Homework 6
March 2, 2012

The fiber relation For a map between sets \(f: X \to Y \) define its fiber equivalence relation on \(X \) by

\[x \sim_f x' \quad \text{if} \quad f(x) = f(x') \quad (x, x' \in X). \quad (1) \]

We shall denote the corresponding subset of \(X \times Y \) by \(K_f: \]

\[K_f := \{ (x, x') \in X \times X \mid f(x) = f(x') \}. \]

Factorization of maps We say that a map \(g: X \to Z \) factorizes through a map \(f: X \to Y \), if there exists a map \(e: Y \to Z \), such that \(g = e \circ f \). (2)

We say that \(g \) factorizes through \(f \) uniquely, if there exists a unique map \(e: Y \to Z \) which satisfies (2).

1. Suppose that \(f: X \to Y \) is surjective. Show that there exists no more than one map \(e: Y \to Z \) satisfying (2).

2. Suppose that \(g \) factorizes through \(f \). Show that, if the image of \(g \) has more than one element and \(f \) is not surjective, then factorization in (2) is not unique, i.e., there exist \(e \neq e' \) such that \(e \circ f = g = e' \circ f \).

3. Show that \(g \) factorizes through \(f \) if and only if \(K_f \subseteq K_g \).

A corollary and a few comments As a corollary, we obtain that \(g \) factorizes uniquely through \(f \) if and only if

\[K_f \subseteq K_g \quad \text{and} \quad f \text{ is surjective.} \]

In this case we also say that map \(g \) passes to \(Y \) or, equivalently, that map \(g \) induces a map \(Y \to Z \). Notation for this unique induced map \(Y \to Z \) is often derived from the notation used for the map \(X \to Z \). If the latter is denoted \(g \), then \(\tilde{g} \), \(\bar{g} \), or \(\hat{g} \), is frequently used to denote the induced map \(Y \to Z \).

4. Consider arbitrary maps \(f: X \to Y \) and \(e: Y \to Z \), and let \(g := e \circ f \).

Show that

\[K_g \supseteq K_f \quad \text{and} \quad g(X) \subseteq e(Y). \quad (3) \]

5. Deduce from (3) that if \(e \circ f \) is injective, then \(f \) is injective, and that if \(e \circ f \) is surjective, then \(e \) is surjective.

6. Let \(X \) be a set, let \(I \) be a directed set, and \(\{ f_i \}_{i \in I} \) be a net in \([0, \infty]^X \) which converges to a certain function \(f \in [0, \infty]^X \). For a real number \(0 < c < 1 \) and a function \(g \leq f \), define sets

\[E_i := \{ x \in X \mid cg(x) \leq f_i(x) \}. \]

Show that

\[\bigcup_{i \in I} E_i = X. \]

(Hint: to show that each \(x \in X \) belongs to some \(E_i \), consider separately three cases: \(f(x) = 0 \), \(0 < f(x) < \infty \), and \(f(x) = \infty \).)