Homework 6

March 2, 2012

The fiber relation For a map between sets $f: X \to Y$ define its *fiber equivalence relation* on X by

$$x \sim_f x'$$
 if $f(x) = f(x')$ $(x, x' \in X)$. (1)

We shall denote the corresponding subset of $X \times Y$ by K_f :

$$K_f := \left\{ \left(x, x' \right) \in X \times X \mid f(x) = f\left(x' \right) \right\}.$$

Factorization of maps We say that a map $g: X \to Z$ *factorizates* through a map $f: X \to Y$, if there exists a map $e: Y \to Z$, such that

$$g = e \circ f. \tag{2}$$

We say that *g* factorizes through *f* uniquely, if there exists a unique map $e: Y \to Z$ which satisfies (2).

1. Suppose that $f: X \to Y$ is surjective. Show that there exists no more than one map $e: Y \to Z$ satisfying (2).

2. Suppose that *g* factorizes through *f*. Show that, if the image of *g* has more than one element and *f* is not surjective, then factorization in (2) is not uique, i.e., there exist $e \neq e'$ such that

$$e \circ f = g = e' \circ f.$$

3. Show that *g* factorizes through *f* if and only if $K_f \subseteq K_g$.

A corollary and a few comments As a corollary, we obtain that *g* factorizes uniquely through *f* if and only if

 $K_f \subseteq K_g$ and *f* is surjective.

In this case we also say that map *g* passes to *Y* or, equivalently, that map *g* induces a map $Y \to Z$. Notation for this unique induced map $Y \to Z$ is often derived from the notation used for the map $X \to Z$. If the latter is denoted *g*, then \tilde{g} , \bar{g} , or \hat{g} , is frequently used to denote the induced map $Y \to Z$.

4. Consider arbitrary maps $f: X \to Y$ and $e: Y \to Z$, and let $g := e \circ f$. Show that

$$K_g \supseteq K_f$$
 and $g(X) \subseteq e(Y)$. (3)

5. Deduce from (3) that if $e \circ f$ is injective, then f is injective, and that if $e \circ f$ is surjective, then e is surjective.

6. Let *X* be a set, let *I* be a directed set, and $\{f_i\}_{i \in I}$ be a net in $[0, \infty]^X$ which converges to a certain function $f \in [0, \infty]^X$. For a real number 0 < c < 1 and a function $g \leq f$, define sets

$$E_i := \{x \in X \mid cg(x) \le f_i(x)\}.$$

Show that

$$\bigcup_{i\in I} E_i = X.$$

(Hint: to show that each $x \in X$ belongs to some E_i , consider separately three cases: f(x) = 0, $0 < f(x) < \infty$, and $f(x) = \infty$.)