Homework 11

due April 20, 2012

One-point compactification Let (X, \mathscr{T}) be a topological space. Denote by \hat{X} the disjoint union of *X* and a single-element set $\{\infty\}$. We will identify *X* with a subset of \hat{X} and, for any subset $E \subseteq X$, we will denote $E \cup \{\infty\}$ by \hat{E} .

Let

$$\mathscr{T}' := \mathscr{T} \cup \{ \hat{V} \mid X^c = X \setminus V \text{ is a compact subset of } X \}.$$
(1)

1. Show that \mathscr{T}^{\wedge} is a topology on \hat{X} if X is Hausdorff. Under the same hypothesis, show that \mathscr{T}^{\wedge} induces on X the original topology, \mathscr{T} .

2 Let (X, \mathscr{T}) be a Hausdorff topological space. Show that $(\hat{X}, \mathscr{T}^{\wedge})$ is compact. Show that $(\hat{X}, \mathscr{T}^{\wedge})$ is Hausdorff if and only if (X, \mathscr{T}) is locally compact.

3. Show that any compact subset $K \subseteq X$ of a metric space (X, ρ) is *separable*, i.e. it contains a countable dense subset.

Hint: For any positive integer *n* consider the cover of *K* by the family of open balls of radius $\frac{1}{n}$ with the centers at all points of *K*.

For any subset *A* of a metric space (X, ρ) , and any $\epsilon > 0$, let A_{ϵ} denote its ϵ -neighborhood

$$A_{\epsilon} := \{x \in X \mid \text{there exists } a \in A \text{ such that } \rho(x, a) < \epsilon \}$$

(put $A_{\epsilon} = \emptyset$ for $A = \emptyset$). Given a pair of subsets $A, B \subseteq X$, let

$$\varrho(A,B) := \inf\{\epsilon > 0 \mid A \subseteq B_{\epsilon} \text{ and } B \subseteq A_{\epsilon}\}.$$
(2)

Formula (2) defines a function $\mathscr{P}(X) \times \mathscr{P}(X) \to [0, \infty]$.

4. Suppose that *A* is a nonempty bounded set. Show that $\rho(A, B) < \infty$ if and only if *B* is bounded and nonempty.

5. Show that function ρ satisfies the Triangle Inequality.

6. Show that $\varrho(A, B) = 0$ if and only if $\overline{A} = \overline{B}$.

It follows that ρ is a metric on the set $\mathscr{Z}(X) \subseteq \mathscr{P}(X)$ of all bounded nonempty closed subsets of *X*. This metric is complete if and only if the original metric ρ on *X* is complete.

Given a pair of finite Borel measures μ and ν on a metric space (X, ρ) , let

$$\varrho(\mu,\nu) := := \inf\{\epsilon > 0 \mid \mu(E) \le \nu(E_{\epsilon}) + \epsilon \text{ and } \nu(E) \le \mu(E_{\epsilon}) + \epsilon \text{ for all } E \in \mathfrak{B}(X)\}$$
(3)

where $\mathfrak{B}(X)$ denotes the σ -algebra of Borel subsets of *X*.

7. Show that the function $\varrho: \mathfrak{B}(X) \times \mathfrak{B}(X) \to [0,\infty)$ defined by (3) satisfies the Triangle Inequality.

8. Show that if $\varrho(\mu,\nu) = 0$, then $\mu(Z) = \nu(Z)$ for any closed subset of *X*. (Hint: Use the fact that $Z_{\frac{1}{4}} \searrow Z$.)

Derive from this that $\mu(E) = \nu(E)$ for any Borel subset of *X*. (Hint: Use a certain result from the previous homework.)

It follows that (3) defines a metric on the set of all finite Borel measures on *X*. If this metric is complete, then the original metric ρ on *X* is complete. If the topological space *X* is separable, then completeness of ρ implies completeness of ρ .

Metric (3) is of particular significance in Probability Theory. This is due to the fact that studying the limits of various sequences of probabilistic measures¹ is among central questions of Probability Theory.

¹Recall that a measure μ on a σ -algebra $\mathfrak{M} \subseteq \mathscr{P}(X)$ is *probabilistic* if $\mu(X) = 1$.