Solving Cubic Equations
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A general cubic equation:
ax’ +bx* +cx+d =0 (a#0) (1)
reduces, after one divides both sides by a, to the equivalent equation
B4+ 4x+d =0 (2)
where
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Note that x> 4 b'x? is equal to the cube of x 4 %/ up to a linear term in x:
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Thus we obtain
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after substituting
Ei=x+— (5)

and setting
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The reduction of the general cubic equation, (1), to the equation without a quadratic
term:
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was an easy part. In order to solve equation (7), we represent £ as the sum of two
new unknowns

E=u+v (8)

Note that
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precisely when u and v satisfy equality
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Then equation (7) becomes
w+vi4+d"=0. (10)

Let us multiply both sides of equation (10) by u’ and use equality (9). What we get is
the following particularly simple equation in u of degree é6:
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which is a quadratic equation in #>. Due to symmetry between u and v we can select
u? to be
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where we put

Then, at least formally,



and

1
V= \3/ —? — \/Z, (16)
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and finally

Now, one has to use the above formulae very cautiously, especially the last one.
If we exclude the case ¢’ = 0 which renders equation (7) trivial:

E34+d" =0, (18)

then any u and v satisfying condition (9) are nonzero. In particular, u> and v* are
nonzero. A nonzero (complex) number, or more generally an element of any field in
which any cubic equation has a solution, has exactly three different roots.

Let ugp be any cubic root of

5 +VA. (19)

The remaining two roots are
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where ( is a nontrivial, i.e., not equal 1, cubic root of 1. There are two completely
symmetric choices for {:
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They correspond to the two possible choices for the square root of —3. It does not
depend which choice we make. If we choose one to be { then the otheris { !
Having discussed all three choices for the cubic root of (19), the corresponding

three choices for the cubic root of
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The final result is this complete set of solutions of the original equation (1):
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where u is an arbitrarily chosen cubic root of (19),
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Note that the number of possible choices for uy is 6, not 3, in general: two choices
for the square root of A, assuming A is nonzero, and three choices for the cubic root
of (19) when the ¢” is nonzero.

Now, it is important to understand that any of these six choices will produce all
three roots of equation (1). As we have seen, any particular choice assigns labels o, 1,
and 2 to these roots, but when we move through all 6 choices for ug, the labels o, 1,
and 2, are assigned to the roots differently each time!

You are seeing here the Galois group of a general cubic equation in action!

It would take us too far to attempt here an introduction to Galois Theory. Let
me just say that the Galois group of a general cubic polynomial acts as the group
of all permutations of the set of roots {xg,x1,x2}, and is therefore icomorphic to
the symmetric group S3 that you have encountered in your Introduction to Abstract
Algebra.



