
Solving Cubic Equations
M W

A general cubic equation:

ax3 +bx2 + cx+d = 0 (a 6= 0) (1)

reduces, after one divides both sides by a, to the equivalent equation

x3 +b′x2 + c′x+d′ = 0 ()
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Thus we obtain
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The reduction of the general cubic equation, (1), to the equation without a quadratic
term:

ξ
3 + c′′ξ +d′′ = 0 ()

1



was an easy part. In order to solve equation (), we represent ξ as the sum of two
new unknowns

ξ = u+ v. ()

Note that

ξ
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precisely when u and v satisfy equality
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Then equation () becomes
u3 + v3 +d′′ = 0. (1)

Let us multiply both sides of equation (1) by u3 and use equality (). What we get is
the following particularly simple equation in u of degree :
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which is a quadratic equation in u3. Due to symmetry between u and v we can select
u3 to be
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where we put
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Then, at least formally,
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Now, one has to use the above formulae very cautiously, especially the last one.
If we exclude the case c′′ = 0 which renders equation () trivial:

ξ
3 +d′′ = 0, (1)

then any u and v satisfying condition () are nonzero. In particular, u3 and v3 are
nonzero. A nonzero (complex) number, or more generally an element of any field in
which any cubic equation has a solution, has exactly three different roots.
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The remaining two roots are

u1 = ζ uo and u2 = ζ
2u0 = ζ

−1u0 ()

where ζ is a nontrivial, i.e., not equal 1, cubic root of 1. There are two completely
symmetric choices for ζ :
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They correspond to the two possible choices for the square root of −3. It does not
depend which choice we make. If we choose one to be ζ then the other is ζ−1.

Having discussed all three choices for the cubic root of (1), the corresponding
three choices for the cubic root of
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The final result is this complete set of solutions of the original equation (1):
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where u0 is an arbitrarily chosen cubic root of (1),
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Note that the number of possible choices for u0 is , not , in general: two choices
for the square root of ∆, assuming ∆ is nonzero, and three choices for the cubic root
of (1) when the c′′ is nonzero.

Now, it is important to understand that any of these six choices will produce all
three roots of equation (1). As we have seen, any particular choice assigns labels , 1,
and  to these roots, but when we move through all  choices for u0, the labels , 1,
and , are assigned to the roots differently each time!

You are seeing here the Galois group of a general cubic equation in action!
It would take us too far to attempt here an introduction to Galois Theory. Let

me just say that the Galois group of a general cubic polynomial acts as the group
of all permutations of the set of roots {x0,x1,x2}, and is therefore icomorphic to
the symmetric group S3 that you have encountered in your Introduction to Abstract
Algebra.




