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1 Introduction

Last time, we left off with the statement of the following theorem, misleadingly called the
“stabilizer theorem” for historical reasons.

Theorem 1.1 (Hrushovski’s Theorem 3.5). Let G be a definable group, X a definable subset,
and G̃ be the ∨-definable group generated by X. Suppose all this data is defined over a model
M . Suppose µ is an M-invariant translation-invariant ideal on subsets of G̃. Let q be a wide
type over M , contained in G̃. Identify q with its ∧-definable set of realizations. Suppose

(F) there exist two realizations a, b |= q with a |̂
M
b and b |̂

M
a.

Then there is a wide ∧-definable subgroup S < G defined over M , with the following proper-
ties:

• S = (q−1q)2. In particular, S is the group generated by q−1q.

• qq−1q is a coset of S

• S C G̃.

• (Some technical/motivational condition: S \ q−1q is contained in a small union of
non-wide definable sets.)

In fact, S is G̃00
M , the smallest ∧-definable subgroup of G̃ of bounded index defined over M .

There are various weakenings of the hypotheses for which the theorem can still be proven.
We’ll disregard these.

The “motivation” for the theorem is that this is supposed to look like something that
happens in stable theories: if G is a stable group, and q is a generic complete type in G,
then q−1q is a group, in fact, it’s Stab(q).

We can also think of this theorem as something akin to Zilber’s indecomposability the-
orem, because it asserts that some set generates a (∧-)definable subgroup, rather than an
ind-definable one as one would a priori expect.
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1.1 Why this matters

As I understand it, the point of the theorem is that it guarantees that G̃00
M exists, i.e., that

there is any ∧-definable subgroup of bounded index. As we discussed last time, subgroups
of bounded index are the same thing as wide subgroups, or generic subgroups.

For example, we get

Corollary 1.2 (Hrushovski’s Corollary 3.6). Let µ be an invariant S1-ideal on definable
subsets of G̃, invariant under translations by elements of G̃. Then there is a wide ∧-definable
subgroup S of G̃, with G̃/S bounded. (And S is of the form (q−1q)2, for some complete type
over some model M .)

(The proof of this corollary boils down to figuring out how to satisfy condition (F). This
is where we previously used skolemization and Erdos-Rado. See Hrushovski’s Lemma 2.16)

Once we have a subgroup of bounded index, we can form the locally compact group
G̃/G̃00

M , and begin applying the structure theory of locally compact groups.
This ends up being useful in the asymptotic setting, where µ comes from the counting

measure. Usually, G is some ambient infinite group, X is some finite set (or pseudo-finite
set, in the limit), and G̃ is the group generated by X. Relatively speaking, it doesn’t take
much work to deduce the following from Hrushovski’s corollary 3.6

Corollary 1.3 (Hrushovski’s Corollary 1.2). For any k, `,m ∈ N, for some p < 1 and K ∈ N
we have the following statement: Let G be a group, X0 be a finite subset, X = X−10 X0 and
suppose |X0X| ≤ k|X0|. Also assume that with probability p, an `-tuple (a1, . . . , a`) ∈ X`

satisfies |aX1 · · · aX` | ≥ |X|/m. Then there is a subgroup S of G, with S ⊆ X2, such that X
is contained in ≤ K cosets of S.

2 Tools

The following machinery from previous sections will be used.
First, some basic properties of forking and invariant types:

• All types over M can be extended to global M -invariant types.

• Global A-invariant types don’t fork over A.

• In particular, if p and q are global A-invariant types and (a, b) |= p⊗ q then a |̂
A
b.

• Left transitivity of forking: if b |̂
A
c and a |̂

Ab
c, then ab |̂

A
c.

Also, there’s the relation of wideness to forking:

Lemma 2.1. If µ is an A-invariant S1 ideal, any wide type doesn’t fork over A.
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Proof. It suffices to show that any formula φ(x; b) which divides over A is in the ideal.
By definition of dividing, there’s an A-indiscernible sequence bi in tp(b/A) with

∧
i φ(x; bi)

inconsistent. Suppose for the sake of contradiction that µ(φ(x; bi)) > 0. Let m be maximal
such that

µ

(
m∧
i=1

φ(x; bi)

)
> 0.

Then if

Xn =
m−1∧
i=1

φ(x; bi) ∧ φ(x; bm+n),

the Xn violate the S1 property, because µ(Xn) > 0 but µ(Xn ∩Xm) = 0.

The notion of a stable relation also comes up:

Definition 2.2. An A-invariant relation R is unstable if there’s an A-indiscernible sequence
〈ai; bi〉 such that

i < j ⇐⇒ |= R(ai; bj)

Otherwise R is stable.

If R is stable, so is ¬R.
The key fact about stable relations is the following:

Lemma 2.3 (Part of Hrushovski’s Lemma 2.3). Let p and q be two complete types over a
model M , and let R be a stable M-invariant relation. Then the truth value of R(a, b) is the
same across all independent realizations a |= p and b |= q. More specifically, the truth value
of R(a, b) is constant on the set

{(a, b) : a |= p, b |= q, and (a |̂
M

b or b |̂
M

a)}.

Note: this is going to be the main technical tool in the proof of the stabilizer theorem
thing.

Proof. Choose global M -invariant extensions of p and q. Replacing R with ¬R, we may
assume R(b, a) holds for (b, a) |= q⊗ p|M . We claim that R(a′, b′) whenever a′ |̂

M
b′ and (a′

and b′ realize the correct types.)
Suppose not. Let r(x, y) be tp(a′b′/M). Then r(x; b′) doesn’t divide over M , and any

realization of r fails to satisfy R. Inductively build a sequence a1, b2, a3, b4, . . . as follows:

• bi |= q|M(a<ib<i)

• ai realizes
∧

j<i r(x; bj). This is doable because r(x; b′) doesn’t divide over M and b<i

are an indiscernible sequence in tp(b′/M).
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Note that for i < j, tp(bjai/M) = q⊗p so R(ai; bj) holds. And if i > j then tp(ai; bj/M) = r,
so R(ai; bj) is false. Extracting an indiscernible sequence in the usual way, the types of (ai; bj)
remain the same, and we contradict the stability of R.

So now we know that R holds on the entire set

{(a, b) : a |= p, b |= q, and a |̂
M

b}.

In particular, it holds for (a, b) |= p ⊗ q|M . Now, repeating the same argument with the
roles of p and q swapped, it follows that R also holds on the entirety of

{(a, b) : a |= p, b |= q, and b |̂
M

a}.

The only example of a stable relation we care about is the following:

Lemma 2.4 (An instance of Hrushovski’s 2.10). In the setup of the stabilizer theorem, the
relation

R(a, b) ⇐⇒ (qa−1 ∩ qb−1 is wide)

is stable. (Here, we are identifying q with its set of realizations.)

Proof. Suppose not. Then we can find an M -indiscernible sequence 〈aibi〉i<ω witnessing the
failure, so that

qa−1i ∩ qb−1j is wide iff i ≤ j.

In particular,
(qa−1i ∩ qb−1i ) ∩ (qa−1j ∩ qb−1j ) is wide iff i = j

which basically contradicts the S1 condition (after replacing q with a finite subtype).

We maybe also care about the following fact:

Lemma 2.5. In the setup of the stabilizer theorem (an ind-definable group with a left-
and right-translation invariant S1 ideal µ, nontrivial), the following are equivalent for a
∧-definable subgroup S of G̃:

• S has bounded index in G̃

• S is wide

• S is generic, in the sense that for any definable neighborhood U of S, a small number
of translates of U cover G̃.

If one such group exists, there is a unique minimal M-definable one, which is normal.
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Proof. Bounded index to generic is trivial(!). Generic implies wide because some set is
wide, and it’s covered by finitely many translates of any generic set. If S is wide, then S
has bounded index. Otherwise, by Erdös-Rado or whatever, we may find an indiscernible
sequence a1, . . . , an such that the cosets Sai are distinct. This essentially contradicts the S1
condition.

The existence of a unique minimal M -definable one is easy—just take the intersection of
all the M -definable subgroups of bounded index.

If N is the unique minimal one, then the normalizer of N in G̃ is bigger than N , so it
has bounded index, meaning that N has boundedly many conjugates. The intersection of all
these still has bounded index, and is M -invariant, hence type-definable over M . So it must
be N .

3 Proof of the stabilizer theorem

We have a ∨-definable group G̃ with a bi-invariant M -invariant proper ideal µ on definable
subsets of G̃, and a µ-wide complete M -type q. We’re trying to show that G̃00

M exists and is
(q−1q)2, with qq−1q a coset, and some other condition (whose proof we’ll skip).

Proof. Recall that we are identifying q with its set of realizations. The first main goal is to
show that S = (q−1q)2 is a group. This is the most difficult and technical part of the proof,
making extensive use of Lemmas 2.3+2.4 (2.3+2.10). We’ll use the following two sets:

Q = {a−1b : a, b ∈ q and b |̂
M

a}

Q′ = {a−1b : a, b ∈ q and tp(b/Ma) is wide}

Each of these sets is type-definable, though we won’t use this fact (since we’re skipping
the last bit of the proof). (The easiest way to see this is to hold b |= q fixed and look at
{a : (a, b) ∈ Q}. These are type-definable because forking and µ are ideals.)

The key fact we will use repeatedly is that if

a |̂
M

b, a ≡M a′, b ≡M b′, and

(
a′ |̂

M

b′ OR b′ |̂
M

a′
)

THEN
qa−1 ∩ qb−1 is wide ⇐⇒ q(a′)−1 ∩ q(b′)−1 is wide .

Using this, we prove a series of claims.

Claim 1 q−1q ⊆ QQ

Proof. Write an element of q−1q as b−1a with b, a ∈ q. By (F), we can find c ∈ q with
a |̂

M
c and c |̂

M
a. Moving c over Ma, we may assume c |̂

M
ab. Then

b−1a = b−1c · c−1a ∈ QQ because c |̂
M

b and a |̂
M

c.
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Claim 2 For all a, b ∈ q, if b |̂
M
a, then qa−1 ∩ qb−1 is wide.

Proof. By the technical fact, we only need to prove this for one pair of independent
realizations of q. Take a realization a1, a2, · · · of q⊗ω|M . Then qa−1i ∩ qa−1j is wide, or

else the S1 property would be violated. But a2 |̂ M a1.

Claim 21
2

If c1 ∈ q−1q and c2 ∈ Q′ and c2 |̂ M c1, then qc−11 ∩ qc−12 is wide.

Proof. Let a realize q. We can find b1 and b2 realizing q such that

a−1bi ≡M ci

and tp(b2/M, a) is wide. Extending this to a wide type over M,a, b1 and moving b2,
we may assume tp(b2/M, a, b1) is wide. Then

b2 |̂
M

b1

so by Claim 1,
qb−12 ∩ qb−11 is wide

so by translation invariance

q(a−1b2)
−1 ∩ q(a−1b−11 ) is wide.

Meanwhile, by translation invariance,

tp(a−1b2/M, a, b1) is wide, so a−1b2 |̂
M

a−1b1

Now a−1bi ≡M ci and so by the technical fact, it follows that

qc−11 ∩ qc−12 is wide.

Claim 3 (the worst) If c ∈ q−1q and d ∈ Q and d |̂
M
c, then qc−1 ∩ qd−1 is wide.

Proof. Write d as a−1b with b |̂
M
a. Now we do a series of moves:

• Let (a1, b1) ≡M (a, b) be such that a1 |̂ M c. Possible since a, b |̂
M
M .

• Let b2 ≡M,a1 b1 be such that b2 |̂ M c, a1. Possible since b1 |̂ M a1.

• Let b3 be such that b3 ≡M b2 and tp(b3/M, c, a1) is wide. This is possible because
tp(b2/M) = q is wide.
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We claim that

qc−1 ∩ qb−1a is wide ⇐⇒ qc−1 ∩ qb−12 a1 is wide

⇐⇒ qc−1a−11 ∩ qb−12 is wide

⇐⇒ qc−1a−11 ∩ qb−13 is wide

⇐⇒ qc−1 ∩ qb−13 a1 is wide ⇐⇒ >

1. The first holds by the technical fact: we have (b2, a1) ≡M (b, a), and b−1a |̂
M
c

(by assumption), and

(b2, a1) |̂
M

c because a1 |̂
M

c and b2 |̂
M

c, a1

2. The second holds by translation invariance of µ.

3. The third holds by the technical fact, seeing as b2 ≡M b3, and

b3 |̂
M

(a1, c) because tp(b3/M, a1, c) is wide

b2 |̂
M

(a1, c) by choice of b2.

4. The fourth holds by translation invariance of µ.

5. The fifth holds by Claim 21
2
. Note that c ∈ q−1q. The product a−11 b3 ∈ Q′ because

tp(b3/Ma1) is wide (by choice of b3). Finally, why is a−11 b3 |̂ M c? Well,

tp(b3/M, a1, c) is wide, so tp(a−11 b3/M, a1, c) is wide, so doesn’t fork..

Claim 4−ε If a ∈ q−1q and b ∈ Q and a |̂
M
b, then qa−1 ∩ qb−1 is wide.

Proof. This is Claim 3 plus the symmetry part of the technical fact.

Claim 4+ε If a ∈ q−1q and b ∈ Q and a |̂
M
b, then ab ∈ q−1q.

Proof. Since a−1 |̂
M
b, by the previous claim, qa ∩ qb−1 is wide. So it’s non-empty. If

c ∈ qa ∩ qb−1, then ca−1 ∈ q and cb ∈ q, so

ab = (ca−1)−1(cb) ∈ q−1q.

Claim 5 Let a ∈ q−1q, and b1, . . . , bn be such that

tp(a/M, b1, . . . , bn) is wide.

Then ab1 · · · bn ∈ q−1q.
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Proof. By translation invariance of wideness,

tp(ab1 · · · bi/M, b1, . . . , bn) is wide

hence
ab1 · · · bi |̂

M

bi+1.

So by Claim 4+ε,
ab1 · · · bi ∈ q−1q =⇒ ab1 · · · bi+1 ∈ q−1q.

So by induction
a ∈ q−1q =⇒ ab1 · · · bn ∈ q−1q.

Claim 6 Qn ⊆ (q−1q)2.

Proof. Let b1, . . . , bn ∈ Q. Since q is wide, so is q−1q. Let a ∈ q−1q with tp(a/M(b1, . . . , bn))
wide. Then by Claim 5, ab1 · · · bn ∈ q−1q. So

b1 · · · bn = a−1 · ab1 · · · bn ∈ q−1qq−1q.

Now from Claim 1 and Claim 6, q−1q and Q generate the same group S, and S = (q−1q)2 =⋃
nQ

n.
Because q−1q is wide, S is wide, so S has bounded index in G̃. We claim that S is G̃00

M .
If not, then there is some M -definable proper subgroup T of S, of bounded index in S. If
r is a global M -invariant extension of M , then realizations of r all live in the same coset of
T . This coset is a type-definable set, invariant under Aut(M/M), so it’s type-definable over
M . Therefore, realizations of q live in this coset. Hence realizations of q−1q all live in T , so
S ⊆ T , a contradiction.

So S is G̃00
M , and S is normal.

Let d realize q. We claim that qq−1q = dS, so qq−1q is a coset of S. First of all, if ab−1c
is some element of qq−1q, then

d−1ab−1c ∈ q−1qq−1q = S,

so
ab−1c ∈ dS.

Thus qq−1q ⊆ dS.
To see dS ⊆ qq−1q, since S =

⋃
nQ

n, we need to show that if b1, . . . , bn ∈ Q, then
db1 · · · bn ∈ qq−1q. Let a be a realization of q such that tp(a/M(d, b1, . . . , bn)) is wide. Then
tp(a−1d/M(d, b1, . . . , bn)) is wide, so by claim 5,

a−1db1 · · · bn ∈ q−1q.

8



Then
db1 · · · bn ∈ aq−1q ⊆ qq−1q.

So qq−1q is a coset.
We omit the proof of the last claim (about S \ q−1q being small), because it isn’t needed

for Corollary 1.2 = Hrushovski’s Corollary 3.6.
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