Interpretable sets in o-minimal structures

Will Johnson

March 27, 2015
Theorem (Ramakrishnan, Peterzil, Eleftheriou)

Let G be an interpretable group in an o-minimal structure M. Then G is M-definably isomorphic to a definable group.
Theorem (Ramakrishnan, Peterzil, Eleftheriou)

Let G be an interpretable group in an o-minimal structure M. Then G is M-definably isomorphic to a definable group.

But don’t o-minimal theories eliminate imaginaries?
Theorem (Ramakrishnan, Peterzil, Eleftheriou)

Let G be an interpretable group in an o-minimal structure M. Then G is M-definably isomorphic to a definable group.

But don’t o-minimal theories eliminate imaginaries?

- Yes, if they expand RCF.
- *Usually*, if they expand DOAG.
Interpretable groups in o-minimal theories

Theorem (Ramakrishnan, Peterzil, Eleftheriou)

Let G be an interpretable group in an o-minimal structure M. Then G is M-definably isomorphic to a definable group.

But don’t o-minimal theories eliminate imaginaries?

- **Yes**, if they expand RCF.
- **Usually**, if they expand DOAG.
- **No**, in general.
The affine line

Consider \((\mathbb{R}, <, \sim)\), where

\[(x, y) \sim (a, b) \iff x - y = a - b\]
The affine line

Consider \((\mathbb{R}, <, \sim)\), where

\[(x, y) \sim (a, b) \iff x - y = a - b\]

Remark

The interpretable set \(\mathbb{R}^2 / \sim\) isn’t definable.
The affine line

Consider \((\mathbb{R}, <, \sim)\), where

\[(x, y) \sim (a, b) \iff x - y = a - b\]

Remark

The interpretable set \(\mathbb{R}^2 / \sim\) isn’t definable.

The automorphism

\[x \mapsto x + 1\]

acts trivially on \(\mathbb{R}^2 / \sim\), but fixes no elements of the home sort.
Consider \((\mathbb{R}, <, \sim)\), where

\[(x, y) \sim (a, b) \iff x - y = a - b\]

Remark

The interpretable set \(\mathbb{R}^2 / \sim\) isn’t definable.

The automorphism

\[x \mapsto x + 1\]

acts trivially on \(\mathbb{R}^2 / \sim\), but fixes no elements of the home sort.

Remark

After naming any constant, \(\mathbb{R}^2 / \sim\) becomes definably isomorphic to the home sort.
A natural question to ask

Theorem (Ramakrishnan, Peterzil, Eleftheriou)

Let G be an interpretable group in an o-minimal structure M. Then G is M-definably isomorphic to a definable group.
A natural question to ask

Theorem (Ramakrishnan, Peterzil, Eleftheriou)

Let G be an interpretable group in an o-minimal structure M. Then G is M-definably isomorphic to a definable group.

Is this really a property of groups?
A natural question to ask

Theorem (Ramakrishnan, Peterzil, Eleftheriou)

Let G be an interpretable group in an o-minimal structure M. Then G is M-definably isomorphic to a definable group.

Is this really a property of groups?

Conjecture

If X is an interpretable set in an o-minimal structure M, then there is an M-definable bijection to a definable set.
A natural question to ask

Theorem (Ramakrishnan, Peterzil, Eleftheriou)

Let G be an interpretable group in an o-minimal structure M. Then G is M-definably isomorphic to a definable group.

Is this really a property of groups?

Conjecture

If X is an interpretable set in an o-minimal structure M, then there is an M-definable bijection to a definable set.

Unfortunately, this is false...
Consider $M = (\mathbb{R}, <, \sim)$ where the relation

$$(x, y) \sim_z (x', y')$$

means...
Consider $M = (\mathbb{R}, <, \sim)$ where the relation

$$(x, y) \sim_z (x', y')$$

means... \[z < \{x, y, x', y'\} < z + \pi \]

and

$$\cot(x - z) - \cot(y - z) = \cot(x' - z) - \cot(y' - z)$$
Consider $M = (\mathbb{R}, <, \sim)$ where the relation

$$(x, y) \sim_z (x', y')$$

means . . .

$$z < \{x, y, x', y'\} < z + \pi$$

and

$$\cot(x - z) - \cot(y - z) = \cot(x' - z) - \cot(y' - z)$$

Morally, M is the universal cover of the real projective line.
Properties of M

- M is o-minimal
Properties of M

- M is o-minimal
- The map $x \mapsto x + \pi$ is definable
Properties of M

- M is o-minimal
- The map $x \mapsto x + \pi$ is definable
- For each $a \in \mathbb{R}$, the relation \sim_a is an equivalence relation on $(a, a + \pi)^2$.
Properties of M

- M is o-minimal
- The map $x \mapsto x + \pi$ is definable
- For each $a \in \mathbb{R}$, the relation \sim_a is an equivalence relation on $(a, a + \pi)^2$.
- $\text{Aut}(M)$ acts transitively on M
Properties of M

- M is o-minimal
- The map $x \mapsto x + \pi$ is definable
- For each $a \in \mathbb{R}$, the relation \sim_a is an equivalence relation on $(a, a + \pi)^2$.
- $\text{Aut}(M)$ acts transitively on M
- For any $a \in \mathbb{R}$, $\text{dcl}(a) = a + \mathbb{Z} \cdot \pi$.
Automorphisms of M

Lemma

- $\text{Aut}(M/\text{dcl}(0))$ is isomorphic to the group A of affine transformations $x \mapsto ax + b$ with $a > 0$.

- The non-singleton orbits of $\text{Aut}(M/\text{dcl}(0))$ are exactly the open intervals $(n\pi, (n+1)\pi)$. Each orbit is A-isomorphic to the affine line via $\cot(\cdot)$.

Automorphisms of M

Lemma

- $\text{Aut}(M/dcl(0))$ is isomorphic to the group A of affine transformations $x \mapsto ax + b$ with $a > 0$.

- The non-singleton orbits of $\text{Aut}(M/dcl(0))$ are exactly the open intervals $(n\pi, (n+1)\pi)$.
Lemma

- Aut($M/dcl(0)$) is isomorphic to the group A of affine transformations $x \mapsto ax + b$ with $a > 0$.

- The non-singleton orbits of Aut($M/dcl(0)$) are exactly the open intervals $(n\pi, (n + 1)\pi)$.

- Each orbit is A-isomorphic to the affine line via $\cot(-)$.
We can identify the quotient of \sim_0 with \mathbb{R}, via

$$(x, y) \mapsto \cot(x) - \cot(y)$$

Under this identification, an affine transformation $x \mapsto ax + b$ acts by multiplication by a. Any \sim_0-equivalence class is fixed by translations, but most aren’t fixed by scalings. No tuple from the home sort has this property.

Corollary

Most \sim_0-equivalence classes can’t be coded by reals, so M doesn’t eliminate imaginaries.
• We can identify the quotient of \sim_0 with \mathbb{R}, via

$$(x, y) \mapsto \cot(x) - \cot(y)$$

• Under this identification, an affine transformation $x \mapsto ax + b$ acts by multiplication by a.

Corollary Most \sim_0-equivalence classes cannot be coded by reals, so M doesn’t eliminate imaginaries.
We can identify the quotient of \sim_0 with \mathbb{R}, via
\[
(x, y) \mapsto \cot(x) - \cot(y)
\]
Under this identification, an affine transformation $x \mapsto ax + b$ acts by multiplication by a.
Any \sim_0-equivalence class is fixed by translations, but most aren't fixed by scalings.
We can identify the quotient of \sim_0 with \mathbb{R}, via

$$(x, y) \mapsto \cot(x) - \cot(y)$$

Under this identification, an affine transformation $x \mapsto ax + b$ acts by multiplication by a.

Any \sim_0-equivalence class is fixed by translations, but most aren't fixed by scalings.

No tuple from the home sort has this property.
Failure of EI

- We can identify the quotient of \sim_0 with \mathbb{R}, via

$$ (x, y) \mapsto \cot(x) - \cot(y) $$

- Under this identification, an affine transformation $x \mapsto ax + b$ acts by multiplication by a.

- Any \sim_0-equivalence class is fixed by translations, but most aren’t fixed by scalings.

- No tuple from the home sort has this property.

Corollary

Most \sim_0-equivalence classes can’t be coded by reals, so M doesn’t eliminate imaginaries.
Fact

We can lay two copies of M “end to end,” getting a structure $M_1 \cup M_2$. Then:
Naming parameters doesn’t help

Fact

We can lay two copies of M “end to end,” getting a structure $M_1 \cup M_2$. Then:

- $M_1 \preceq M_1 \cup M_2 \succeq M_2$
Naming parameters doesn’t help

Fact

We can lay two copies of \(M \) “end to end,” getting a structure \(M_1 \cup M_2 \). Then:

- \(M_1 \preceq M_1 \cup M_2 \succeq M_2 \)
- \(\text{Aut}(M_1 \cup M_2) \cong \text{Aut}(M_1) \times \text{Aut}(M_2) \).
Naming parameters doesn’t help

Fact

We can lay two copies of M “end to end,” getting a structure $M_1 \cup M_2$. Then:

- $M_1 \preceq M_1 \cup M_2 \succeq M_2$
- $\text{Aut}(M_1 \cup M_2) \cong \text{Aut}(M_1) \times \text{Aut}(M_2)$.

If all quotients could be eliminated by naming parameters, the structure $M_1 \cup M_2$ would have elimination of imaginaries after naming all elements of M_2. But then

$$\text{Aut}(M_1 \cup M_2/M_2) = \text{Aut}(M_1)$$

and we can still run the automorphisms argument in M_1.

Will Johnson
Interpretable sets in o-minimal structures
March 27, 2015 9 / 13
Proposition (J.)

There is an o-minimal structure M and an interpretable set X in M which cannot be put in M-definable bijection with an M-definable set.
Proposition (J.)

There is an o-minimal structure M and an interpretable set X in M which cannot be put in M-definable bijection with an M-definable set.

Tracing through the proof, X is actually the quotient of

$$\{(x, y, z) : x < y < x + \pi, \ x < z < x + \pi\}$$

by the equivalence relation

$$(x, y, z) \equiv (x', y', z') \iff (x = x' \text{ and } (y, z) \sim_x (y', z'))$$.
What can be said about interpretable sets?

Invariants of definable sets can be extended:
- Dimension theory (Peterzil)
- Euler characteristic (Kamenkovich and Peterzil)

Interpretable sets can be definably topologized.
What can be said about interpretable sets?

- Invariants of definable sets can be extended:
 - Dimension theory (Peterzil)
 - Euler characteristic (Kamenkovich and Peterzil)
What can be said about interpretable sets?

- Invariants of definable sets can be extended:
 - Dimension theory (Peterzil)
 - Euler characteristic (Kamenkovich and Peterzil)

- Interpretable sets can be definably topologized.
Fix M a dense o-minimal structure.

Theorem

Let $Y \subset M^n$ be definable, and E be a definable equivalence relation on Y. Then there is $Y' \subset Y$ definable, such that

- The quotient topology on Y'/E is definable, Hausdorff, regular, and “locally Euclidean.”

For any $Y'' \subset Y'$, the quotient topology on Y''/E is the subspace topology of that on Y'/E.

All these properties remain true in elementary extensions of M.

By recursively handling $(Y \setminus Y')/E$, one can topologize Y/E as an “interpretable manifold” with finitely many connected components.
Fix M a dense o-minimal structure.

Theorem

Let $Y \subset M^n$ be definable, and E be a definable equivalence relation on Y. Then there is $Y' \subset Y$ definable, such that

- The quotient topology on Y'/E is definable, Hausdorff, regular, and “locally Euclidean.”
- $\dim(Y \setminus Y') < \dim(Y)$
Fix M a dense o-minimal structure.

Theorem

Let $Y \subset M^n$ be definable, and E be a definable equivalence relation on Y. Then there is $Y' \subset Y$ definable, such that

- The quotient topology on Y'/E is definable, Hausdorff, regular, and “locally Euclidean.”
- $\dim(Y \setminus Y') < \dim(Y)$
- For any $Y'' \subset Y'$, the quotient topology on Y''/E is the subspace topology of that on Y'/E.

All these properties remain true in elementary extensions of M.
Fix M a dense o-minimal structure.

Theorem

Let $Y \subset M^n$ be definable, and E be a definable equivalence relation on Y. Then there is $Y' \subset Y$ definable, such that

- The quotient topology on Y'/E is definable, Hausdorff, regular, and "locally Euclidean."
- $\dim(Y \setminus Y') < \dim(Y)$
- For any $Y'' \subset Y'$, the quotient topology on Y''/E is the subspace topology of that on Y'/E.
- All these properties remain true in elementary extensions of M.

By recursively handling $(Y \setminus Y')/E$, one can topologize Y/E as an "interpretable manifold" with finitely many connected components.
Fix M a dense o-minimal structure.

Theorem

Let $Y \subset M^n$ be definable, and E be a definable equivalence relation on Y. Then there is $Y' \subset Y$ definable, such that

- The quotient topology on Y'/E is definable, Hausdorff, regular, and "locally Euclidean."
- $\dim(Y \setminus Y') < \dim(Y)$
- For any $Y'' \subset Y'$, the quotient topology on Y''/E is the subspace topology of that on Y'/E.
- All these properties remain true in elementary extensions of M.

By recursively handling $(Y \setminus Y')/E$, one can topologize Y/E as an “interpretable manifold” with finitely many connected components.
References

- Sofya Kamenkovich and Ya’acov Peterzil. Euler characteristic of imaginaries in o-minimal structures, 2014.