Final Exam (Solutions)

May 11, 2011

1. Classify the group $G = (\mathbb{Z} \times \mathbb{Z})/\langle (5,6) \rangle$ according to the *Fundamental Theorem of Theory of Finitely Generated Abelian Groups*.

Let $\pi: \mathbb{Z} \times \mathbb{Z} \to G$ be the quotient map and $\iota: \langle (1,1) \rangle \to \mathbb{Z} \times \mathbb{Z}$ be the inclusion map. We will show that $\phi = \pi \circ \iota$ is an isomorphism which means that G is infinite cyclic. Indeed, $\langle (1,1), (5,6) \rangle$ contains both (1,0) and (0,1):

$$(1,0) = 6 \cdot (1,1) - (5,6)$$
 and $(0,1) = -5 \cdot (1,1) + (5,6)$

which generate $\mathbb{Z} \times \mathbb{Z}$, and thus $\langle (1,1), (5,6) \rangle = \mathbb{Z} \times \mathbb{Z}$. It follows that ϕ is surjective. It is obviously injective, since $\langle (1,1) \rangle \cap \langle (5,6) \rangle = \{(0,0)\}$.

2. Show that the rings $2\mathbb{Z}$ and $3\mathbb{Z}$ are not isomorphic.

Any ring isomorphism is an isomorphism of the corresponding additive groups. Both $2\mathbb{Z}$ and $3\mathbb{Z}$ are infinite cyclic, and an isomorphism between $2\mathbb{Z}$ and $3\mathbb{Z}$ must take 2 to a generator of $3\mathbb{Z}$, i.e. to 3 or -3. In particular, 4 = 2 + 2 would be sent to either 6 = 3 + 3, or -6 = -3 + (-3) instead of $9 = (\pm 3)^2$. Thus, none of the two isomorphisms of the additive groups is a homomorphism of multiplicative semigroups.

3. Let

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 5 & 8 & 7 & 6 & 2 & 3 & 4 \end{pmatrix} \quad \text{and} \quad \beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 5 & 3 & 7 & 6 & 1 & 8 & 4 \end{pmatrix}$$
 (1)

Find $\sigma \in S_8$ such that $\sigma \circ \alpha = \beta \circ \sigma$.

One has $\alpha = (2\ 5\ 6)(3\ 8\ 4\ 7)$ and $\beta = (4\ 7\ 8)(1\ 2\ 5\ 6)$. It follows that if we put

$$\sigma = \left(\begin{array}{cccccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 1 & 2 & 4 & 7 & 5 & 6 \end{array}\right)$$

then $\sigma \circ \alpha \circ \sigma^{-1} = \beta$.

4. Let α be the permutation defined in formula (1) above. Find α^{2011} .

Permutation α is the product of disjoint cycles $\lambda = (2\ 5\ 6)$ and $\mu = (3\ 8\ 4\ 7)$. Hence

$$\alpha^{2011} = \lambda^{2011} \mu^{2011} = \lambda \mu^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 5 & 7 & 8 & 6 & 2 & 4 & 3 \end{pmatrix}$$

in view of the fact that $2011 = 1 \mod 3$ and $2011 = -1 \mod 4$.

5. Find the order of the permutation $\sigma = (3\ 11\ 5)(10\ 5\ 4\ 3\ 2\ 11\ 6)(3\ 5\ 11)$ in S_{11} .

Note that $(3\ 5\ 11) = (3\ 11\ 5)^{-1}$, so σ is a conjugate of a cycle of length 7, thus is a cycle iteslf and its order equals its length, i.e. 7.

6. Let G be a group. We say that G-sets X and X' are *isomorphic* if there exists a bijection $f: X \to X'$ such that $f(g \cdot x) = g \cdot f(x)$ for any $g \in G$ and $x \in X$. Prove that the orbit Gx of any element $x \in X$ is isomorphic to G/G_x .

The obvious map $\phi: G \to X$, given by $g \mapsto g \cdot x$, has the desired property and is surjective. One has $g \cdot x = g' \cdot x$ precisely if $g^{-1}g' \in G_x$, i.e., $\phi(g)$ depends only on the coset $[g] = gG_x$, and the induced map $f: G/G_x \to Gx$, where $f([g]) = g \cdot x$, is a desired isomorphism.

7. Let *X* be a *G*-set and $\mathscr{O} \subseteq X$ be any orbit. Prove that $|\mathscr{O}|$ divides |G| if *G* is finite.

The assertion of Problem 6 implies that, for any $x \in \mathcal{O}$, one has $|\mathcal{O}| = |G/G_x| = |G:G_x|$, and the index of any subgroup of G divides the order of G if G is finite (Lagrange's Theorem).

8. Prove that any subgroup $H \subset G$ of index 2 is normal.

 $G \setminus H$ is the union of left cosets distinct from H and also the union of right cosets distinct from H. Since index of H in G is 2, $G \setminus H$ consists of a single left, and of a single right coset. Thus, every left coset is a right coset and vice-versa, i.e., H is normal in G.

9. Prove that any action of a group G of order 11 on a set X with 2011 elements must have at least 9 fixed points.

Set X is the union of disjoint orbits. By Problem 7, $|\mathcal{O}|$ divides |G| = 11, so equals 1 or 11. Orbits of cardinality 1 correspond to fixed points. Denote by m the number of orbits having 11 elements. It follows that $2011 = |X| = 11m + |Fix_G(X)|$ and, since $11m \le 2011$ and the largest multiple of 11 less or equal 2011 is 2002, we conclude that $|Fix_G(X)| \ge 2011 - 2002 = 9$.

- **10.** Mark each of the following **Y** (Yes, it's true) or **N** (No, it's false).
- **N a.** A group G is abelian iff every subgroup of G is normal.
- **N b.** A group G/N is abelian iff the commutator subgroup [G,G] contains N.
- **N c.** The quotient group \mathbb{C}/\mathbb{Z} has infinitely many elements of order 10.
- **N d.** A group G is simple iff G has no nontrivial subgroups.
- **Y e.** Any homomorphism $\phi: A_n \to G$ into a group of order 4 is trivial.
- **Y f.** If $H \subset S_n$ is a proper subgroup of index less than n, then $H = A_n$.
- **N g.** A positive integer n divides the order of a finite group G iff |g| = n for some $g \in G$.
- **Y h.** Every congruence relation on a group G is of the form: $a \sim b$ iff $ab^{-1} \in N$ for some normal subgroup $N \subseteq G$.
- **Y** i. If $\phi: G \to H$ is a homomorphism of finite groups, then the order of the image, $\phi(G)$, divides gcd(|G|, |H|).
- **Y j.** If $\phi \circ \psi$ is an isomorphism, then ϕ is an epimorphism and ψ is a monomorphism.
- **N k.** Every homomorphism ϕ can be expressed as $\phi = \pi \circ \psi \circ \iota$ where ι is a monomorphism, ψ is an isomorphism, and π is an epimorphism.
- **Y** I. An ideal J in a ring R with 1 equals R iff $1 \in J$.
- **N m.** A subring of a noncommutative ring is noncommutative.
- **n.** A quotient ring of a noncommutative ring is noncommutative.
- **Y o.** A commutative ring R with 1 is a field iff the only ideals in R are 0 and R.
- **Y p.** The quotient R/J of a commutative ring with 1 is a field iff J is a maximal ideal (i.e., J and R are the only ideals containing J).