Structure of a Linear Operator

May 7, 2009

1 Where to look for invariant subspaces of a linear operator? Let $T: V \rightarrow V$ be a linear operator. If $S: V \rightarrow V$ is another operator and T commutes with S, i.e., if

$$
\begin{equation*}
[S, T]:=S T-T S=0, \tag{1}
\end{equation*}
$$

then both the range, $\mathrm{R}[S]$, and the eigenspaces,

$$
\begin{equation*}
\mathrm{E}_{\lambda}[S]:=\{v \in V \mid S v=\lambda v\} \tag{2}
\end{equation*}
$$

are T-invariant for any $\lambda \in F$.
Indeed, if $v \in \mathrm{R}[S]$, then $v=S u$ for some $u \in V$ and

$$
T v=T(S u)=(T S) u=(S T) u=S(T u) \quad \in \mathrm{R}[S] .
$$

Similarly, if $v \in \mathrm{E}_{\lambda}[S]$, then

$$
S(T v)=(S T) v=(T S) v=T(S v)=T(\lambda v)=\lambda T v,
$$

i.e., $T v$ is a λ-eigenvector for S.

2 Projections Even better if one can find a projection ${ }^{1} P: V \rightarrow V$ which commutes with T. For a projection one has the direct sum decomposition

$$
\begin{equation*}
V=\mathrm{N}[P] \oplus \mathrm{R}[P] \tag{3}
\end{equation*}
$$

and both the null space and the range of P are T-invariant.
Verification of (3). For any $v \in V$, one has

$$
v=(v-P v)+P v=(I-P) v+P v
$$

and

$$
P(v-P v)=P v-P^{2} v=P v-P v=0
$$

shows that $(I-P) v \in \mathrm{~N}[P]$. Vice-versa, if $v \in \mathrm{~N}[P]$, then $v=(I-P) v$ and hence

$$
\mathrm{N}[P]=\mathrm{R}[I-P] \quad \text { and } \quad \mathrm{R}[P]=\mathrm{N}[I-P] .
$$

It follows that if $v \in \mathrm{~N}[P] \cap \mathrm{R}[P]=\mathrm{N}[P] \cap \mathrm{N}[I-P]$, then

$$
v=(I-P) v+P v=0+0=0
$$

This completes the verification of (3).
So, the next question is
3 Where to look for operators commuting with a given operator? Let us begin by observing that if S and S^{\prime} commute with T, then $S+S^{\prime}$ and $S S^{\prime}$ do. ${ }^{2}$ In particular, for any polynomial $f(x) \in F[x]$,

$$
\begin{equation*}
f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \quad\left(a_{i} \in F\right) \tag{4}
\end{equation*}
$$

T commutes with

$$
f(T):=a_{n} T^{n}+\cdots+a_{1} T+a_{0} I
$$

[^0]4 The annihilator ideal (of an operator) For any operator $T \in \mathcal{L}(V)$, the set of polynomials annihilating T,

$$
\begin{equation*}
\operatorname{ann} T:=\{f(x) \in F[x] \mid f(T)=0\} \tag{5}
\end{equation*}
$$

is closed wit respect to addition and multiplication by any polynomial in $F[x]$. Such subsets are called ideals (in the ring of polynomials, $F[x]$).

If V is finite dimensional, say of dimension n, then the ring of all linear operators $\mathcal{L}(V)$ is of dimension n^{2}. In particular, $n^{2}+1$ elements of $\mathcal{L}(V)$:

$$
I, T, \ldots, T^{n^{2}}
$$

must be linearly dependent, i.e., there must exist $a_{i} \in F$, not all zero, such that

$$
a_{n} T^{n}+\cdots+a_{1} T+a_{0} I=0
$$

which shows that the annihilator ideal of any operator on a finite dimensional space contains at least one nonzero polynomial.

A celebrated theorem due to Cayley and Hamilton states that the characteristic polynomial of T,

$$
\begin{equation*}
\phi_{T}(x)=\operatorname{det}(T-x I), \tag{6}
\end{equation*}
$$

which is of degree $n=\operatorname{dim} V$, belongs to ann T but we shall not need this classical result of Linear Algebra.

5 Principal ideals For any polynomial $g(x)$, the set of polynomials $f(x)$ divisible by $g(x)$,

$$
\begin{equation*}
(g(x)):=\{f(x)=\rho(x) g(x) \mid \text { for some } \rho(x) \in F[x]\} \tag{7}
\end{equation*}
$$

is obviously an ideal. Such ideals are called principal. It immediately follows from the definition that two principal ideal $(g(x))$ and $(h(x))$ are equal if and only if $h(x)$ is divisible by $g(x)$ and $g(x)$ is divisible by $g^{\prime}(x)$, which is possible precisely when $h(x) / g(x)$ is an invertible polynomial, i.e., a nonzero constant (polynomial) $c \in F$. If

$$
g(x)=b_{m} x^{m}+\cdots+b_{1} x+b_{0}
$$

is a polynomial of exactly degree m, then the polynomial

$$
\begin{equation*}
g_{0}:=x^{m}+\frac{b_{m-1}}{b_{m}} x^{m-1}+\cdots+\frac{b_{1}}{b_{m}} x+\frac{b_{0}}{b_{m}} \tag{8}
\end{equation*}
$$

generates the same ideal as $g(x)$ does:

$$
\begin{equation*}
(g(x))=\left(g_{0}(x)\right) . \tag{9}
\end{equation*}
$$

Polynomials with the leading coefficients equal to 1 are called monic. Because of (9) it is often assumed that a generator of a principal ideal is monic. This is convenient because for monic polynomials, the ideals are equal if and only if the generating polynomials are equal:

$$
\left(g_{1}(x)\right)=\left(g_{2}(x)\right) \quad \text { if and only if } \quad g_{1}(x)=g_{2}(x)
$$

6 The minimal polynomial (of an operator) It is a remarkable property of the ring of polynomials that every ideal, J, in $F[x]$ is principal. This is a very special property shared with the ring of integers \mathbb{Z}.

Thus also the annihilator ideal of an operator T is principal, hence there exists a (unique) monic polynomial $p_{T}(x)$ that generates ann T when ann T is not zero, and the latter is the case for any operator on a finite dimensional vector space.

This monic polynomial is unique, see Sect. 5 , and is referred to as the minimal polynomial of operator T.

7 Let $f(x)$ be any nonzero polynomial that annihilates T. We know from Sect. 4 that, for every operator on a finite dimensional vector space, such polynomials exist.

Suppose that $f(x)$ can be factored

$$
\begin{equation*}
f(x)=g(x) h(x) \tag{10}
\end{equation*}
$$

into the product of relatively prime polynomials $g(x)$ and $h(x)$. The latter means that the only common divisor of both can be a constant nonzero polynomial. In this case, the ideal generated by $g(x)$ and $h(x)$,

$$
\begin{equation*}
(g(x), h(x)):=\{\rho(x) g(x)+\sigma(x) h(x) \mid \rho(x), \sigma(x) \in F[x]\}, \tag{11}
\end{equation*}
$$

being principal, must coincide with $(1)=F[x]$. Thus, there exist polynomials $r(x)$ and $s(x)$ such that

$$
1=r(x) g(x)+s(x) h(x) .
$$

In particular,

$$
\begin{equation*}
I=r(T) g(T)+s(T) h(T) . \tag{12}
\end{equation*}
$$

Denote operator $r(T) g(T)$ by P. It follows from (12) that $s(T) h(T)=I-P$ and

$$
\begin{aligned}
P & =P I=P(P+(I-P))=P^{2}+P(I-P)=P^{2}+(r(T) g(T))(s(T) h(T)) \\
& =P^{2}+r(T) g(T) h(T) s(T)=P^{2}+r(T) f(T) s(T) \\
& =P^{2}
\end{aligned}
$$

In other words, P is a projection and, being polynomial in T, commutes with T.
Using P we obtain, as was explained in Sect. 2, a decomposition of V into the direct sum

$$
\begin{equation*}
V=V_{1} \oplus V_{2} \tag{13}
\end{equation*}
$$

of T-invariant subspaces

$$
V_{q}:=\mathrm{N}[P] \quad \text { and } \quad V_{2}:=\mathrm{R}[P]
$$

as in (3).
Denote by $T_{1}: V_{1} \rightarrow V_{1}$ the restriction of T to V_{1}, and by T_{2}, the corresponding restriction of T to V_{2}. Note that if we decompose any vector $v \in V$ as the sum $v_{1}+v_{2}$ for $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$, then

$$
T v=T\left(v_{1}+v_{2}\right)=T v_{1}+T v_{2}=T_{1}\left(v_{1}\right)+T_{2}\left(v_{2}\right) .
$$

It is common to say in this case that operator T decomposes into a direct sum of operators $T_{1}: V_{1} \rightarrow V_{1}$ and $T_{2}: V_{2} \rightarrow V_{2}$. We express this by writing

$$
\begin{equation*}
T=T_{1} \oplus T_{2} . \tag{14}
\end{equation*}
$$

Since $v=P v$ for any $v \in \mathrm{R}[P]=V_{2}$, we have

$$
\begin{equation*}
h(T) v=h(T) P v=(h(T) r(T) g(T)) v=(r(T) g(T) h(T)) v=r(T)(f(T) v)=0 \tag{15}
\end{equation*}
$$

for $v \in V_{2}$. And since $\mathrm{N}[P]=\mathrm{R}[I-P]$ and $I-P$ is a projection as well, we have likewise

$$
\begin{equation*}
g(T) v=0 \tag{16}
\end{equation*}
$$

for $v \in V_{1}$. Since $g\left(T_{1}\right)$ is the restriction of $g(T)$ to V_{1} and $h\left(T_{2}\right)$ is the restriction of $h(T)$ to V_{2}, formula (16) means that polynomial $g(x)$ annihilates operator T_{1} while formula (15) means that $h(x)$ annihilates operator T_{2}.

We establieshed the following important result

8 Operator Decomposition Theorem Let $f(x)$ be any polynomial that annihilates operator $T: V \rightarrow$ V. Then, for any factorization (10) of $f(x)$ into a product of two relatively prime polynomials $g(x)$ and $h(x)$, there exists a decomposition of T into a direct sum (14) such that

$$
g(x) \text { annihilates } T_{1} \quad \text { and } \quad h(x) \text { annihilates } T_{2} .
$$

By applying this theorem several times, we obtain also the following corollary.
9 Corollary Let $f(x)$ be any polynomial that annihilates operator $T: V \rightarrow V$. Then, for any factorization of $f(x)$ into a product of pairwise relatively prime polynomials,

$$
\begin{equation*}
f(x)=g_{1}(x) \cdots g_{r}(x) \tag{17}
\end{equation*}
$$

there exists a decomposition of T into a direct sum

$$
\begin{equation*}
T=T_{1} \oplus \cdots \oplus T_{r} \tag{18}
\end{equation*}
$$

corresponding to a decompostion of vector space V into a direct sum of certain T-invariant subsapces,

$$
V={ }_{1} \oplus \cdots \oplus V_{r}
$$

such that

$$
g_{1}(x) \text { annihilates } T_{1}, \ldots, g_{r}(x) \text { annihilates } T_{r} .
$$

10 Primary decomposition Every nonzero polynomial, (4), admits a factorization

$$
\begin{equation*}
f(x)=a_{n}\left(p_{1}(x)\right)^{m_{1}} \cdots\left(p_{r}(x)\right)^{m_{r}} \tag{19}
\end{equation*}
$$

for a certain number of distinct irreducible monic polynomials $p_{i}(x)$. Factorization (19) is unique in the sense that the irreducible polynomials, $p_{i}(x)$, their number, r, and their exponents, m_{i}, are determined by $f(x)$ uniquely (up to permutation of factors in (19)). This is the so called primary decomposition of a polynomial $f(x)$.

Any two primary factors $\left(p_{i}(x)\right)^{m_{i}}$ and $\left(p_{j}(x)\right)^{m_{j}}$ corresponding to distinct $p_{i}(x)$ and $p_{j}(x)$ are relatively prime.

If $f(x)$ annihilates operator T we can apply Corollary 9 to obtain the corresponding decomposition of operator T such that each T_{i} is annihilated by the corresponding primary factor $\left(p_{i}(x)\right)^{m_{i}}$ of the primary decomposition of polynomial $f(x)$.

It is not hard to see that if we disregard that some V_{i} may be zero subspaces, the obtained decomposition, (18), of operator T will not depend on the initial choice of $f(x)$! This follows from the fact that the annihilator ideal, ann T, is generated by a unique monic polynomial, namely by the minimal polynomial of operator T, see Sect. 6 above.

11 This is as much as the method of factorization of a polynomial that annihilates T can yield. What remains to be done is to describe the structure of the "primary" components T_{1}, \ldots, T_{r}.

As a minimum we should know all the irreducible polynomials with coefficients in a given field of scalars F. For general fields this may be a very complicated task.

Fortunately, there are fields where all irreducible polynomials are known and their structure is as simple as possible.

The best in this regard are so called algebraically closed fields.

12 Algebraically closed fields Any polynomial of degree exactly 1 is always automatically irreducible. This follows from the fact that if it were reducible the degrees of its nontrivial factors would have to be less than 1 and greater than 0 which is clearly not possible as the degrees are integers.

A field F is said to be algebraically closed if only polynomials of degree 1 are irreducible. For example, the field of complex numbers, \mathbb{C}, is algebraically closed while the field of real numbers, \mathbb{R}, is not. Over \mathbb{R}, a polynomial is irreducible if it is either of degree 1 , or of degree 2 ,

$$
a x^{2}+b x+c,
$$

with no real roots (i.e., when $b^{2}-4 a c<0$).
13 The primary decomposition of an operator (algebraically closed field case) Let us assume that the scalar field F be algebraically closed. The primary decomposition of any monic nonzero polynomial $f(x)$ has the form

$$
\begin{equation*}
f(x)=\left(x-\lambda_{1}\right)^{m_{1}} \cdots\left(x-\lambda_{r}\right)^{m_{r}} \tag{20}
\end{equation*}
$$

where $\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$ is the set of all distinct roots of $f(x)$, and exponents m_{1}, \ldots, m_{r} are their multiplicities.

Since $\left(x-\lambda_{r}\right)^{m_{r}}$ annihilates the corresponding primary component, T_{i}, of operator T, we know that each such component has the form

$$
\begin{equation*}
T_{i}=\lambda_{i} I+N_{i} \tag{21}
\end{equation*}
$$

where

$$
N_{i}^{m_{i}}=0
$$

Operators whose certain power is zero are called nilpotent. An operator is nilpotent if it is annihilated by a monomial.

Thus the only task left in the case when the scalar field is algebraically closed is to describe the structure of a nilpotent operator. And this can be done in exactly the same way for all fields.

14 Nilpotent operators Over any field F, an operator $n: V \rightarrow V$ with the matrix

$$
\left(\begin{array}{cccc}
0 & 1 & & \tag{22}\\
& 0 & \ddots & \\
& & \ddots & 1 \\
& & & 0
\end{array}\right)
$$

in some basis is nilpotent. We will call such operators nilpotent cells of size $n=\operatorname{dim} V$.
15 Nilpotent Operator Structure Theorem Any nilpotent operator N on a finite dimensional vector space is the direct sum of nilpotent cells. In other words, for every nilpotent operator, there exists a basis β in which its matrix $[N]_{\beta}$ is the block diagonal matrix with blocks being matrices (22) of varying sizes.

This is not difficult to prove but requires a rather careful analysis.
As a corollary, we obtain the following classical result

16 Jordan cell decomposition of an operator An operator T on a finite dimensional vextor space V is called a Jordan cell if it is of the form

$$
\lambda I+N
$$

for some $\lambda \in F$ and a nilpotent cell N.
Equivalently, T is a Jordan cell if it admits a basis β in which its matrix $[T]_{\beta}$ has the form

$$
\left(\begin{array}{llll}
\lambda & 1 & & \tag{23}\\
& \lambda & \ddots & \\
& & \ddots & 1 \\
& & & \lambda
\end{array}\right)
$$

17 Jordan Canonical Form Theorem Every operator T on a finite dimensional vector space V over an algebraically closed field is a dirct sum of Jordan cells. in other words, T admits a basis β in which its matrix $[T]_{\beta}$ is the block-diagonal matrix with diagonal blocks being of the form (23).

Scalars λ are all the possible eigenvalues of T, the size an number of cells can vary. The sum of their sizes, of course, equals $\operatorname{dim} V$.

[^0]: ${ }^{1}$ A linear operator $P: V \rightarrow V$ is called a projection if $P^{2}=P$.
 ${ }^{2}$ Verify that! It is straightforwrd to do that.

