Dynkin systems and regularity of finite Borel measures Homework 10

due April 13, 2012

1. Let $p \in X$ be a point of a topological space. Show that the set $\{p\} \subseteq X$ is closed if and only if for any point $q \neq p$, there exists a neighborhood $N \ni q$ such that $p \notin N$.

Derive from this that X is a T_1 -space if and only if every singleton subset is closed.

Let $\mathscr{C}, \mathscr{D} \subseteq \mathscr{P}(X)$ be arbitrary families of subsets of a set X. We define the family $\mathscr{D}:\mathscr{C}$ as

 $\mathscr{D}:\mathscr{C}:=\{E\subseteq X\mid C\cap E\in\mathscr{D} \text{ for every } C\in\mathscr{C}\}.$

2. The Exchange Property Show that, for any families $\mathscr{B}, \mathscr{C}, \mathscr{D} \subseteq \mathscr{P}(X)$, one has

 $\mathscr{B} \subseteq \mathscr{D}:\mathscr{C}$ if and only if $\mathscr{C} \subseteq \mathscr{D}:\mathscr{B}$.

Dynkin systems¹ We say that a family of subsets $\mathscr{D} \subseteq \mathscr{P}(X)$ of a set *X* is a *Dynkin system* (or a *Dynkin class*), if it satisfies the following three conditions:

- $(\mathbf{D}_{\mathbf{1}})$ if $D \in \mathscr{D}$, then $D^{c} \in \mathscr{D}$;
- (**D**₂) if $\{D_i\}_{i \in I}$ is a countable family of *disjoint* members of \mathscr{D} , then $\bigcup_{i \in I} D_i \in \mathscr{D}$;
- $(\mathbf{D}_3) \ X \in \mathscr{D}.$
- 3. Show that any Dynkin system satisfies also:
 - (\mathbf{D}_4) if $D, D' \in \mathscr{D}$ and $D' \subseteq D$, then $D \setminus D' \in \mathscr{D}$.

4. Show that the intersection, $\bigcap_{i \in I} \mathscr{D}_i$, of any family of Dynkin systems $\{\mathscr{D}_i\}_{i \in I}$ on a set *X* is a Dynkin system on *X*.

It follows that, for any family $\mathscr{F} \subseteq \mathscr{P}(X)$, there exists a smallest Dynkin system containing \mathscr{F} , namely the intersection of all Dynkin systems containing \mathscr{F} . Let us denote it by \mathscr{F}^{\diamond} .

- **5.** Show that, for any families $\mathscr{C}, \mathscr{D} \subseteq \mathscr{P}(X)$, one has:
 - (a) $\mathscr{D}:\mathscr{C}$ satisfies (D_2) if \mathscr{D} satisfies (D_2) ,
 - (b) $\mathscr{D}:\mathscr{C}$ satisfies (\mathbf{D}_4) if \mathscr{D} satisfies (\mathbf{D}_4) ,
 - (c) $X \in \mathcal{D}$: \mathscr{C} if and only if $\mathscr{C} \subseteq \mathcal{D}$,
 - (d) $\mathscr{D}:\mathscr{D}$ is contained in \mathscr{D} if $X \in \mathscr{D}$.

¹Explicitly this definition was proposed by Evgeniy Dynkin around 1961; implicitly this and many similar "systems" of subsets appear already in articles by Wacław Sierpiński in early 1920-es.

6. Show that $\mathscr{D}:\mathscr{C}$ is a Dynkin system if \mathscr{D} is a Dynkin system and $\mathscr{C} \subseteq \mathscr{D}$. Derive from this that $\mathscr{D}:\mathscr{D}$ is a Dynkin system if \mathscr{D} is a Dynkin system.

7. Show that a family \mathscr{C} is closed with respect to finite intersections if and anly if \mathscr{C} is contained in $\mathscr{D}:\mathscr{C}$ for any family \mathscr{D} which contains \mathscr{C} .

8. Show that the Dynkin system \mathscr{C}^{\diamond} generated by a family that is closed with respect to finite intersections, is a σ -algebra.

Hint: Show that C^{\diamond} is contained in $C^{\diamond}:C$. Use that to show that C is contained in $C^{\diamond}:C^{\diamond}$. Use this, in turn, to show that C^{\diamond} is contained in $C^{\diamond}:C^{\diamond}.^{2}$

It is often much easier to show that a family of subsets of a set *X* is a Dynkin system than a σ -algebra. The above result is frequently used in modern Measure Theory to prove that a given family of sets is a σ -algebra, or that a certain property holds for all measurable sets. The following exercises provide an example of this.

9. Let \mathscr{D} be a Dynkin system containing a family \mathscr{C} which is closed with respect to finite intersections. Show that \mathscr{D} contains the σ -algebra generated by \mathscr{C} .

 μ -regular subsets Suppose that $\mu: \mathfrak{B}(X) \to [0, \infty]$ is a measure defined on the σ -algebra of all Borel subsets of a topological space *X*. We say that a Borel set $E \in \mathfrak{B}(X)$ is μ -regular, if

for any $\epsilon > 0$, there exist a closed subset *Z* and an open subset *V* such that $Z \subseteq E \subseteq V$ and $\mu(V \setminus Z) < \epsilon$.

Note that a μ -regular subset is a *union* of an F_{σ} -set and a set of μ -measure zero. It is also a *difference* of a G_{δ} -set and a set of μ -measure zero.

10. Let $\mu: \mathfrak{B}(X) \to [0, \infty]$ be a *finite*³ Borel measure. Show that the family of all μ -regular Borel sets is a Dynkin system on *X*.

11. For any subset $E \subseteq X$ of a *metric space* (X, ρ) , define the sets

$$E_{\epsilon} := \{ x \in X \mid \rho(x, e) < \epsilon \text{ for some } e \in E \} \qquad (\epsilon > 0).$$

Show that sets E_{ϵ} are open, $E_{\epsilon} \subseteq E_{\eta}$ if $\epsilon \leq \eta$, and

$$\bigcap_{\epsilon>0} E_{\epsilon} = \overline{E} \qquad \text{(the closure of } E\text{)}.$$

Deduce from this that any closed subset of a metric space is a G_{δ} -set.

12. Let $\mu: \mathfrak{B}(X) \to [0,\infty]$ be a *finite* Borel measure on a *metric space* X. Show that the family of μ -regular Borel sets contains all closed subsets. Deduce from this that every Borel subset of X is μ -regular.

²I hope you will appreciate the exquisite beauty of this argument. ³I.e., $\mu(X) < \infty$.