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1 Introduction

Fix some C-minimal theory T expanding ACVF. We’ve shown that for global invariant types,
the following are equivalent:

• Generic stability

• Orthogonality to Γ

• Stable domination. (In fact, after naming parameters, one gets domination by the
generic type of kn for some n.)

Let X → Y be a definable surjection of interpretable sets. We will show that the induced
map X̂ → Ŷ on the stable completions (space of generically stable types) is surjective. Using
this, we can mimic the proof from Hrushovski and Loeser that X̂ is strictly pro-definable,
not just pro-definable (as it would be in any NIP theory).

Throughout Ueq will be a monster model of T eq, K will be the home sort, k will be the
residue sort, and Γ will be the value group. By default, acl and dcl will mean acleq and dcleq.

2 Lifting stably dominated types

First we recall some assorted facts about chaining together definable, generically stable, and
algebraic types.

Remark 2.1. Recall that if M is a model and tp(a/M) is definable (resp. generically stable),
then tp(a′/M) is definable (resp. generically stable), for any a′ ∈ acl(aM). If tp(a/M) is
definable (resp. generically stable) and tp(b/aM) has an aM-definable extension (resp. is
generically stable), then tp(ab/M) is definable (resp. is generically stable1).

1I don’t remember whether transitivity of generic stability holds in general [actually, it does], but note that
in our case, it suffices to show that Γ(Mab) = Γ(M). Since tp(a/M) is generically stable, Γ(Ma) = Γ(M).
Then since p is orthogonal to Γ, Γ(Mab) = Γ(Ma).
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Lemma 2.2. Let M be a model (an elementary substructure of U) and suppose tp(a/M) is
generically stable. Let D ⊂ K1 be aM-definable and non-empty. Then there is some b ∈ D
such that tp(ab/M) is generically stable.

Proof. Let c be a code for one of the swiss cheeses in the canonical decomposition of D
into swiss cheeses. Then c ∈ acl(aM), so by Remark 2.1, tp(ac/M) is generically stable.
Replacing a with ac and D with the swiss cheese coded by c, we may assume that D is a
swiss cheese.

Suppose that there is a closed ball B′ which is acl(aM)-definable, such that the generic
type of B′ is in D. Then tp(pB′qa/M) is generically stable (by Remark 2.1) and if b realizes
the generic type of B′, then tp(bpB′qa/M) is generically stable, by Remark 2.1 again, so we
are done.

So assume that there is no closed ball B′ which is acl(aM)-definable, such that the generic
type of B′ is in D.

As a swiss cheese, we can write D as B0 \ (B1∪· · ·∪Bn), where each Bi is a ball (open or
closed, possibly K or a singleton), where n ≥ 0, and where things are nested in the correct
way. If B0 is a closed ball (or a singleton), then the generic type of B0 is in D, and B0 is
aM -definable, contradicting our assumption.

Next suppose that B0 is all of K. If n = 0, then D = K, and we can take some
b ∈ D∩dcl(M) because M is a model. Otherwise, let B be the smallest closed ball containing
B1, . . . , Bn. Since M is a model, there is some δ < 0 in Γ(M). Let B′ be the closed ball
around B of radius δ plus the radius of B. Then the generic type of B′ is in D, and B′ is
algebraic (in fact, definable) over aM , a contradiction.

We are left with the case that B0 is an open ball. If n = 1, then we can take a closed ball
between B0 and B1 whose (valuative) radius is halfway between the radii of B0 and B1 (or
δ plus the radius of B0, in the case where B1 is a singleton). If n > 1, let B be the smallest
closed ball containing B1, . . . , Bn. Then B is strictly smaller than B0, and strictly bigger
than each of the Bi’s, so its generic type is in D, a contradiction.

So we are left with the case that D = B0 is an open ball. Suppose that there is some
acl(aM)-definable subball B ⊂ B0 (open or closed or singleton) of D. Then as above, we
can take a closed ball halfway between B and B0 (or use δ), and find an acl(aM)-definable
closed subball of D, a contradiction.

So we may assume that not only is D an open ball, but that no proper subball of D is
acl(aM)-definable. From the swiss cheese decomposition, it follows that the only acl(aM)-
definable subsets of D are D and ∅.

Let b realize the generic type of D. This type is aM -definable, so tp(ab/M) is definable.
It remains to show that tp(ab/M) is orthogonal to Γ. Suppose not. Then there is some
aM -definable function f : K1 → Γ1 such that f(b) /∈ Γ(M).

The set f(D) is a definable subset of Γ. By o-minimality of Γ, it is a finite union
of intervals. The endpoints of these intervals are in Γ(Ma) = Γ(M). If f(D) is finite,
then f(b) ∈ f(D) ⊂ Γ(M), a contradiction. So f(D) contains an infinite interval. As
M is a model, this infinite interval contains at least three M -definable points γ1, . . . , γ3.
Then f−1(γ1) and f−1(γ2) and f−1(γ3) are three distinct aM -definable subsets of D, a

2



contradiction.

(By being more careful, one could perhaps arrange that tp(ab/M) is definable over the
algebraic closure of whatever tp(a/M) is definable over. . . )

Lemma 2.3. Let M be a model (an elementary substructure of U) and suppose tp(a/M) is
generically stable. Let D ⊂ Kn be aM-definable and non-empty. Then there is some b ∈ D
such that tp(ab/M) is generically stable.

Proof. By induction on n. The n = 1 case was Lemma 2.2. Suppose n > 1. Let π be
the projection Kn → Kn−1 coordinates. By induction there is some b0 ∈ π(D) such that
tp(ab0/M) is generically stable. Then π−1(b0) ∩D = {b0} ×D′ for some non-empty ab0M -
definable D′ ⊂ K1. By Lemma 2.2, there is some c ∈ D′ such that tp(ab0c/M) is generically
stable. Take b = (b0, c).

Theorem 2.4. Let f : X → Y be a definable surjection. Let p be a generically stable type
in Y . Then there is a generically stable type q in X such that f∗q = p. In fact, if p, f , X,
and Y are defined over a model M , we can take q to be defined over the same model.

Proof. Let X ′ be some (M -)definable subset of Kn such that there is an (M -)definable
surjection from X ′ onto X. If we can lift p to X ′ (along the composition X ′ → X → Y ),
then we can certainly lift it to X. Replacing X with X ′, we may assume that X is a definable
subset of Kn for some n.

Let a realize p|M . Let D be f−1(a), a non-empty aM -definable set. By Lemma 2.3, there
is some b ∈ D such that tp(b/M) is generically stable. Take q to be the canonical global
extension of tp(b/M).

3 Strict pro-definability

In any NIP theory, one has uniform definability of generically stable types. That is, for every
formula φ(x; y) there is some formula ψ(y; z) such that for every generically stable type p,
(dpx)φ(x; y) is of the form ψ(y; c) for some c ∈M . This follows from the fact that generically
stable types are definable by voting in Morley sequences. So in fact we can take ψ(y; z) to
be of the form

ψ(y; z1, . . . , zN)↔
∨

S⊂{1,...,2N−1}, |S|≥N

∧
i∈S

ψ(zi; y)

where N is something like one or two times the alternation number of φ(x; y).
From this it follows that if X is a definable set in any NIP theory, the space X̂ of

generically stable types in X is pro-definable (in T eq).

Proof. For each formula φ(x; y), choose some formula ψφ(y; z) which gives uniform defini-
tions. Since we’re working in T eq, we may arrange that ψφ(U; z) 6= ψφ(U; z′) for z 6= z′.
Let Vφ be the sort where z lives. So if p is a generically stable type, then the code for the
φ-definition of p is an element of Vφ.
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So we have a map from generically stable types to
∏

φ∈L Vφ. It remains to show that the
range of this map is ∗-definable.

A tuple 〈cφ〉φ∈L will define a consistent global type if and only if it defines a type which
is finitely satisfiable. This can be expressed as follows: for every φ1(x; y1), . . . , φn(x; yn) in
the language, the following must hold:

U |= ∀y1, . . . , yn∃x :
n∧
i=1

(φi(x; yi)↔ ψφi(yi; cφi))

So the set of tuples 〈cφ〉φ for which we get a consistent type is ∗-definable.
Now a definable type p is generically stable iff p(x1) ⊗ p(x2). Equivalently, for every

formula φ(x1;x2; y),

(dpx1)(dpx2)φ(x1, x2; y) = (dpx2)(dpx1)φ(x1;x2; y). (1)

We can express this as a condition in terms of the cφ’s. Let φ1(x2;x1, y) be φ(x1;x2; y). Let
φ2(x1; y, z) be ψφ1(x1, y; z). Let φ3(y, z, w) be ψφ2(y, z, w). If p is the definable type defined
by the cφ’s, then

(dpx1)(dpx2)φ(x1, x2; y) = (dpx1)(dpx2)φ1(x2;x1, y) = (dpx1)φ2(x1; y, cφ1) = φ3(y, cφ1 , cφ2).

Similarly, we can find some formulas φ4, φ5, φ6 such that

(dpx2)(dpx1)φ(x1, x2; y) = φ4(y, cφ5 , cφ6).

Then (1) is basically just the assertion that

∀y : φ3(y, cφ1 , cφ2)↔ φ4(y, cφ5 , cφ6)

Doing this for each φ(x1, x2, y) in the language, we get a small family of first order statements
about the cφ whose conjunction is equivalent to the condition that the resulting type is
generically stable.

If X is a definable set, the space X̂ of generically stable types in X is pro-definable.
The part where we must use C-minimality is to show that we get strict pro-definability.

For reasons explained by Hrushovski and Loeser (or Kamensky), it suffices to show that the
image of the generically stable types in Vφ is definable (rather than just type-definable) for
each φ. Or perhaps one needs to show this for products Vφ1 × · · · × Vφn . But note that the
map

X̂ →
n∏
i=1

Vφi

factors through X̂ → Vψ for some ψ, so we really can reduce to the case of one Vφ. This
will work if ψ has the property that every φi-formula for 1 ≤ i ≤ n is a ψ-formula, because
then the ψ-definition of a definable type will determine the φi-definition, for each i. It is
well-known how to find such a ψ.

So we are reduced to proving the following:
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Theorem 3.1. (Assuming we are in a C-minimal expansion of ACVF.) Let X be a definable
set. Let φ(x; y) be a formula. The set of φ-definitions of generically stable types in X is a
small union of definable sets. (Since it is also type-definable, this implies that it is definable.)

Proof. We are basically going to use the same argument as Hrushovski and Loeser, except
using the previous section instead of metastability (which may or may not work in this
setting).

Let ψ(y; z) be the formula that uniformly φ-defines generically stable types. Let g be the
generic type of k, so that g⊗n is the generic type of kn.

For each definable map f : X × Km → kn, and w ∈ Km, let fw denote the map
f(−, w) : X → kn. Let Wf be the (definable) set of w ∈ Km such that (dg⊗ns)(s ∈ fw(X)),
i.e., such that fw(X) hits the generic type of kn. For w ∈ Wf , let Zf,w be the set of z such
that

∀ydg⊗ns∀(x ∈ f−1
w (s)) : (φ(x; y)↔ ψ(y; z))

Note that Zf,w is definable uniformly in w. So the union of all the Zf,w’s is a small union of
definable sets.

We claim that this union is exactly the set of c such that ψ(y; c) is the φ-definition of a
generically stable type.

Suppose first that ψ(y; c) is the φ-definition of some generically stable type p(x). Since
p is generically stable, there is some set of parameters C over which p is defined, and some
C-definable map f0 : X → kn such that f0,∗p is g⊗n and p is “dominated” along f0.

That is, (p|C)(x) ∪ g⊗n(f0(x)) ` p(x).

Claim 3.2. There is some finite subtype Σ(x) of (p|C)(x) such that Σ(x)∪g⊗n(f0(x)) implies
the restriction of p to a φ-type.

Proof. For each subtype Σ(x) of p|C, let SΣ denote the set of b such that

Σ(x) ∪ g⊗n(f0(x)) ` φ(x; b)

and let S ′Σ denote the set of b such that

Σ(x) ∪ g⊗n(f0(x)) ` φ′(x; b).

The set of formulas in g⊗n(f0(x)) is ind-definable because g⊗n is a definable type. So each
of SΣ and S ′Σ is small union of definable sets. Note that Sp|C = ψ(U; c) and S ′p|C = ψ(U; c).
In particular, Sp|C and S ′p|C are definable. By the most basic form of compactness,

Sp|C =
⋃

Σ⊂fp|C

SΣ

S ′p|C =
⋃

Σ⊂fp|C

S ′Σ

By saturation of the monster model, it follows that Sp|C = SΣ and Sp|C = S ′Σ for some Σ ⊂f
p|C. Then for every b, if φ(x; b) ∈ p(x), then b ∈ Sp|C = SΣ, so Σ(x) ∪ g⊗n(f0(x)) ` φ(x; b).
And similarly, if ¬φ(x; b) ∈ p(x), then Σ(x) ∪ g⊗n(f0(x)) ` ¬φ(x; b). So Σ(x) ∪ g⊗n(f0(x))
implies the restriction of p to a φ-type.

5



Let f be f0 on Σ(U), and 0 ∈ kn off of Σ(U). Since Σ is a finite type, f is still a (C-
)definable function. If a |= p|C, then f(a) = f0(a) |= g⊗n|C. So f(X) still hits the generic
type of kn.

Write f as fw. We claim that c ∈ Zf,w. Let s realize g⊗n|U, outside the monster. Suppose
a ∈ f−1(s). Then Σ(a) holds, by definition of f . Also, f(a) = f0(a) realizes g⊗n. By the
claim, the φ-type of a over U is the restriction of p to a φ-type. That is, for every b ∈ U,
φ(a; b) holds if and only if ψ(b; c) holds.

So we have shown that

∀(y ∈ U)∀x ∈ f−1(s) : (φ(x; y)↔ ψ(y; c))

Since tp(s/U) = g⊗n, this is equivalent to saying

∀(y ∈ U)(dg⊗ns)∀x ∈ f−1(s) : φ(x; y)↔ ψ(y; c)

This means that c ∈ Zf,w, by definition of Zf,w.
Conversely, suppose that c ∈ Zf,w for some f and w ∈ Wf . Then g⊗n is in f(X), hence is

an element of the stable completion of f(X). By the previous section, there is a generically
stable type p in X such that f∗p = g⊗n. Let C be a set over which everything so far is
defined.

We claim that ψ(y; c) is the φ-definition of p. Let b be arbitrary, and let a realize p|bC.
Then f(a) realizes g⊗n|bC. As c ∈ Zf,w, we know that

|= dg⊗ns∀x ∈ f−1(s) : φ(x, b)↔ ψ(b; c).

Everything inside the dg⊗ns is bC-definable, and f(a) realizes g⊗n|bC, so we can take s =
f(a), yielding

∀x ∈ f−1(f(a)) : φ(x, b)↔ ψ(b; c)

In particular, taking x = a, we see that φ(a, b) ⇐⇒ ψ(b; c). As b was arbitrary, ψ(−; c) is
the φ-definition of p.
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