists a real number a′ , such
that

f (x) ∈ N whenever x belongs to (a′, ∞) .
(58)

4.3.5

One has, of course, to remember that (57) makes sense only when ∞ is a
limit point of D , the domain of function f .

Exercise 30 State the appropriate definition of

lim
x→−∞

f (x) = q.

4.3.6

For real valued functions f : D → R defined on subsets D ⊆ R of the real
line we can think of 4 more possibilities involving the limits at ∞ or −∞
and the values of the limits being ∞ or −∞ .

Exercise 31 State the appropriate definition of

lim
x→∞

f (x) = −∞.
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5 Continuity

5.1 Continuity at a point

5.1.1

Let X and Y be sets equipped with a neighborhood structure and D be a
subset of X . A function f : D → Y is said to be continuous at a point p ∈ D
if

For any neighborhood N of f (p) , there exists a neighborhood M
of p, such that

f (x) ∈ N whenever x ∈ M.
(59)

5.1.2 Continuity at a limit point

By comparing this with the definition of the limit at p , we observe that, if
p is a limit point of D , then f is continuous at p if and only if

lim
x→p

f (x) = f (p). (60)

5.1.3 Isolated points

What if p ∈ D is not limit point? This happens precisely when

there exists a neighborhood M of p, such that M ∩ D = {p} , (61)

i.e., in that neighborhood p is the only point from D . Such points in D are
said to be isolated.

5.1.4

The image under f of such a neighborhood is the set with just one element,
f (p) , thus it is contained in every neighborhood N of f (p) . In particular,
every function is continuous at every isolated point of its domain. This
shows that failure of being continuous can occur only at points of the
domain which are its limit points.
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5.1.5 Removable discontinuities

There are two basic types of disconuities. The first, when limx→p f (x) does
not exist and the second, when limx→p f (x) exists but is not equal to f (p) .
The second type is called a removable discontinuity because if we modify the
function by changing its value at p , then f becomes continuous at p .

5.1.6

Discontinuities of the first type are said to be nonremovable: no matter how
we define the value of f at p , the resulting function will not be continuous.

5.2 Continuous functions

5.2.1

We say that a function is continuous if it is continuous at every point of its
domain.

5.2.2 The algebra of continuous real-valued functions

It is an immediate consequence of the Limit Laws that the sum and the
product of any two continuous functions D → R is continuous. The set
of continuous functions from D to R , equipped with the operations of
addition and multiplication is denoted C(D) and is called the algebra of
continuous functions on D .

5.2.3

The algebra of continuous functions is an object of fundamental importance
in Mathematics. To be precise, we just encountered the algebra of real-
valued continuous functions. Frequently, one considers the algebra of
complex-valued continuous functions.

5.3 The Composition Limit Law

5.3.1

You saw how the concept of the limit interacts with arithmetic operations
on real-valued functions. Now you will see how it behaves with respect to
the operation of composition of functions.
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5.3.2

Suppose g : D → Y is a function defined on a subset D of X with

lim
x→p

g(x) = q.

Suppose f : E→ Z is a function defined on a subset E of Y which contains
point q .

5.3.3

If p is a limit point of the domain of f ◦ g , which is equal to

g−1(E) = {x ∈ D | g(x) ∈ E},

then we can talk about the limit of f ◦ g at p .

5.3.4

Suppose that f is continuous at q . Thus, given any neighborhood N of
f (q) , there exists a neighborhood M′ of q , such that

f (y) ∈ N whenever y ∈ M′.

Since q is the limit of g at p , there exists a neighborhood M of p such that

g(x) ∈ M′ whenever x ∈ M \ {p}.

In particular,

f
(

g(x)
)
∈ N whenever x ∈ M \ {p}.

5.3.5

We established our last limit law.

Theorem 5.1 If
lim
x→p

= q

and f is continuous at q , then

lim
x→p

f
(

g(x)
)
= f (q)

provided the limit of f ◦ g at p makes sense, i.e., provided p is a limit point of
the domain of f ◦ g.
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6 Differentiability

6.1 Negligible functions

6.1.1

A function ν : D → R is said to be negligible at a point p ∈ D if

ν(x) −→ 0

faster than the distance from x to p when x −→ p . This property, when
expressed in rigorous terms becomes

For any number C > 0 , there is a neighborhood M of p such that

|ν(x)| ≤ C dist(x, p) whenever x ∈ M ∩ D. (62)

6.1.2 Distance functions

The above definition makes sense if the domain D is a subset of a set X
equipped with a distance function.

What is a “distance function”? It is a function whose argument is a pair
of points in X . If X is the real line R ,

distR(x, y) = |x− y|

is a standard distance function. If X is the n -dimensional Euclidean space
Rn ,

distRn(x, y) = ‖x− y‖
where ‖ ‖ is the function on Rn that plays the role of the absolute value
function: ∥∥(a1, . . . , an)

∥∥ =
√

a2
1 + · · ·+ a2

n. (63)

Function (63) is referred to as the norm, or more precisely, the Euclidean
norm on the n -dimensional coordinate space Rn .

6.1.3 Metric spaces

A distance function defined on pairs of points of a set X is supposed
to possess the following properties: the distance from x to y equals the
distance from y to x , i.e.,

dist(x, y) = dist(y, x) ;
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the distance from x to y is a nonnegative real number and it vanishes
precisely when x = y . Finally, given any three points x , y and z , the
distance from x to z is not greater than the sum of the distances from x to
y and from y to z ,

dist(x, z) ≤ dist(x, y) + dist(y, z) (x, y, z ∈ X). (64)

Inequality (64) is called the Triangle Inequality because for the Euclidean
distance it expresses the fact that the length of one side in a triangle in the
Euclidean space does not exceed the sum of lengths of the other two sides.

6.1.4

Any function satisfying above properties is called a distance function on a
set X . A set equipped with a distance function is called a metric space.

6.1.5 Balls

The set consisting of points x in a metric space whose distance to a given
point p does not exceed number r > 0,

B̄r(p) = {x ∈ X | dist(x, p) ≤ r} (65)

is called the ball of radius r with center at p . More precisely, this is a closed
ball of radius r . The open ball is obtained by taking the points x whose
distance is less than r ,

Br(p) = {x ∈ X | dist(x, p) < r}. (66)

6.1.6 The neighborhood structure of a metric space

Every metric space has a very natural neighborhood structure if we declare
the balls with center at p to be neighborhoods of p . In particular, a subset
N of a metric space is a neighbohood of a point p if it contains a ball with
center at p . Whether the ball is open or closed does not matter: an open
ball of radius r is contained in the open ball of radius r and at the same
time contains closed balls of radius less than r .

Exercise 32 Show that the sum of functions negligible at a point p is negligible
at p .

Exercise 33 Let f be a function bounded at a point p and ν be negligible at p .
Show that f ν is negligible at p .

38



6.1.7 Lipschitz functions

We say that a function f : X → Y drom a metric space X to a metric space
Y has the Lipschitz property at a point p if there exists a constant K > 0
and a neighborhood M of p such that

distY( f (x), f (p)) ≤ K distX(x, p) (67)

for all x in M .

Exercise 34 Show that the composition ν ◦ g is negligible at p if g has the
Lipschitz property at p and ν is negligible at q = g(p) .

6.2 Differentiablity at a point

6.2.1

Let f : D → R be a function defined on a subset of the real line. We say
that it is differentiable at a if D is a neighborhood of a and there exists a
number m such that

ν(x)˜ f (a) + m(x− a) (68)

is negligible at a .

Exercise 35 Show the function

f (x) = l(x− a)

is negligible at a if and only if l = 0 . Deduce from it that the number m for
which function (68) is neglibible is unique.

6.2.2 The derivative at a

That unique number is called the derivative of f at a and is denoted f ′(a) .

Exercise 36 Show that a function differentiable at a point a of the real line has the
Lipschitz Property for any K > | f ′(a)| . Derive from this that ν ◦ g is negligible
at a if g is diferentiable at a and ν is negligible at b = g(a) .
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