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1 Vocabulary

1.1 Definitions

Definition 1.1 A binary relation 4 on a set S is said to be a partial order if it
is reflexive,

x 4 x,

weakly antisymmetric,

if x 4 y and y 4 x , then x = y,

and transitive,
if x 4 y and y 4 z, then x 4 z

Above x , y , z , are arbitrary elements of S .

Definition 1.2 Let E ⊆ S. An element y ∈ S is said to be an upper bound for
E if

x 4 y for any x ∈ E. (1)

By definition, any element of S is declared to be an upper bound for ∅ , the empty
subset.

We shall denote by U(E) the set of all upper bounds for E

U(E)˜ {y ∈ S | x 4 y for any x ∈ E }.

Note that U(∅) = S .

Definition 1.3 We say that a subset E ⊆ S is bounded (from) above, if
U(E) , ∅ , i.e., when there exists at least one element y ∈ S satisfying (1).

Definition 1.4 If y, y′ ∈ U(E) ∩ E, then

y 4 y′ and y′ 4 y.

Thus, y = y′ , and that unique upper bound of E which belongs to E will be
denoted max E and called the greatest element of E.

It follows that U(E)∩ E is empty when E has no greatest element, and
consists of a single element, namely max E , when it does.
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1.2 The Principle of Duality

1.2.1 The opposite ordering

Note that the relation defined by

x 4op y if y 4 x

is also an order relation on S . We will refer to it as the ordering opposite
to 4 .

1.2.2 Dual concepts and dual statements

Every concept and every statement in theory of partially ordered sets,
when we apply them to the opposite partailly ordered set

(S,4op),

yields a concept and a statement for the original partially ordered set (S,4
) . We shall refer to such concepts and statements as dual. We shall provide
numerous illustrations of the duality below.

1.2.3 Duality between max E and min E

An element e ∈ E is the greatest element of E for the ordering 4 if and
only if it is the smallest element for the opposite ordering 4op .

1.2.4 Duality between L(E) and U(E)

Thus, an element s ∈ S is an upper bound for E ⊆ S in (S,4) if and
only if it is a lower bound for E in (S,4op) . In particular, the set of upper
bounds of E in (S,4) coincides with the set of lower bounds of E in the
opposite partially ordered set (S,4op) .

1.3 The upper and the lower-bound-set operations

1.3.1

Given a partially ordered set (S,4) , we shall make a number of basic
observations about the operations that assign to a subset E ⊆ S , its set of
upper and, respectively, lower bounds.
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Exercise 1 Show that, for any subsets E and F, one has

E ⊆ U(F) if and only if L(E) ⊇ F.

Dually
E ⊆ L(F) if and only if U(E) ⊇ F.

Exercise 2 Show that if E ⊆ S is bounded below and nonempty, then L(E) is
bounded above and nonempty.

Dually, if E is bounded above and nonempty, then U(E) is bounded
below and nonempty.

1.3.2

Note that
L(∅) = U(∅) = S ;

thus, the empty subset of S is bounded below, or above, precisely when
S , ∅ .

In particular, for E = ∅ , the conclusion of the implication in Exercise
2 fails unless S possesses the greatest element.

1.3.3

If E ⊆ F ⊆ S , then
max F ∈ U(E) (2)

when max F exists, and, dually,

min F ∈ L(E)

when min F exists.

If both max E and max F exist, then

max E 4 max F.

Dually, if both min E and min F exist, then

min F 4 min E.
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Exercise 3 (Sandwich Lemma for maxima) Show that if E′′ ⊆ E ⊆ E′ and
both max E′ and max E′′ exist and are equal, then max E exists and

max E′′ = max E = max E′.

Dually, if both min E′ and min E′′ exist and are equal, then min E
exists and

min E′ = min E = min E′′.

1.3.4 Supremum and infimum

Definition 1.5 When min U(E) exists it is called the least upper bound of E,
or the supremum of E, and is denoted sup E.

Dually, when max L(E) exists it is called the greatest lower bound of E,
or the infimum of E, and is denoted inf E.

For the supremum of E to exist, subset E must be bounded above. The
supremum of E may exist for some bounded above subsets of S and may
not exist for others.

1.3.5 An example

Let us consider S = Q , the set of rational numbers, with the usual order.
Both the following subset E1 ⊆ Q ,

E1˜ {x ∈ Q | x2 < 1}

and the subset E2 ⊆ Q ,

E2˜ {x ∈ Q | x2 < 2},

are simultaneously bounded above and below. None of them has either
the greatest nor the smallest element but

sup E1 = 1 and inf E1 = −1

while neither sup E2 nor inf E2 exist in S = Q .

Exercise 4 Show that

sup ∅ = min S and inf ∅ = max S.
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1.3.6

In particular, sup ∅ exists if and only if S has the smallest element; this
occurs precisely when every subset of S is bounded below.

Similarly, inf ∅ exists if and only if S has the greatest element; this
occurs precisely when every subset of S is bounded above.

1.3.7 Down-intervals and up-intervals

Let (S,4) be a partially ordered set. For each s ∈ S , we define the down-
interval

〈s]˜ {t ∈ S | t 4 s}.

and the up-interval
[s〉˜ {t ∈ S | s 4 t}.

Exercise 5 Show that, for E ⊆ S, one has

L(E) = 〈s] for some ε ∈ S

if and only if inf E exists. In this case, ε = inf E.

Dually,
U(E) = [η〉, for some η ∈ S ,

if and only if sup E exists. In this case, η = sup E .

1.3.8 An example: the set of natural numbers oredered by the “m divides n”
relation

Consider the set of natural numbers,

N˜ {0, 1, 2, . . . },

equipped with the ordering given by

m 4 n if m | n

(“m divides n”).

Exercise 6 Does (N, | ) have the maximum? the minimum? If yes, then what
are they?
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Exercise 7 For a given n ∈ N , describe intervals 〈n] and [n〉 in (N, | ) .

Exercise 8 For given m, n ∈ N , is set {m, n} bounded below? Does it possess
infimum? If yes, then describe inf{m, n} .

Exercise 9 For given m, n ∈ N , is set {m, n} bounded above? Does it possess
supremum? If yes, then describe sup{m, n} .

Exercise 10 Does every subset of N possess infimum in (N, | )? Does every
subset of N possess supremum?

1.3.9 Totally ordered sets

Definition 1.6 We say that a partially ordered set (S,4) is totally, or linearly,
ordered if any two elements s and t of S are comparable

either s 4 t or t 4 s .

Totally ordered subsets in any given partially ordered set are called
chains.

Exercise 11 Let (S,4) be a totally ordered set and E, F ⊆ S be two subsets.
Show that

either L(E) ⊆ L(F) or L(F) ⊆ L(E) .

1.4 Fundamental properties of the upper and the lower-bound-
set operations

1.4.1

For any subset E ⊆ S , one has

E ⊆ LU(E)˜ L(U(E)) (3)

and
E ⊆ UL(E)˜U(L(E)). (4)
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1.4.2

If E ⊆ F ⊆ S , then
U(E) ⊇ U(F) (5)

and
L(E) ⊇ L(F).

Exercise 12 Show that if E ⊆ F and both sup E and sup F exist, then

sup E 4 sup F.

Dually, if both inf E and inf F exist, then

inf F 4 inf E.

Exercise 13 (Sandwich Lemma for infima) Show that if E′′ ⊆ E ⊆ E′ and
both inf E′ and inf E′′ exist and are equal, then inf E exists and

inf E′′ = inf E = inf E′.

1.4.3 Sandwich Lemma for suprema

Dually, if both sup E′ and sup E′′ exist and are equal, then sup E exists
and

sup E′ = sup E = sup E′′.

1.4.4

By applying (5) to the pair of subsets in (3), one obtains

U(E) ⊇ ULU(E)˜U(L(U(E)))

while (4) applied to subset U(E) yields

U(E) ⊆ ULU(E).

It follows that
U(E) = ULU(E). (6)

9



Dually,
L(E) = LUL(E). (7)

Note that equality (7) is nothing but equality (6) for the opposite order-
ing.

1.4.5

For any subsets E ⊆ S and F ⊆ S , one has

U(E ∪ F) = U(E) ∩U(F)

and
L(E ∪ F) = L(E) ∩ L(F).

Lemma 1.7 For any E ⊆ S, max E exists if and only if sup E exists and be-
longs to E, and they are equal

sup E = max E. (8)

Dually, min E exists if and only if inf E exists and belongs to E, and they
are equal

inf E = min E.

Proof. It suffice to prove the first statement. The second one follows
the Duality Principle. The greatest element of E is an upper bound of E
and every upper bound of E is greater or equal than it.

If sup E exists and is a member of E , then it belongs to U(E)∩ E which
as we established, cf. Definition (1.4), consists of the single element max E
when U(E) ∩ E is nonempty. �

1.4.6

For any E ⊆ S, inf U(E) exists if and only if sup E exists, and they are equal

max LU(E) = inf U(E) = min U(E) = sup E. (9)

Indeed,
inf U(E)˜max LU(E) ∈ U(E),
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in view of E ⊆ LU(E) , cf., (3), combined with (2) where F = LU(E) .
Thus,

inf U(E) = min U(E)

by (8).

Dually, sup L(E) exists if and only if inf E exists, and they are equal

min UL(E) = sup L(E) = max L(E) = inf E.

1.5 An example: the power set as a partially ordered set

1.5.1

Let S = P(X) be the power set of a set X :

P(X)˜ the set of all subsets of X .

Containment ⊆ is a partial order relation on P(X) .
Subsets E of P(X) are the same as families of subsets of X . Since

S = P(X) contains the greatest element, namely X , and the smallest
element, namely ∅ , every subset of P(X) is bounded above and below.

The union of all members of a family E ,⋃
E =

⋃
E∈E

E˜ {a ∈ X | a ∈ E for some E ∈ E } (10)

is the smallest subset of X which contains every member of family E . Hence,
sup E exists and equals (10).

Dually, the intersection of all members of family E ,⋂
E =

⋂
E∈E

E˜ {a ∈ X | a ∈ E for all E ∈ E } (11)

is the greatest subset of X which is contained in every member of family E .
Hence, inf E exists and equals (11).

1.5.2

The power set is an example of a partially ordered set in which every
subset (including the empty set) possesses both suppremum and infimum.
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1.6 Completeness

1.6.1

Definition 1.8 We say that a partially ordered set (S,4) has the greatest-
lower-bound property if inf E exists for every subset E ⊆ S which is nonempty
and bounded below.

Dually, we say that S has the least-upper-bound property if sup E exists
for subset E ⊆ S which is nonempty and bounded above.

1.6.2 An alternative terminology

Partially ordered sets with the greatest-lower-bound property are said to
be inf-complete, and those with the least-upper-bound property are said
to be sup-complete.

Lemma 1.9 A partially ordered set S has the greatest-lower-bound property if
and only if it has the least-upper-bound property.

Proof. Suppose that S is inf-complete. If E ⊆ S is bounded above and
nonempty, then the set of upper bounds, U(E) is nonempty. Since

L(U(E)) ⊇ E , ∅

subset U(E) is also bounded below. Then inf U(E) exists in view of our
assumption about (S,4) . But then it coincides with sup E in accordance
with (9). This shows that S is sup-complete.

The reverse implication,

sup-completeness ⇒ inf-completeness

follows by applying the already proven implication

inf-completeness ⇒ sup-completeness

to the opposite order on S . �

Since sup- and inf-completeness are equivalent we shall simply call
such sets complete.
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1.7 Lattices

1.7.1 Pre-lattices

Definition 1.10 A partially ordered set (S,4) is called a pre-lattice if every
nonempty finite subset E ⊆ S has supremum and infimum.

Exercise 14 Show that (S,4) is a pre-lattice if and only if , for any s, t ∈ S,
both sup{s, t} and inf{s, t} exist.

1.7.2 Lattices

A partially ordered set (S,4) is called a lattice if every finite subset E ⊆ S ,
including ∅ ⊆ S , has supremum and infimum.

1.7.3 Complete lattices

Complete partially ordered sets with the greatest and the smallest ele-
ments are the same as complete lattices. Note that in such sets every subset
is bounded below and above.

For example, the totally ordered set of rational numbers, (Q,≤) , is a
pre-lattice but not a lattice, and it is not complete.

The power set of an arbitrary set, (P(X),⊆) , is an example of a com-
plete lattice. A less obvious example is the subject of the next section.

1.8 Down-sets, up-sets

1.8.1 Down-sets

A subset L of a partially ordered set (S,4) is called a down-set if

for any s ∈ L and s′ 4 s , also s′ ∈ L.

Exercise 15 Show that the union and the intersection of any family L ⊆P(X)
of down-sets is a down-set.

Exercise 16 Show that a down-set L is a down-interval if and only if sup L
exists and belongs to L.
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1.8.2 Down-set closure of a subset

The family of down-sets containing a given subset E ⊆ S is nonempty
since E ⊆ S and S is a down-set. It follows that the intersection of all
down-sets L containing E ,

Cl↓(E)˜
⋂

L⊇E

L,

is the smallest down-set containing E .

1.8.3 Down-set interior of a subset

The family of down-sets contained in a given subset E ⊆ S is nonempty
since ∅ ⊆ E and ∅ is a down-set. It follows that the union of all down-sets
L contained in E ,

Int↓(E)˜
⋃

L⊆E

L,

is the greatest down-set contained in E .

1.8.4

By definition, one has

Int↓(E) ⊆ E ⊆ Cl↓(E)

Exercise 17 Show that E ⊆ S is a down-set if and only if

Int↓(E) = E

if and only if
E = Cl↓(E).

Exercise 18 Any subset E ⊆ S is contained in
⋃

s∈E〈s] . Show that E is a
down-set if and only if

E =
⋃
s∈E

〈s].
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1.8.5

Let E and F be two subsets of a partially ordered set (S,4) . We may say
that F dominates E above, and express this symbolically with E J F , if

for every s ∈ E there exists t ∈ F such that s 4 t .

Exercise 19 Show that U(E) ⊇ U(F) whenever E J F. In particular

sup E 4 sup F

when both suprema exist.

Exercise 20 Show that E J F if and only if Cl↓(E) ⊆ Cl↓(F) .

1.8.6 Cofinal pairs of subsets

We shall say that subsets E and F are cofinal if E J F and F J E . For
cofinal subsets U(E) = U(F) . In particular, sup E exists if and only if
sup F exists and they are equal (cf. Ex. 19.

1.8.7

It follows that E and F are cofinal if and only if Cl↓(E) = Cl↓(F) .

1.8.8 Up-sets

Up-sets are defined, by duality, as down-sets for the opposite ordering
4op . In particular, a subset E is an up-set if and only if

E =
⋃
s∈E

[s〉.

One can also define the corresponding notions of the up-closure, Cl↑(E) ,
and the up-interior, Int↑(E) , of a subset E .

Exercise 21 Define the dual concept

F dominates E below

(one can denote this fact by using notation F K E ).
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1.8.9

If we replace 4 by the opposite order, 4op , we obtain another pair of
relations between subsets of S :

E Jop F and F Kop E.

Note that

F K E if and only if E Jop F (not E J F !).

1.8.10

The dual concept to a cofinal pair of subsets is a coinitial pair of subsets.

1.9 Partially ordered subsets

1.9.1

Any subset S ⊆ T of a set ordered by a relation 4 can be regarded as a
partially ordered set in its own right. One has to be cautioned, however,
that S with 4 restricted to S , may have very different properties from the
partially ordered set (T,4) .

1.9.2

For a subset E ⊆ S , the sets of upper and lower bounds will generally
depend on whether one considers E as a subset of S or T . In particular,
E may be not bounded as a subset of S yet be bounded as a subset of T .

In order to avoid confusion, we shall often indicate in which partially
ordered set we form the sets of upper and lower bounds by adding sub-
script S or T . Thus,

LT(E), UT(E), infTE, supTE,

will denote the set of lower bounds, the set of upper bounds, the infimum,
and the supremum, when E is viewed as a subset of T .

1.9.3

Note that

LS(E) = LT(E) ∩ S and US(E) = UT(E) ∩ S.
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1.9.4

Similary, for an element s ∈ S , we shall denote by 〈s]T the corresponding
down-interval in T :

〈s]T = {t ∈ T | t 4 s}.

and by [s〈T the corresponding up-interval in T :

[s〉T = {t ∈ T | s 4 t}.

Note that
〈s]S = 〈s]T ∩ S and [s〉S = [s〉T ∩ S.

Exercise 22 Show that, for E ⊆ S, one has

supTE 4 supSE

whenever both suprema exist.

1.9.5

Dually, one has
infSE 4 infTE

whenever both infima exist.

Lemma 1.11 Given a subset E ⊆ S, suppose that supTE exists and belongs to
S. Then also supSE exists and the two suprema are equal

supSE = supTE.

Proof. The supremum of E in (T,4) exists if and only if UT(E) is an
interval [η〉T for some η ∈ T . Moreover, supT E = η . If η ∈ S , then

US(E) = UT(E) ∩ S = [η〉T ∩ S = [η〉S.

In particular, supS E exists and equals η . �
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1.9.6

Dually, if infTE exists and belongs to S , then infSE exists and

infSE = infTE.

Exercise 23 Given a subset E ⊆ S, suppose that infTE exists and equals ε .
Show that

LS(E) = 〈ε]T ∩ S = {s ∈ S | s 4 ε}.

1.9.7

Dually, if supTE exists and equals η , then

US(E) = [η〉T ∩ S = {s ∈ S | η 4 s}.

Exercise 24 Find examples of pairs E ⊆ Sof subsets of Q such that:
(a) E is unbounded above in S yet bounded in Q ;
(b) E is bounded in S, and supQE exists but supSE does not;
(c) E is bounded in S, and supSE exists but supQE does not;
(d) both supSE and supQE exist but supSE , supQE.

1.10 Sublattices

1.10.1

A partially ordered subset (S,4) of a lattice (T,4) is said to be a sublattice
if infima and suprema of arbitrary finite subsets E ⊆ S exist and coincide
with the corresponding infima and suprema in (T,4) ,

infSE = infTE and supSE = supTE.
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1.10.2 An example

Consider an 8 element lattice (T,4) whose ordering is represented by the
following diagram

•

• •

• •

• •

•
Each of the following partially ordered subsets of (T,4) is a lattice.

•

• •

•

• •

•

•

•

• •

•

•

•

•

•

•

•

Exercise 25 Which one is a sublattice of (T,4)? Which one is not? Explain
your answers.

1.10.3 Complete-sublattices

A partially ordered subset (S,4) of a complete lattice (T,4) is said to be
a sublattice if infima and suprema of all, not just finite, subsets E ⊆ S exist
and coincide with the corresponding infima and suprema in (T,4) .

1.10.4 An example: the family of all down-sets

According to Exercise 15, the family of all down-sets(
P↓(S,4) ,⊆

)
in a partially ordered set (S,4) is a complete-sublattice of (P(S),⊆) .

The same holds for the family of all up-sets(
P↑(S,4) ,⊆

)
.
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1.10.5 An (almost) example: the power set of a subset X ⊆ Y

If X ⊆ Y , then (P(X),⊆) is a complete lattice contained in the complete
lattice (P(Y),⊆) . The infima in (P(X),⊆) coincide with the infima in
(P(Y),⊆) , the suprema of all nonempty families E ⊆P(X) coincide with
the suprema in (P(Y),⊆) . In the case of the empty family, however,

infP(X)∅ = X while infP(Y)∅ = Y.

1.11 Density

1.11.1

Let (S,4) be a partially ordered subset of (T,4) .

Lemma 1.12 If an element t ∈ T is the supremum of a subset E of S,

t = supTE,

then
t = supT

(
〈t]T ∩ S

)
.

Proof. If t ∈ T is an upper bound of E ⊆ S in (T,4) , then

E ⊆ 〈t]T ∩ S ⊆ 〈t]T.

If t = supT E , then
supTE = supT〈t]T

and the Sandwich Lemma for suprema, cf. 1.4.3, yields the assertion.
�

1.11.2

Dually, if t ∈ T is the infimum of a subset E of S ,

t = infTE

then
t = infT

(
[t〉T ∩ S

)
.
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1.11.3 The sup- and inf-closure of a subset

The set
S̄T˜

{
t ∈ T | t = supT

(
〈t]T ∩ S

)}
will be called the sup-closure of S in T .

Dually, the set

ST˜
{

t ∈ T | t = infT
(
[t〉T ∩ S

)}
will be called the inf-closure of S in T .

1.11.4 sup- and inf-closed subsets

We shall say that S ⊆ T is sup-closed if it coincides with its sup-closure,

S = S̄T.

Dually, we shall say that S ⊆ T is inf-closed if it coincides with its inf-
closure,

S = ST.

1.11.5

Let F be a subset of the sup-closure of S . Every element t ∈ F is the
supremum of a certain subset Et of S ,

t = supTEt.

If u ∈ T is an upper bound of

E˜
⋃
t∈F

Et,

then it belongs to UT(Et) = [t〉T . In particular, t 4 u , for every t ∈ F , i.e.,
u is an upper bound of F . Since an upper bound of F is automatically an
upper bound of every subset Et , it is also an upper bound of their union
E .

We conclude that the two sets of upper bounds coincide

UT(F) = UT(E).

In particular, if u = supT F , then

[u〉T = UT(F) = UT(E)

and u = supT E .
We established the following result.

Proposition 1.13 The sup-closure of a subset S ⊆ T is sup-closed.
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1.11.6 sup- and inf-dense subsets

If S̄T = T , we shall say that ST is sup-dense in T .
Dually, if ST = T , we shall say that ST is inf-dense in T .

Theorem 1.14 Let S be a sup-dense subset of T and E be a subset of S. If

ε = infSE,

then the infimum of E in (T,4) exists and equals ε .
Dually, if S is an inf-dense subset of T and

η = supSE,

then the supremum of E in (T,4) exists and equals η .

1.11.7 Exactness

Suppose that a partially ordered subset (S,4) of (T,4) has the property

for any E ⊆ S, if supSE exists, then supTE exists and they are equal.

In this case, we shall say that the inclusion

(S,4) ↪→ (T,4) (12)

is sup-exact.

1.11.8

Suppose (S,4) has the dual property,

for any E ⊆ S, if infSE exists, then infTE exists and they are equal.

In this case, we shall say that inclusion (12) is inf-exact.

1.11.9

The following important statement is an immediate corollary of Theorem
1.14.

Corollary 1.15 If S is a sup-dense subset of (T,4) , then inclusion (12) is inf-
exact.

Dually, if S is inf-dense, then inclusion (12) is sup-exact.
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Proof of Theorem 1.14. It suffices to prove the first assertion of the
theorem. If t ∈ T is a lower bound of E , then

〈t]T ⊆ LT(E)

and, accordingly,

〈t]T ∩ S ⊆ LT(E) ∩ S = LS(E) = 〈ε]S.

In other words, ε is an upper bound of the set

〈t]T ∩ S.

By the density hypothesis, t is the least upper bound of that set, hence

t 4 ε,

this way proving that ε is also the greatest lower bound of E in T . �

1.11.10 Examples

Suppose that a partially ordered set (S,4) is the union of three subsets
S = X ∪Y ∪ Z such that

x 4 y and x 4 z for any x ∈ X , y ∈ Y , and z ∈ Z ,

no y ∈ Y and z ∈ Z are comparable, and neither Y nor Z possess the
smallest element.

Let us extend the ordering relation to T = S ∪ {υ, ζ} by setting

x ≺ υ ≺ y for any x ∈ X , y ∈ Y ,

and
x ≺ ζ ≺ z for any x ∈ X , z ∈ Z .

Note that υ is not comparable with elements of Z ∪ {ζ} , nor ζ is compa-
rable with elements of Y ∪ {υ} . Finally, denote by T′ the subset S ∪ {υ}
of T .

a) (S,4) as a subset of (T,4) . One has LT(Y) = 〈υ] and LT(Z) = 〈ζ] .
It follows that

υ = infTY and ζ = infTZ,

and therefore S is inf-dense in T . In addition,

〈υ]T ∩ S = X = 〈ζ]T ∩ S

but υ , ζ , they are not even comparable.

Exercise 26 Show that neither υ nor ζ equals supTE for any E ⊆ S. In
particular, S is inf-dense in T but not sup-dense.
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b) (S,4) as a subset of (T′,4) . One has

υ = infT′Y

hence S is inf-dense in T′ while infT′Z does not exist. Note that

LS(Y) = 〈υ]T′ ∩ S = X = LS(Z).

1.12 The tower I ↓(S,4) ⊆ L (S,4) ⊆ P↓(S,4) ⊆ P(S)

1.12.1

We shall consider three subsets of the power set P(S) , the set of all down-
intervals

I ↓(S,4)˜
{
〈s] | s ∈ S

}
,

the set of the lower-bound-sets

L (S,4)˜
{

L(E) | E ⊆ S
}

,

and the set of all down-sets

P↓(S,4)˜ {D ⊆ S | D is a down-set}.

1.12.2

Since the union and the intersection of any family of down-sets is a down-
set, P↓(S,4) is both sup- and inf-closed in (P(S),⊆) and the inclusion(

P↓(S,4),⊆
)
↪→ (P(S),⊆)

is both sup- and inf-exact.

1.12.3

Since a subset of S is a down-set if and only if it is the union of a family
of down-intervals, P↓(S,4) is the sup-closure of I ↓(S,4) in (P(S),⊆) ,

P↓(S,4) = I ↓(S,4)P(S).

1.12.4

In particular, also L (S,4) is sup-dense in P↓(S,4) and, in view of
Lemma 1.11, I ↓(S,4) is sup-dense in L (S,4) .

24



1.12.5

By Corollary 1.15, both inclusions(
I ↓(S,4),⊆

)
↪→

(
L (S,4),⊆

)
↪→

(
P↓(S,4),⊆

)
are inf-exact.

1.12.6

In the case of the inclusion(
L (S,4),⊆

)
↪→

(
P↓(S,4),⊆

)
this follows also from the fact that any subset of L (S,4) is of the form

{L(E) | E ∈ E }

for some family of subsets E of S and

L

(⋃
E∈E

E

)
=
⋂

E∈E

L(E). (13)

for any family E ⊆P(S) .

Exercise 27 Prove equality (13) directly.

1.12.7

Dually, one has

U

(⋃
E∈E

E

)
=
⋂

E∈E

U(E). (14)

1.12.8

In the special case, equality (13) yields

L(E) =
⋂
e∈E

L
(
{e}
)
=
⋂
e∈E

〈e] = infL (S,4)
{
〈e] | e ∈ E

}
,

meaning that I ↓(S,4) is inf-dense in L (S,4) .
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1.12.9

The dual assertion of Corollary 1.15 then yields sup-exactness of the in-
clusion (

I ↓(S,4),⊆
)
↪→

(
L (S,4),⊆

)
.

1.12.10

Equality (13) has also another consequence: it implies that any subset of
L (S,4) has infimum in L (S,4) , i.e.,

(
L (S,4),⊆

)
is inf-complete.

Indeed,

infL (S,4){L(E) | E ∈ E } =
⋂
{L(E) | E ∈ E } = L

(⋃
E∈E

E

)
∈ L (S,4).

1.12.11

In view of Lemma 1.9, the partially ordered set
(
L (S,4),⊆

)
is also sup-

complete.

1.12.12

Since, for any subset E of S , one has

L(S) ⊆ L(E) ⊆ L(∅) = S,

S is the greatest and L(S) is the smallest element of L (S,4) . Note that

L(S) = {s0},
where s0 is the smallest element of S , when S is bounded below, and
L(S) is empty when S is not bounded below.

1.12.13

All together, we infer that
(
L (S,4),⊆

)
is a complete lattice. However, it

is not a complete-sublattice of the lattice of all down-sets
(
P↓(S,4),⊆

)
,

if there is at least one down-set D not of the form L(E) for some E ⊆ S .
Indeed,

D =
⋃

d∈D

〈d] = supP↓(S,4)

{
〈d] | d ∈ D

}
whereas

supL (S,4)

{
〈d] | d ∈ D

}
coincides with the smallest element of L (S,4) that contains D .
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1.12.14 The LU -closure of a subset E ⊆ S

According to (7), members of L (S,4) are precisely the subsets B ⊆ S
such that

LU(B) = B.

Thus, if a subset E is contained in a member B of L (S,4) , then

U(E) ⊇ U(B)

and, therefore,
E ⊆ LU(E) ⊆ LU(B) = B.

It follows that LU(E) is the smallest member of L (S,4) that contains E ,
i.e.,

LU(E) = infL (S,4)
{

B ∈ L (S,4) | E ⊆ B
}

.

1.12.15

In particular, the supremum of any family of subsets E ⊆ L (S,4) coin-
cides with the LU -closure of

supP↓(S,4)E =
⋃

E .

1.12.16

This concludes our study of the tower of inclusions(
I ↓(S,4),⊆

)
↪→

(
L (S,4),⊆

)
↪→

(
P↓(S,4),⊆

)
↪→ (P(S),⊆). (15)

The following theorem collects what we established.

Theorem 1.16 (a) Every inclusion in (15), is inf-exact.

(b) The first and the last inclusions are also sup-exact; the middle one is sup-
exact only when L (S,4) = P↓(S,4) , i.e., when every down-set is a lower-
bound-set.

(c) L (S,4) , P↓(S,4) and P(S) are complete lattices.

(d) P↓(S,4) is a complete-sublattice of P(S) ; in particular, it is both sup-
and inf-closed in P(S) .

(e) L (S,4) is inf-closed in P(S) and is sup-dense in P↓(S,4) .
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(f ) I ↓(S,4) is both sup- and inf-dense in L (S,4) .

(g) P↓(S,4) is the sup-closure of I ↓(S,4) in P(S) ,

P↓(S,4) = I ↓(S,4)P(S).

(h) L (S,4) is the inf-closure of I ↓(S,4) in P(S) ,

L (S,4) = I ↓(S,4)
P(S)

.
�

2 Mappings between partially ordered sets

2.1 Morphisms

2.1.1

Definition 2.1 Given two partially ordered sets (S,4) and (S′,4′) , a mapping
φ : S−→S′ which preserves order,

if s 4 t, then φ(s) 4′ φ(t) (s, t ∈ S),

is said to be a morphism (S,4)−→(S′,4′) .

2.1.2 The opposite morphism

If φ is a morphism (S,4) −→ (S′,4′) , then it is also a morphism

(S,4op) −→ (S′, (4′)op).

To distinguish the two, we shall denote the latter by φop .

Definition 2.2 A morphism φ : (S,4)−→(S′,4′) is said to be an isomor-
phism if it has an inverse, i.e., if there is a morphism ψ : (S′,4′)−→(S,4)
such that φ ◦ g = idS′ and g ◦ f = idS .

2.1.3 Order embeddings

Definition 2.3 A mapping ι : S−→S′ is said to be an order embedding,

(S,4) ↪→ (S′,4′), (16)
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if it satisfies a stronger condition

s 4 t if and only if ι(s) 4′ ι(t) (s, t ∈ S).

Exercise 28 Show that an order embedding is injective.

Exercise 29 Show that an order embedding, (16), is an isomorphism onto its
image, (ι(S),4′) .

2.2 Morphisms between the power sets associated with f : X−→Y

2.2.1 Notation

Consider a mapping between arbitrary sets

f : X−→Y.

We shall adopt the following notation throughout. By A we shall denote
an arbitrary subset of the source set X , and by B we shall denote an
arbitrary subset of the target set Y .

Similarly, by A we shall denote an arbitrary family of subsets of X ,
and by B an arbitrary family of subsets of Y .

2.2.2

In order to study the structure of a mapping, we introduce a number of
related concepts. Each of them becomes an indispensible tool of modern
Mathematics.

2.2.3 The fiber at y ∈ Y

The fiber of f at y ∈ Y is the subset of the source-set

Fiby f ˜ {x ∈ X | f (x) = y}

2.2.4 The preimage of a subset B ⊆ Y

The preimage (under f ) of a subset B ⊆ Y is the subset of the source-set

f ∗B˜ {x ∈ X | f (x) ∈ B} =
⋃

y∈B

Fiby f .

Note that the fiber of f at y is the preimage of B = {y} .
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2.2.5 The image of a subset A ⊆ X

The image (under f ) of a subset A ⊆ X is the subset of the target set

f∗A˜ {y ∈ Y | y = f (x) for some x ∈ A},

Exercise 30 Show that

f∗A = {y ∈ Y | Fiby f ∩ A , ∅}.

2.2.6 The fiber-image of a subset A ⊆ X

The fiber-image (under f ) of a subset A ⊆ X is the subset of the target set

f! A˜ {y ∈ Y | Fiby f ⊆ A}.

Exercise 31 Show that
X \ f ∗B = f ∗(Y \B) (17)

while
Y \ f∗A = f!(X \A) and Y \ f! A = f∗(X \A) (18)

2.2.7 Notation

Undoubtedly, you must have encountered before the concepts of the ‘im-
age’ and the ‘preimage’ when studying mapping between sets. The usual
notation for the image of A under f ,

f (A),

and for the preimage of B ,
f−1(B),

have, however, a serious disadvantage when one deals not just with sub-
sets but also with families of subsets. This is why we adopt the notation
that is unambiguous.
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2.2.8 The associated power-set mappings

The image, preimage and fiber-image preserve the ⊆ relation between
subsets, thus they yield morphisms between the corresponding power sets

(P(X),⊆)

f∗

��

f!





(P(Y),⊆)

f ∗

OO

2.2.9

If we denote by ( )c the complement-of-the-subset operation on the power
set, then identity (17) can be expressed in as the commutativity of the
square

P(X) oo
( )c

// P(X)

P(Y) oo
( )c

//

f ∗

OO

P(Y)

f ∗

OO
(19)

whereas the pair of identities (18) is equivalent to the commutativity of
the square

P(X) oo
( )c

//

f∗

��

P(X)

f!

��

P(Y) oo
( )c

// P(Y)

(20)

Note that the vertical arrows in diagrams (19) and (20) are morphisms while
the horizontal ones are anti-morphisms, i.e., they reverse the order.

2.2.10 Fundamental properties of the associated power-set mappings

We are ready to make several fundamental observations about the associ-
ated power-set mappings. They form a sequence of exercises. You cannot
skip doing these exercises if you intend to continue beyond this point.
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Exercise 32 Show that the preimage preserves the unions

f ∗
( ⋃

B∈B

B

)
=

⋃
B∈B

f ∗B

and the intersections

f ∗
( ⋂

B∈B

B

)
=

⋂
B∈B

f ∗B

Exercise 33 Show that the image preserves the unions

f∗

( ⋃
A∈A

A

)
=

⋃
A∈A

f∗A

while, for intersections, one has only the inclusion

f∗

( ⋂
A∈A

A

)
⊆

⋂
A∈A

f∗A. (21)

Explain why symbol ⊆ in (21) cannot be, in general, replaced by the equality sign
= . Provide an example when both sides of (21) are not equal.

Exercise 34 Show that the fiber-image preserves the intersections

f!

( ⋂
A∈A

A

)
=

⋂
A∈A

f! A

while, for unions, one has only the inclusion

⋃
A∈A

f! A ⊆ f!

( ⋃
A∈A

A

)
. (22)

Explain why symbol ⊆ in (22) cannot be, in general, replaced by the equality sign
= . Provide an example when both sides of (22) are not equal.

2.2.11 The adjunction properties of the associated power-set mappings

The next two properties are particularly important. We remind you that
A ⊆ X and B ⊆ Y stand for arbitrary subsets of X and Y , respectively.

Exercise 35 Show that

A ⊆ f ∗B if and only if f∗A ⊆ B.
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Exercise 36 Show that

f ∗B ⊆ A if and only if B ⊆ f! A.

2.3 A characterization of morphisms

2.3.1

Let φ : S−→S′ be a mapping between the underlying sets of partially or-
dered sets. Note that, for any t ∈ S ,

φ∗〈φ(t)] = {s ∈ S | φ(s) 4′ φ(t)}.

The preimage of the down-interval 〈φ(t)] is a down-set if and only if

∀s∈S
(
s 4 t ⇒ φ(s) 4′ φ(t)

)
.

It follows that φ is a morphism of partially ordered sets if and only if

for any t ∈ S, the preimage of 〈φ(t)] is a down-set.

Exercise 37 Suppose φ : S−→S′ is a morphism of partially ordered sets

(S,4) −→ (S′,4′) (23)

and D′ ⊆ S′ be a down-set in the target set. Show that its preimage φ∗D′ is a
down-set in the source set.

2.3.2

We obtain the following characterization of morphisms between partially
ordered sets.

Proposition 2.4 Let φ : S −→ S′ be a mapping between the underlying sets of
partially ordered sets. The following conditions are equivalent:

(a) for any t ∈ S, the preimage φ∗〈φ(t)] is a down-set;

(b) for any s′ ∈ S′ , the preimage φ∗〈s′] is a down-set;

(c) for any down-set D′ ⊆ S′ , the preimage φ∗D′ is a down-set;

(d) φ is a morphism of partially ordered sets.
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2.3.3

Implication (a) ⇒ (d) was established in 2.3.1, implication (d) ⇒ (c) is
the subject of Exercise 37, implications (c)⇒ (b)⇒ (a) are trivial.

2.3.4

Note that φ is a morphism (23) if and only if it is a morphism between the
opposite partially ordered sets

(S,4op) −→ (S′,4′op
).

In particular, one can replace in Proposition 2.4 down-intervals and down-
sets by up-intervals and, respectively, up-sets.

2.4 Exact mappings between partially ordered sets

2.4.1 sup-exact mappings

We say that a mapping φ : S −→ S′ is sup-exact if φ preserves the suprema,
i.e., if it has the following property

∀E⊆S
(

sup E exists ⇒ sup φ∗E exists and sup φ∗E = φ(sup E)
)
.

2.4.2 inf-exact morphisms

Exercise 38 State the dual definition of an inf-exact mapping.

2.4.3 Exact mappings are necessarily morphisms

Given a pair of elements s 4 t in S , consider the set E˜ {s, t} . One has

s = inf E and t = sup E.

If φ is inf-exact, then φ(s) is a lower bound of φ∗E = {φ(s), φ(t)} , hence

φ(s) 4′ φ(t). (24)

Dually, if φ is sup-exact, then φ(t) is an upper bound, which yields the
same inequality (24). In particular, inf- and sup-exact mappings are auto-
matically morphisms of partially ordered sets.

34



2.4.4

General morphisms are neither inf- nor sup-exact, they however preserve
the greatest and the least elements of subsets.

Exercise 39 Let φ be a morphism (S,4)−→(S′,4′) . Show that, for any subset
E ⊆ S, one has

min f (E) = f (min E) and max f (E) = f (max E)

whenever min E or max E exists.

Exercise 40 Let φ be a morphism (S,4)−→(S′,4′) . Show that, for any nonempty
subset E ⊆ S, one has

φ∗U(E) ⊆ U(φ∗E) and φ∗L(E) ⊆ L(φ∗E).

Deduce from this the inequalities

φ(inf E) 4′ inf φ(E) 4′ sup φ(E) 4′ φ(sup E)

whenever the corresponding infima and suprema exist.

2.5 The lower- and the upper-bound-set morphisms

2.5.1

Given a partially ordered set (S,4) , the correspondences

E 7−→ L(U) and E 7−→ U(E)

define morphisms
(P(S),⊆) −→ (P(S),⊇).

We shall refer to them as the lower and, respectively, the upper-bound-set
morphisms. We shall denote them L and, respectively, U .

2.5.2

In view of equalities (13) and (14), both the lower and the upper-bound-set
morphisms are sup-exact.1

1Note that the supremum of a family E of subsets in (P(S),⊇) is its intersection
⋂

E .

35



2.6 The canonical embedding (S,4) ↪→ (P(S),⊆)
2.6.1

For any pair of elements s and t in a partially ordered set (S,4) , one has

s 4 t if and only if 〈s] ⊆ 〈t].

Thus, the correspondence

〈 ] : S−→P(S), s 7−→ 〈s], (25)

is an order embedding of (S,4) into (P(S),⊆) .

2.6.2

Embedding (25) identifies (S,4) with the partially ordered set of down-
intervals (I ↓(S),⊆) .

2.6.3 The canonical completion of a partially ordered set

The canonical embedding of (S,4) into (P(S),⊆) has precisely the same
behavior, regading the suprema and the infima, as the inclusion of I ↓(S)
into P(S) . Thus it is inf-exact and, usually, not sup-exact. It is however
both inf- and sup-exact if we consider it as an embedding of

(S,4) ↪→
(
L (S,4),⊆

)
. (26)

Embedding (26) provides an explicitly constructed completion of (S,4) ,
i.e., an exact order embedding onto a dense subset of a complete lattice.

2.7 Preimages of intervals

2.7.1

According to Proposition 2.4, a mapping φ : S −→ S′ between the un-
derlying sets of partially ordered sets is a morphism precisely when the
preimages of down-intervals of (S′,4′) are down-sets of (S,4) .

2.7.2

Let φ be a morphism, s′ be an element of S′ and t be an element of S .
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2.7.3

Note that

φ(t) 4′ s′ ⇐⇒ φ∗〈t] ⊆ 〈s′] ⇐⇒ 〈t] ⊆ φ∗〈s′].

2.7.4

Note that
t ∈ U(φ∗〈s′]) ⇐⇒ φ∗〈s′] ⊆ 〈t].

2.7.5

Thus,

φ∗〈s′] = 〈t] ⇐⇒ t is an upper bound for φ∗〈s′] and φ(t) 4′ s′ .

If φ∗〈s′] = 〈t] , then t is, of course, also the greatest element of φ∗〈s′] . In
particular, sup φ∗〈s′] exists and equals t .

2.7.6

For an element s ∈ , the inequality

s 4 t

describes membership s ∈ 〈t] whereas the inequality

φ(s) 4′ s′

describes membership in s ∈ φ∗〈t] . Therefore equality φ∗〈s′] = 〈t] can be
expressed as the statement

∀s∈S
(
s 4 t ⇐⇒ φ(s) 4′ s′

)
.

The following lemma collects the observations we made.

Lemma 2.5 The following statements are equivalent

(a) φ∗〈s′] = 〈t] ;

(b) ∀s∈S
(
s 4 t ⇐⇒ φ(s) 4′ s′

)
;
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(c) t is an upper bound for φ∗〈s′] and φ(t) 4′ s′ ,

(d) t = sup φ∗〈s′] and φ(t) 4′ s′ ;

(e) t = max φ∗〈s′] and φ(t) 4′ s′ .

2.7.7

Let E = φ∗〈s′] . Since
φ∗E = φ∗φ

∗〈s′] ⊆ 〈s′],

element s′ is an upper bound of

φ∗E = φ∗φ
∗〈s′].

If both sup E and sup φ∗E exist and

φ(sup E) = sup φ∗E, (27)

then
φ(sup E) 4′ s′

and, according to Lemma 2.5, E is a down-interval. This yields the fol-
lowing corollary of Lemma 2.5.

Corollary 2.6 Let E = φ∗〈s′] . If both sup E and sup φ∗E exist and equality
(27) holds, then E = φ∗〈s′] is a down-interval.

2.7.8

Let E be an arbitrary subset of S . Note that

s′ ∈ U(φ∗E) ⇐⇒ φ∗E ⊆ 〈s′] ⇐⇒ E ⊆ φ∗〈s′].

If φ∗〈s′] = 〈t] , this yields

s′ ∈ U(φ∗E) ⇐⇒ φ∗E ⊆ 〈s′] ⇐⇒ E ⊆ 〈t] ⇐⇒ t ∈ U(E),

i.e.,

s′ is an upper bound of φ∗E ⇐⇒ t is an upper bound of E .
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2.7.9

If η = sup E , then η 4 t . Hence,

φ(η) 4′ φ(t) 4′ s′.

Since φ is a morphism, φ(η) is itself an upper bound of φ∗E . Let us record
the observations we made in our next lemma.

Lemma 2.7 If η = sup E, then φ(η) is an upper bound of φ∗E. Moreover, for
any upper bound s′ of φ∗E, such that φ∗〈s′] is a down-interval, one has

φ(η) 4′ s′.

.

2.7.10 Residuated mappings

Mappings φ : S −→ S′ which have the property that the preimage of any
down-interval 〈s′] in (S′,4′) is a down-interval in (S,4) are said to be
residuated. Residuated mappings are automatically morphisms of the cor-
responding partially ordered sets.

Corollary 2.8 Every residuated mapping is sup-exact.

2.7.11

In view of Corollary 2.6, under the additional hypothesis that the preim-
ages of down-intervals of (S′,4′) have suprema in (S,4) , the reverse
implication holds.

Proposition 2.9 The following statements are equivalent

(a) a mapping φ is residuated;

(b) a mapping φ is sup-exact and the preimages of down-intervals of (S′,4′)
have suprema in (S,4) .

2.7.12

In particular, φ preserves suprema precisely when φ∗ preserves the family
of down-intervals, whenever (S,4) is a complete lattice.
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2.7.13

By replacing everywhere down-intervals by up-intervals, suprema by in-
fima, and sup-exact by inf-exact, we obtain the dual versions of the above
results.

2.7.14 Residual mappings

In theory of ordered sets, a mapping φ is said to be residual, if the preimage
of any up-interval is an up-interval.

2.7.15 The residual of a residuated mapping

A residuated mapping φ : S−→S′ defines a mapping ψ : S′−→S by setting

ψ(s′)˜ t where φ∗〈s′] = 〈t].

Lemma 2.5 yields the following statement

∀ s∈S
s′∈S′

(
s 4 ψ(s′) ⇐⇒ φ(s) 4′ s′

)
. (28)

2.7.16

Note that
∀s′∈S′

(
s 4 ψ(s′) ⇐⇒ φ(s) 4′ s′

)
.

expresses the fact that ψ∗[s〉 is the up-interval [φs〉 . In particular, (28)
means that the preimage under ψ of any up-interval of (S,4) is an up-
interval of (S′,4′) . In other words, ψ : S′ −→ S is a residual mapping. In
theory of ordered sets, it is referred to as the residual of φ .

2.7.17 Galois connections

A pair of mappings
S

φ

��

S′

ψ

UU

satisfying condition (28) is called a Galois connection between partially
ordered sets (S,4) and (S′,4′) .

40



2.7.18 Terminology

If (φ, ψ) forms a Galois connection, φ is referred to as the lower (or, left)
adjoint of ψ , and ψ is called the upper (or, right) adjoint of φ . This reflects
the fact that φ occurs on the “lower”, i.e., left, side of one of the two
inequalities while ψ occurs on the “upper”, i.e., right, side of the other
inequality.

Exercise 41 Let (φ, ψ) be a Galois connection between (S,4) and (S′,4′) ,
and (υ, χ) be a Galois connection between (S′,4′) and (S′′,4′′) . Show that
(υ ◦ φ, ψ ◦ χ) is a Galois connection between (S,4) and (S′′,4′′) .

2.7.19 Duality between residuated and residual mappings

A pair (φ, ψ) is a Galois connection between (S,4) and (S′,4′) if and
only if (ψ, φ) is a Galois connection between (S′, (4′)op) and (S,4op) .
Reversing simultaneously the orderings on S and S′ exchanges the roles
of the residual and the residuated mapping.

Exercise 42 Show that

idS 4 ψ ◦ φ and φ ◦ ψ 4′ idS′

Exercise 43 Show that if φ is an isomorphism between (S,4) and (S′,4′) ,
then

(
φ, φ−1) is a Galois connection between these sets.

Exercise 44 Show that if (φ, ψ) is a Galois connection between (S,4) and
(S′,4′) , and (ψ, φ) is a Galois connection between (S′,4′) and (S,4) , then
ψ = φ−1 . In particular, φ and ψ are isomorphisms of partially ordered sets.

Exercise 45 Show that if (φ, ψ) is a Galois connection, then mapping φ is resid-
uated and ψ is the residual of φ .

2.7.20

By combining 2.7.15 with Exercise 45, we obtain the following proposition.

Proposition 2.10 A mapping φ : S−→S′ is residuated if and only if there exists
ψ : S′−→S such that (φ, ψ) is a Galois connection. In particular, there is a
natural correspondence{

residuated mappings
φ : (S,4)−→(S′,4′)

}
←→

{
Galois connections (φ, ψ)

between (S,4) and (S′,4′)

}
.
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2.7.21

Dually, there is a natural correspondence{
Galois connections (φ, ψ)

between (S,4) and (S′,4′)

}
←→

{
residual mappings

ψ : (S′,4′)−→(S,4)

}
.

Proposition 2.11 Let (φ, ψ) be a Galois connection between partially ordered
sets (S,4) and (S′,4′) . Then, for any E′ ⊆ S′ ,

sets ψ∗L(E′) and L(ψ∗E′) are cofinal (29)

and, for any E ⊆ S,

sets φ∗U(E) and U(φ∗E) are coinitial. (30)

Proof. Let s ∈ L(g(E′)) . Since ψ is a morphism from (S′,4′) to (S,4) ,
one one has φ(s) ∈ L(E′) . Noting that g(φ(s)) ∈ L(g(E′)) and combining
this observation with inequality s 4 g(φ(s)) shows that the set g(L(E′))
dominates the set L(g(E′)) from above. Since the latter set contains the
former, the two sets are cofinal.

Statement (30) is statement (29) for the opposite ordering. �

3 Galois connections between power-sets

3.1 Multivalued functions

3.1.1 Multimaps ϕ : X( Y

We shall think of a multivalued function from a set X to a set Y as a function
ϕ : X −→ P(Y) . We shall refer to it as a multimap and use the notation
ϕ : X( Y .

3.1.2 The canonical multimap ιX : X( X

The canonical embedding

X −→P(X), x 7−→ {x} (x ∈ X)

defines a multimap ιX : X( X .
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3.1.3 The opposite multimap ϕop : Y( X

Given a multimap ϕ : X ( Y , the opposite multimap ϕop : Y ( X is
defined by

ϕop(y)˜ {x ∈ X | y ∈ ϕ(x)}.

Exercise 46 Show that (
ϕop)op

= ϕ.

3.2 The Galois connection associated with a multimap

3.2.1 ϕ• and ϕ•

A multimap ϕ : X( Y induces a pair of morphisms

(P(X),⊆)

ϕ•

��

(P(Y),⊆)

ϕ•

TT

where

ϕ•(A)˜
⋃

x∈A

ϕ(x) = {y ∈ Y | y ∈ φ(x) for some x ∈ A} (A ⊆ X)

and
ϕ•(B)˜ {x ∈ X | ϕ(x) ⊆ B} (B ⊆ Y).

3.2.2

We shall refer to ϕ• as the direct image map and to ϕ• as the inverse image
map, induced by ϕ .

Exercise 47 Show that

ϕ•∅ = ∅ and ϕ•Y = X.

Exercise 48 Show that

ϕ•
(
{y}c) = {x ∈ X | y < ϕ(x)} =

(
ϕop)c. (31)
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3.2.3

Equality (31) can be expressed as the commutativity of the following pen-
tagon diagram

Y

ϕop

||

ι

""

P(X)
ZZ

( )c

��

P(Y)
DD

( )c

��

P(X) P(Y)
ϕ•
oo

(32)

Exercise 49 Show that the square

P(Y)

(ϕop)•

��

oo
( )c

// P(Y)

ϕ•

��

P(X) oo
( )c

// P(X)

commutes.

Exercise 50 Show that

Y =
⋃

x∈X

ϕ(x) and ∀x,x′ ϕ(x) ∩ ϕ(x′) = ∅ (33)

if and only if
ϕ(x) = Fibxg

for a certain function g : Y −→ X .

3.2.4

In other words, the double condition (33) characterizes “the fiber-of-a-
function” multimaps.
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3.2.5

Note that, for any A ⊆ X and B ⊆ Y ,

A ⊆ ϕ•B ⇐⇒ ∀x∈A{ϕ(x) ⊆ B} ⇐⇒ ϕ•A ⊆ B.

In other words, (ϕ•, ϕ•) is a Galois connection between (P(X),⊆) and
(P(Y),⊆) . We shall refer to it as the Galois connection associated with ϕ .

3.2.6

In particular, the direct image map is sup-exact while the inverse image is
inf-exact.

3.2.7

Vice-versa, any sup-exact morphism

F : (P(X),⊆) −→ (P(Y),⊆)

is of the form F = ϕ• for a unique multimap ϕ .
Indeed, any A ⊆ X is the union of the family

A ˜ ι∗A =
{
{x} | x ∈ A

}
.

Hence,
F(A) = F

(⋃
A
)
=
⋃

x∈A

F
(
{x}

)
= ϕ•A

where ϕ is the multimap X( Y represented by the function

X −→P(Y), x 7−→ F
(
{x}

)
(x ∈ X).

3.2.8

Similarly, any inf-exact morphism

G : P(Y,⊆) −→ (P(X),⊆)

is of the form G = ϕ• for a unique multimap ϕ .
Indeed, G forms a Galois connection (F, G) with an appropriate sup-

exact morphism F and the latter coincides with ϕ• for a unique multimap
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ϕ . Accordingly, G = ϕ• . The commutative pentagon diagram (32) then
yields

G
(
{y}c)c

= ϕop(y)

which allows one to express ϕop(y) directly in terms of G evaluated on
the complement of the singletn set {y} .

Exercise 51 Show that, if G = ϕ• , then

ϕ(x) =
{

y ∈ Y | y < G({y}c)
}

.

3.2.9

We record the results of our investigation in following proposition.

Proposition 3.1 Every Galois connection (F, G) between (P(X),⊆) and (P(Y),⊆)
is of the form (ϕ•, ϕ•) for a unique multimap ϕ : X( Y. One has

ϕ(x) = F
(
{x}

)
=
{

y ∈ Y | y < G({y}c)
}

and

ϕop(y) =
(
G({y}c)

)c.
�

3.2.10 (Conjunction and Implication form a Galois connection

Given a subset P of an arbitrary set X , let

F : A 7−→ A ∩ P and G : B 7−→ P⇒B (A, B ⊆ X)

where
P⇒B ˜ Pc ∪ B.

Note that membership in A ∩ P is expressed as the conjunction of two
statements

x ∈ A and x ∈ P

while membership in P⇒B is expressed as the implication statement

if x ∈ P, then x ∈ B.

Exercise 52 Show that (F, G) is a Galois connection on (P(X),⊆) .
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3.2.11

The above property of the operations ( )∩ P and P⇒( ) on (P(X),⊆) is
interpreted in Logic of Sentences as:

Implication is a right-adjoint operation to Conjunction.

3.2.12 The canonical embedding 〈 ] viewed as a multimap S( S

The canonical embedding, (25), of a partially ordered set (S,4) into its
power set (P(S),⊆) defines a multimap 〈 ] : S( S .

Exercise 53 Show that the direct and the inverse image maps associated with
〈 ] : S( S coincide with the down-closure and, respectively, down-interior oper-
ations,

〈 ]•A = Cl↓(A) and 〈 ]•B = Int↓(B).

3.2.13 Composition of multimaps

Given multimaps χ : Y ( Z and ϕ : X ( Y , their composition is the
multimap X( Z , represented by the composite function

χ• ◦ ϕ : X −→P(Z).

We shall denote it χ � ϕ .

Exercise 54 Show that
ιY � ϕ = ϕ = ϕ � ιX.

Exercise 55 Show that � is associative, i.e.,

(ψ � χ) � ϕ = ψ � (χ � ϕ).

3.3 Functions as special multimaps

3.3.1 The multimap associated with a function f : X −→ Y

Given a function f : X −→ Y , the composition ιY ◦ f defines the multimap

X −→P(Y), x 7−→ { f (x)} (x ∈ X).

We shall refer to it as the multimap associated with f .

47



3.3.2

A multimap ϕ : X( Y is associated with a function X −→ Y if and only
if ϕ(x) is a singleton set for each x ∈ X ,

∀x∈X |ϕ(x)| = 1. (34)

Injectivity of ιY implies that the function f such that ϕ = ιY ◦ f is unique.

3.3.3

This allows us to identify functions X −→ Y with multimaps X ( Y
satisfying condition (34). In particular, we may informally refer to such
multimaps as ‘functions’.

Exercise 56 Show that

f∗ = (ι ◦ f )• and f ∗ = (ι ◦ f )•.

Exercise 57 Show that
(ι ◦ f )op(y) = Fiby f .

Exercise 58 Show that

ι ◦ (g ◦ f ) = (ι ◦ g) � (ι ◦ f ).

3.3.4

In particular, composition of functions corresponds to composition of mul-
timaps.

3.4 Exact morphisms between power sets

3.4.1

Acording to Proposition 3.1, an exact morphism

F : (P(X),⊆) −→ (P(Y),⊆)

equals ϕ• , for some multimap ϕ : X ( Y , and also equals χ• , for some
multimap χ : Y( X .
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3.4.2

If ϕ• is inf-exact, then

∅ = ϕ•∅ = ϕ•
(
{x} ∩ {x′}

)
= ϕ(x) ∩ ϕ(x′)

whenever x , x′ .

3.4.3

If χ• is sup-exact, then

Y = χ•X = χ•
(⋃

x∈X

{x}
)

=
⋃

x∈X

χ•{x} =
⋃

x∈X

{
y ∈ Y | χ(y) ⊆ {x}

}
=
{

y ∈ Y
∣∣ |χ(y)| ≤ 1

}
.

(35)

3.4.4

In view of
∅ = ϕ•∅ = χ•∅ = {y ∈ Y | χ(y) = ∅}, (36)

χ(y) , ∅ for every y ∈ Y .

3.4.5

By combining (36) with (35), we obtain

Y =
{

y ∈ Y
∣∣ |χ(y)| = 1

}
,

i.e., χ is a function g : Y −→ X . More precisely, χ = ι ◦ g .

3.4.6

Alternatively, we could observe that

Y = χ•X = χ•
(⋃

x∈X

{x}
)

= ϕ•

(⋃
x∈X

{x}
)

=
⋃

x∈X

ϕ(x),

i.e., Y is the union of disjoint subsets ϕ(x) which, in view of 3.2.4, means
that ϕ is the fiber-of-a-function multimap.
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3.4.7

We arrive at the following characterization of exact morphisms between
(P(X),⊆) and (P(Y),⊆) .

Proposition 3.2 A morphism F : (P(X),⊆) −→ (P(Y),⊆) is exact if and
only if F = g∗ for a certain function g : Y −→ X .
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