Lifting stably dominated types

Will Johnson

February 26, 2014

1 Introduction

Fix some C-minimal theory T expanding ACVF. We've shown that for global invariant types, the following are equivalent:

- Generic stability
- Orthogonality to Γ
- Stable domination. (In fact, after naming parameters, one gets domination by the generic type of k^n for some n.)

Let $X \to Y$ be a definable surjection of interpretable sets. We will show that the induced map $\hat{X} \to \hat{Y}$ on the stable completions (space of generically stable types) is surjective. Using this, we can mimic the proof from Hrushovski and Loeser that \hat{X} is *strictly pro-definable*, not just pro-definable (as it would be in any NIP theory).

Throughout \mathbb{U}^{eq} will be a monster model of T^{eq} , K will be the home sort, k will be the residue sort, and Γ will be the value group. By default, acl and dcl will mean acl^{eq} and dcl^{eq}.

2 Lifting stably dominated types

First we recall some assorted facts about chaining together definable, generically stable, and algebraic types.

Remark 2.1. Recall that if M is a model and $\operatorname{tp}(a/M)$ is definable (resp. generically stable), then $\operatorname{tp}(a'/M)$ is definable (resp. generically stable), for any $a' \in \operatorname{acl}(aM)$. If $\operatorname{tp}(a/M)$ is definable (resp. generically stable) and $\operatorname{tp}(b/aM)$ has an aM-definable extension (resp. is generically stable), then $\operatorname{tp}(ab/M)$ is definable (resp. is generically stable¹).

¹I don't remember whether transitivity of generic stability holds in general [actually, it does], but note that in our case, it suffices to show that $\Gamma(Mab) = \Gamma(M)$. Since $\operatorname{tp}(a/M)$ is generically stable, $\Gamma(Ma) = \Gamma(M)$. Then since p is orthogonal to Γ , $\Gamma(Mab) = \Gamma(Ma)$.

Lemma 2.2. Let M be a model (an elementary substructure of \mathbb{U}) and suppose $\operatorname{tp}(a/M)$ is generically stable. Let $D \subset K^1$ be aM-definable and non-empty. Then there is some $b \in D$ such that $\operatorname{tp}(ab/M)$ is generically stable.

Proof. Let c be a code for one of the swiss cheeses in the canonical decomposition of D into swiss cheeses. Then $c \in \operatorname{acl}(aM)$, so by Remark 2.1, $\operatorname{tp}(ac/M)$ is generically stable. Replacing a with ac and D with the swiss cheese coded by c, we may assume that D is a swiss cheese.

Suppose that there is a closed ball B' which is $\operatorname{acl}(aM)$ -definable, such that the generic type of B' is in D. Then $\operatorname{tp}(\ulcorner B' \urcorner a/M)$ is generically stable (by Remark 2.1) and if b realizes the generic type of B', then $\operatorname{tp}(b\ulcorner B' \urcorner a/M)$ is generically stable, by Remark 2.1 again, so we are done.

So assume that there is no closed ball B' which is acl(aM)-definable, such that the generic type of B' is in D.

As a swiss cheese, we can write D as $B_0 \setminus (B_1 \cup \cdots \cup B_n)$, where each B_i is a ball (open or closed, possibly K or a singleton), where $n \ge 0$, and where things are nested in the correct way. If B_0 is a closed ball (or a singleton), then the generic type of B_0 is in D, and B_0 is aM-definable, contradicting our assumption.

Next suppose that B_0 is all of K. If n = 0, then D = K, and we can take some $b \in D \cap dcl(M)$ because M is a model. Otherwise, let B be the smallest closed ball containing B_1, \ldots, B_n . Since M is a model, there is some $\delta < 0$ in $\Gamma(M)$. Let B' be the closed ball around B of radius δ plus the radius of B. Then the generic type of B' is in D, and B' is algebraic (in fact, definable) over aM, a contradiction.

We are left with the case that B_0 is an open ball. If n = 1, then we can take a closed ball between B_0 and B_1 whose (valuative) radius is halfway between the radii of B_0 and B_1 (or δ plus the radius of B_0 , in the case where B_1 is a singleton). If n > 1, let B be the smallest closed ball containing B_1, \ldots, B_n . Then B is strictly smaller than B_0 , and strictly bigger than each of the B_i 's, so its generic type is in D, a contradiction.

So we are left with the case that $D = B_0$ is an open ball. Suppose that there is some $\operatorname{acl}(aM)$ -definable subball $B \subset B_0$ (open or closed or singleton) of D. Then as above, we can take a closed ball halfway between B and B_0 (or use δ), and find an $\operatorname{acl}(aM)$ -definable closed subball of D, a contradiction.

So we may assume that not only is D an open ball, but that no proper subball of D is acl(aM)-definable. From the swiss cheese decomposition, it follows that the only acl(aM)-definable subsets of D are D and \emptyset .

Let b realize the generic type of D. This type is aM-definable, so tp(ab/M) is definable. It remains to show that tp(ab/M) is orthogonal to Γ . Suppose not. Then there is some aM-definable function $f: K^1 \to \Gamma^1$ such that $f(b) \notin \Gamma(M)$.

The set f(D) is a definable subset of Γ . By o-minimality of Γ , it is a finite union of intervals. The endpoints of these intervals are in $\Gamma(Ma) = \Gamma(M)$. If f(D) is finite, then $f(b) \in f(D) \subset \Gamma(M)$, a contradiction. So f(D) contains an infinite interval. As M is a model, this infinite interval contains at least three M-definable points $\gamma_1, \ldots, \gamma_3$. Then $f^{-1}(\gamma_1)$ and $f^{-1}(\gamma_2)$ and $f^{-1}(\gamma_3)$ are three distinct aM-definable subsets of D, a contradiction.

(By being more careful, one could perhaps arrange that tp(ab/M) is definable over the algebraic closure of whatever tp(a/M) is definable over...)

Lemma 2.3. Let M be a model (an elementary substructure of \mathbb{U}) and suppose $\operatorname{tp}(a/M)$ is generically stable. Let $D \subset K^n$ be aM-definable and non-empty. Then there is some $b \in D$ such that $\operatorname{tp}(ab/M)$ is generically stable.

Proof. By induction on n. The n = 1 case was Lemma 2.2. Suppose n > 1. Let π be the projection $K^n \to K^{n-1}$ coordinates. By induction there is some $b_0 \in \pi(D)$ such that $\operatorname{tp}(ab_0/M)$ is generically stable. Then $\pi^{-1}(b_0) \cap D = \{b_0\} \times D'$ for some non-empty ab_0M -definable $D' \subset K^1$. By Lemma 2.2, there is some $c \in D'$ such that $\operatorname{tp}(ab_0c/M)$ is generically stable. Take $b = (b_0, c)$.

Theorem 2.4. Let $f : X \to Y$ be a definable surjection. Let p be a generically stable type in Y. Then there is a generically stable type q in X such that $f_*q = p$. In fact, if p, f, X, and Y are defined over a model M, we can take q to be defined over the same model.

Proof. Let X' be some (M-)definable subset of K^n such that there is an (M-)definable surjection from X' onto X. If we can lift p to X' (along the composition $X' \to X \to Y$), then we can certainly lift it to X. Replacing X with X', we may assume that X is a definable subset of K^n for some n.

Let a realize p|M. Let D be $f^{-1}(a)$, a non-empty aM-definable set. By Lemma 2.3, there is some $b \in D$ such that tp(b/M) is generically stable. Take q to be the canonical global extension of tp(b/M).

3 Strict pro-definability

In any NIP theory, one has uniform definability of generically stable types. That is, for every formula $\phi(x; y)$ there is some formula $\psi(y; z)$ such that for every generically stable type p, $(d_p x)\phi(x; y)$ is of the form $\psi(y; c)$ for some $c \in M$. This follows from the fact that generically stable types are definable by voting in Morley sequences. So in fact we can take $\psi(y; z)$ to be of the form

$$\psi(y; z_1, \dots, z_N) \leftrightarrow \bigvee_{S \subset \{1, \dots, 2N-1\}, |S| \ge N} \bigwedge_{i \in S} \psi(z_i; y)$$

where N is something like one or two times the alternation number of $\phi(x; y)$.

From this it follows that if X is a definable set in any NIP theory, the space X of generically stable types in X is pro-definable (in T^{eq}).

Proof. For each formula $\phi(x; y)$, choose some formula $\psi_{\phi}(y; z)$ which gives uniform definitions. Since we're working in T^{eq} , we may arrange that $\psi_{\phi}(\mathbb{U}; z) \neq \psi_{\phi}(\mathbb{U}; z')$ for $z \neq z'$. Let V_{ϕ} be the sort where z lives. So if p is a generically stable type, then the code for the ϕ -definition of p is an element of V_{ϕ} . So we have a map from generically stable types to $\prod_{\phi \in \mathcal{L}} V_{\phi}$. It remains to show that the range of this map is *-definable.

A tuple $\langle c_{\phi} \rangle_{\phi \in \mathcal{L}}$ will define a consistent global type if and only if it defines a type which is finitely satisfiable. This can be expressed as follows: for every $\phi_1(x; y_1), \ldots, \phi_n(x; y_n)$ in the language, the following must hold:

$$\mathbb{U} \models \forall y_1, \dots, y_n \exists x : \bigwedge_{i=1}^n (\phi_i(x; y_i) \leftrightarrow \psi_{\phi_i}(y_i; c_{\phi_i}))$$

So the set of tuples $\langle c_{\phi} \rangle_{\phi}$ for which we get a consistent type is *-definable.

Now a definable type p is generically stable iff $p(x_1) \otimes p(x_2)$. Equivalently, for every formula $\phi(x_1; x_2; y)$,

$$(d_p x_1)(d_p x_2)\phi(x_1, x_2; y) = (d_p x_2)(d_p x_1)\phi(x_1; x_2; y).$$
(1)

We can express this as a condition in terms of the c_{ϕ} 's. Let $\phi_1(x_2; x_1, y)$ be $\phi(x_1; x_2; y)$. Let $\phi_2(x_1; y, z)$ be $\psi_{\phi_1}(x_1, y; z)$. Let $\phi_3(y, z, w)$ be $\psi_{\phi_2}(y, z, w)$. If p is the definable type defined by the c_{ϕ} 's, then

$$(d_p x_1)(d_p x_2)\phi(x_1, x_2; y) = (d_p x_1)(d_p x_2)\phi_1(x_2; x_1, y) = (d_p x_1)\phi_2(x_1; y, c_{\phi_1}) = \phi_3(y, c_{\phi_1}, c_{\phi_2}).$$

Similarly, we can find some formulas ϕ_4, ϕ_5, ϕ_6 such that

$$(d_p x_2)(d_p x_1)\phi(x_1, x_2; y) = \phi_4(y, c_{\phi_5}, c_{\phi_6})$$

Then (1) is basically just the assertion that

$$\forall y: \phi_3(y, c_{\phi_1}, c_{\phi_2}) \leftrightarrow \phi_4(y, c_{\phi_5}, c_{\phi_6})$$

Doing this for each $\phi(x_1, x_2, y)$ in the language, we get a small family of first order statements about the c_{ϕ} whose conjunction is equivalent to the condition that the resulting type is generically stable.

If X is a definable set, the space \hat{X} of generically stable types in X is pro-definable.

The part where we must use *C*-minimality is to show that we get *strict* pro-definability. For reasons explained by Hrushovski and Loeser (or Kamensky), it suffices to show that the image of the generically stable types in V_{ϕ} is definable (rather than just type-definable) for each ϕ . Or perhaps one needs to show this for products $V_{\phi_1} \times \cdots \times V_{\phi_n}$. But note that the map

$$\hat{X} \to \prod_{i=1}^{n} V_{\phi_i}$$

factors through $\hat{X} \to V_{\psi}$ for some ψ , so we really can reduce to the case of one V_{ϕ} . This will work if ψ has the property that every ϕ_i -formula for $1 \leq i \leq n$ is a ψ -formula, because then the ψ -definition of a definable type will determine the ϕ_i -definition, for each i. It is well-known how to find such a ψ .

So we are reduced to proving the following:

Theorem 3.1. (Assuming we are in a C-minimal expansion of ACVF.) Let X be a definable set. Let $\phi(x; y)$ be a formula. The set of ϕ -definitions of generically stable types in X is a small union of definable sets. (Since it is also type-definable, this implies that it is definable.)

Proof. We are basically going to use the same argument as Hrushovski and Loeser, except using the previous section instead of metastability (which may or may not work in this setting).

Let $\psi(y; z)$ be the formula that uniformly ϕ -defines generically stable types. Let g be the generic type of k, so that $g^{\otimes n}$ is the generic type of k^n .

For each definable map $f : X \times K^m \to k^n$, and $w \in K^m$, let f_w denote the map $f(-,w): X \to k^n$. Let W_f be the (definable) set of $w \in K^m$ such that $(d_{g\otimes_n} s)(s \in f_w(X))$, i.e., such that $f_w(X)$ hits the generic type of k^n . For $w \in W_f$, let $Z_{f,w}$ be the set of z such that

$$\forall y d_{g^{\otimes n}} s \forall (x \in f_w^{-1}(s)) : (\phi(x; y) \leftrightarrow \psi(y; z))$$

Note that $Z_{f,w}$ is definable uniformly in w. So the union of all the $Z_{f,w}$'s is a small union of definable sets.

We claim that this union is exactly the set of c such that $\psi(y; c)$ is the ϕ -definition of a generically stable type.

Suppose first that $\psi(y; c)$ is the ϕ -definition of some generically stable type p(x). Since p is generically stable, there is some set of parameters C over which p is defined, and some C-definable map $f_0: X \to k^n$ such that $f_{0,*}p$ is $g^{\otimes n}$ and p is "dominated" along f_0 .

That is, $(p|C)(x) \cup g^{\otimes n}(f_0(x)) \vdash p(x)$.

Claim 3.2. There is some finite subtype $\Sigma(x)$ of (p|C)(x) such that $\Sigma(x) \cup g^{\otimes n}(f_0(x))$ implies the restriction of p to a ϕ -type.

Proof. For each subtype $\Sigma(x)$ of p|C, let S_{Σ} denote the set of b such that

$$\Sigma(x) \cup g^{\otimes n}(f_0(x)) \vdash \phi(x;b)$$

and let S'_{Σ} denote the set of b such that

$$\Sigma(x) \cup g^{\otimes n}(f_0(x)) \vdash \phi'(x;b).$$

The set of formulas in $g^{\otimes n}(f_0(x))$ is ind-definable because $g^{\otimes n}$ is a definable type. So each of S_{Σ} and S'_{Σ} is small union of definable sets. Note that $S_{p|C} = \psi(\mathbb{U}; c)$ and $S'_{p|C} = \psi(\mathbb{U}; c)$. In particular, $S_{p|C}$ and $S'_{p|C}$ are definable. By the most basic form of compactness,

$$S_{p|C} = \bigcup_{\Sigma \subset_f p|C} S_{\Sigma}$$
$$S'_{p|C} = \bigcup_{\Sigma \subset_f p|C} S'_{\Sigma}$$

By saturation of the monster model, it follows that $S_{p|C} = S_{\Sigma}$ and $S_{p|C} = S'_{\Sigma}$ for some $\Sigma \subset_f p|C$. Then for every b, if $\phi(x;b) \in p(x)$, then $b \in S_{p|C} = S_{\Sigma}$, so $\Sigma(x) \cup g^{\otimes n}(f_0(x)) \vdash \phi(x;b)$. And similarly, if $\neg \phi(x;b) \in p(x)$, then $\Sigma(x) \cup g^{\otimes n}(f_0(x)) \vdash \neg \phi(x;b)$. So $\Sigma(x) \cup g^{\otimes n}(f_0(x))$ implies the restriction of p to a ϕ -type. Let f be f_0 on $\Sigma(\mathbb{U})$, and $0 \in k^n$ off of $\Sigma(\mathbb{U})$. Since Σ is a finite type, f is still a (*C*-)definable function. If $a \models p|C$, then $f(a) = f_0(a) \models g^{\otimes n}|C$. So f(X) still hits the generic type of k^n .

Write f as f_w . We claim that $c \in Z_{f,w}$. Let s realize $g^{\otimes n} | \mathbb{U}$, outside the monster. Suppose $a \in f^{-1}(s)$. Then $\Sigma(a)$ holds, by definition of f. Also, $f(a) = f_0(a)$ realizes $g^{\otimes n}$. By the claim, the ϕ -type of a over \mathbb{U} is the restriction of p to a ϕ -type. That is, for every $b \in \mathbb{U}$, $\phi(a; b)$ holds if and only if $\psi(b; c)$ holds.

So we have shown that

$$\forall (y \in \mathbb{U}) \forall x \in f^{-1}(s) : (\phi(x; y) \leftrightarrow \psi(y; c))$$

Since $\operatorname{tp}(s/\mathbb{U}) = g^{\otimes n}$, this is equivalent to saying

$$\forall (y \in \mathbb{U}) (d_{g^{\otimes n}} s) \forall x \in f^{-1}(s) : \phi(x; y) \leftrightarrow \psi(y; c)$$

This means that $c \in Z_{f,w}$, by definition of $Z_{f,w}$.

Conversely, suppose that $c \in Z_{f,w}$ for some f and $w \in W_f$. Then $g^{\otimes n}$ is in f(X), hence is an element of the stable completion of f(X). By the previous section, there is a generically stable type p in X such that $f_*p = g^{\otimes n}$. Let C be a set over which everything so far is defined.

We claim that $\psi(y; c)$ is the ϕ -definition of p. Let b be arbitrary, and let a realize p|bC. Then f(a) realizes $g^{\otimes n}|bC$. As $c \in Z_{f,w}$, we know that

$$\models d_{g^{\otimes n}} s \forall x \in f^{-1}(s) : \phi(x, b) \leftrightarrow \psi(b; c).$$

Everything inside the $d_{g\otimes n}s$ is bC-definable, and f(a) realizes $g^{\otimes n}|bC$, so we can take s = f(a), yielding

 $\forall x \in f^{-1}(f(a)) : \phi(x,b) \leftrightarrow \psi(b;c)$

In particular, taking x = a, we see that $\phi(a, b) \iff \psi(b; c)$. As b was arbitrary, $\psi(-; c)$ is the ϕ -definition of p.