Generically stable types are stably dominated in C-minimal expansions of ACVF

Will Johnson

March 1, 2014

1 Introduction

Fix a C-minimal expansion T of ACVF, with monster model U, home sort K, value group Γ , and residue field k.

If $A \subset \mathbb{U}^{eq}$, write k(A) for $k \cap \operatorname{dcl}(A)$.

Remark 1.1. $k \cap \operatorname{acl}(A) = k \cap \operatorname{acl}(k(A)).$

Proof. Suppose $\alpha \in k$ is algebraic over A. Let S be the finite set of conjugates of α over A. Then S has a code in a power of k, so S has a code in k(A). Therefore α is algebraic over k(A).

Let p(x) be a generically stable type over C_0 , thought of as a C_0 -definable type over \mathbb{U} . The type p(x) might live in an imaginary sort.

We are going to prove that there is a small set $C \supseteq C_0$ and a C-definable map f into a power of k such that p is "dominated" over C by its pushforward along f. That is, for every $D \supseteq C$ and every a, the following will be equivalent:

•
$$a \models p|D$$

• $a \models p|C$ and $f(a) \models f_*p|D$.

From the general "descent" property for stably dominated types, this should be enough to ensure that the original type over C_0 was stably dominated.

2 Proof

Lemma 2.1. Let $C = \operatorname{acl}(C)$ be a set of parameters. Suppose $\operatorname{tp}(a/C)$ is generically stable, for some $a \in \mathbb{U}^{eq}$, and suppose $b \in \operatorname{acl}(Ca)$. Then $\operatorname{tp}(b/C)$ is generically stable.

Proof. Let p be the canonical global extension of tp(a/C), and let $M \supseteq C$ be a small model in which p is finitely satisfiable. On general grounds, tp(ab/C) is definable; let q be its canonical global extension. It suffices to show that q(x, y) is finitely satisfiable in M, since this ensures that q is generically stable, hence so is its pushforward along the projection to the second coordinate.

Let d be an element of \mathbb{U} , and suppose $\phi(x, y, d) \in q(x, y)$. Let $\psi(x; y)$ be a C-formula such that $\psi(a; b)$ holds and $\psi(a; \mathbb{U})$ is finite for every a. Such a formula exists because $b \in \operatorname{acl}(Ca)$. Let $a'b' \models q | Md$. Then $a'b' \equiv_M ab$, so $\psi(a'; b')$ holds. Also, $\phi(a', b', d)$ holds. The formula

$$\exists y: \phi(x, y, d) \land \psi(x; y)$$

is in p(x), because a' satisfies it and $a' \models p \mid Cd$. Because p is finitely satisfiable in M, there is some $a'' \in M$ such that

$$\exists y: \phi(a'', y, d) \land \psi(a''; y)$$

Choose b'' such that $\phi(a'', b'', d) \land \psi(a''; b'')$ holds. Then $b'' \in \operatorname{acl}(Ca'') \subset M$. So the pair (a'', b'') is in M, and satisfies $\phi(x, y, d)$.

Lemma 2.2. Suppose C is a small set of parameters, and B is a ball in K^1 , (possibly a singleton). Suppose $tp(\lceil B \rceil/C)$ is generically stable. Then either B is C-definable, or there exists $A \supset A' \supseteq B$, where A is a C-definable closed ball of some radius, A' is an open ball of the same radius, and A' is not defined over acl(C).

Proof. Let $B = B_1, B_2, \ldots$ be a Morley sequence for the type of $\lceil B \rceil$ over C. Assume B is not C-definable. Then the type is not constant, so the B_i 's are distinct. Since the type is generically stable, this sequence is totally indiscernible. Consequently, $B_i \cap B_j = \emptyset$ for $i \neq j$. Let A_{ij} be the smallest ball containing both B_i and B_j , for $i \neq j$. Then A_{ij} is a closed ball. The total indiscernibility of the sequence implies that $A := A_{ij}$ does not depend on i, j. As $A_{1,2}, A_{3,4}, A_{4,5}, \ldots$ is a Morley sequence of a C-definable type (a pushforward of $\operatorname{tp}(\lceil B \rceil/C)^{\otimes 2}$), it follows that A is C-definable.

Let A'_i be the open subball of A of the same radius, containing B_i . Then the sequence A'_1, A'_2, \ldots is a Morley sequence over C. As A is the smallest ball containing B_i and B_j , we must have $A'_i \cap A'_j = \emptyset$ for $i \neq j$. So the elements of the sequence A'_1, A'_2, \ldots are pairwise distinct. As the sequence is C-indiscernible, it follows that the elements are not algebraic over C. In particular, $A' := A'_1 \supseteq B$ is not algebraic over C.

The next lemma is included to convince myself that I'm not cheating...

Lemma 2.3. Suppose C is a small set of parameters, and a and b are from \mathbb{U}^{eq} such that $\operatorname{stp}(a/C)$ is generically stable. Then $a \downarrow_C b \iff b \downarrow_C a$. (In particular, this includes the case where a is in a C-definable set.)

Proof. On general grounds¹, we may replace C with acl(C), so we may assume C = acl(C).

¹A sequence is C-indiscernible if and only if it is $\operatorname{acl}(C)$ -indiscernible. So a formula forks over C if and only if it forks over $\operatorname{acl}(C)$. If $\operatorname{tp}(a/b\operatorname{acl}(C))$ doesn't fork over $\operatorname{acl}(C)$, then the smaller type $\operatorname{tp}(a/bC)$

Let p(x) be the unique global non-forking extension of tp(a/C) = stp(a/C). By Corollary 2.14 in On NIP and Invariant Measures, there is some C-invariant type q(y) extending tp(b/C).

Suppose that $a \downarrow_C b$. Then $\operatorname{tp}(a/Cb)$ doesn't fork over $\operatorname{tp}(a/C)$, so it must be p|Cb. Then $a \models p|Cb$ and $b \models q|C$, or equivalently, $(a, b) \models p \otimes q|C$. By one of the characterizations of generic stability, $(b, a) \models q \otimes p|C$. So $\operatorname{tp}(b/Ca) = q|Ca$. Since q doesn't fork over $C, b \downarrow_C a$.

Conversely, suppose that $b
ightharpow_C a$. Then by the characterization of forking in NIP theories (Proposition 2.1(i) in HP), tp(b/Ca) has some global extension r(y) which is Lascar *C*-invariant. By Corollary 2.14 in HP, r(y) is *C*-invariant. Then $b \models r|Ca$ and $a \models p|C$, so $(b, a) \models r \otimes p|C$. As before, this implies that $(a, b) \models p \otimes r|C$, so $a \models p|Cb$. As *p* is *C*-invariant, $a \downarrow_C b$.

Now fix a generically stable type p(x), defined over some base set of parameters C_0 . The variable x might live in an imaginary sort.

Lemma 2.4. For $C \supseteq C_0$, let r(C) denote the supremum of $RM(\alpha/C)$, where α is a tuple in k(Ca) and a realizes p|C. (By Remark 1.1, we could even let α range over $k \cap \operatorname{acl}(Ca)$, and r(C) would not change.)

(a) There is an integer n such that $r(C) \leq n$ for every $C \supseteq C_0$.

(b) If $C' \supset C \supseteq C_0$, then $r(C') \ge r(C)$.

Consequently, there is some $C \supseteq C_0$ such that r(C') = r(C) for every $C' \supset C$.

- Proof. (a) C-minimal theories are dp-minimal, so the home sort has dp-rank 1. By additivity of dp-rank in NIP theories, every interpretable set in T has finite dp-rank. Let n be the dp-rank of the sort where the variable x lives. Suppose $C \supseteq C_0$, a realizes p|C, and α is a tuple in k(Ca). Suppose for the sake of contradiction that $RM(\alpha/C) \ge n + 1$. As k is a strongly minimal set, we can replace α with some subtuple, and assume that α has length n + 1, and that it realizes the generic type of k^{n+1} , over C. Write α as f(a) for some C-definable function f. Then the range of f has dp-rank at most n. But the generic type of k^{n+1} over C has dp-rank (at least) n, a contradiction.
- (b) Suppose a realizes p|C and $\alpha \in k(Ca)$ has $RM(\alpha/C) = m$. Moving C' over C, we may assume that a realizes p|C'. As p is C₀-definable, hence C-invariant, $a \downarrow_C C'$. So $\alpha \downarrow_C C'$. Consequently, $RM(\alpha/C) = RM(\alpha/C')$. And $\alpha \in k(C'a)$.

Fix some C as in the conclusion of the lemma. Let m = r(C). Fix some C-definable function f into k^m such that f_*p is the generic type of k^m .

For B a non-degenerate (infinite) closed ball, let res B denote the interpretable set of open subballs of the same radius.

doesn't fork over C. Conversely, suppose $\operatorname{tp}(a/bC)$ doesn't fork over C, or equivalently, over $\operatorname{acl}(C)$. Then by extension, there is some a' realizing $\operatorname{tp}(a/bC)$ such that $\operatorname{tp}(a'/b\operatorname{acl}(C))$ doesn't fork over $\operatorname{acl}(C)$. If σ is an automorphism over bC which sends a' back to a, then $\operatorname{tp}(a/b\sigma(\operatorname{acl}(C)))$ doesn't fork over $\operatorname{acl}(C)$. But as a set, $\sigma(\operatorname{acl}(C)) = \operatorname{acl}(C)$. So $\operatorname{tp}(a/b\operatorname{acl}(C))$ doesn't fork over $\operatorname{acl}(C)$.

Lemma 2.5. Suppose $C' \supseteq C$. Suppose B is a C'-definable closed ball. Suppose $a \models p|C'$ and that $\alpha \in \operatorname{res} B$ is algebraic over C'a. Then α is algebraic over C'f(a).

Proof. Let e and d realize (independently) the generic type of B over C'a. Then $ed \downarrow_{C'} a$, hence $ed \downarrow_{C'} \alpha f(a)$. By base monotonicity on the right (which holds for forking in arbitrary theories), $ed \downarrow_{C'f(a)} \alpha$.

Over C'ed, res B is in definable bijection with k, via the map sending the class of $x \in B$ to res((x - e)/(d - e)), for example. So α is interdefinable over C'ed with some $\alpha' \in k$. If $\alpha' \notin \operatorname{acl}(f(a)C'ed)$, then $\alpha'f(a)$ realizes the generic type of k^{m+1} over C'ed, so r(C'ed) = m +1 > m = r(C), a contradiction.² Therefore $\alpha' \in \operatorname{acl}(f(a)C'ed)$, and hence $\alpha \in \operatorname{acl}(f(a)C'ed)$. Since $ed \downarrow_{C'f(a)} \alpha$, it follows that $\alpha \downarrow_{C'f(a)} \alpha$. This can only happen if $\alpha \in \operatorname{acl}(C'f(a))$. \Box

Lemma 2.6. Suppose $C' \supseteq C$. Suppose $a \models p|C'$. Suppose that b is a singleton in the home sort. Suppose that the type of f(a) over C'b is the generic type of k^m . Then $a \models p|C'b$.

Proof. As tp(a/C') is stationary, it implies stp(a/C'). So $a \models p|\operatorname{acl}(C')$. Similarly, the type of f(a) over $\operatorname{acl}(C'b)$ is still generic in k^m . Replacing C' with $\operatorname{acl}(C')$, we may assume that $C' = \operatorname{acl}(C')$.

Let $\phi(x; y)$ be a C'-formula, and suppose $\phi(x; b) \in p(x)$. We will show that $\phi(a; b)$ holds. Let D be the definable set $\phi(a; \mathbb{U})$. This can be written as a boolean combination of $\operatorname{acl}(aC')$ -definable balls B_1, \ldots, B_n . By Lemma 2.1, $\operatorname{tp}(\lceil B_i \rceil/C')$ is generically stable for each *i*.

Claim 2.7. For each *i*, either B_i is C'-definable or $b \notin B_i$.

Proof. Suppose B_i is not C'-definable. By Lemma 2.2, we have the following setup: there is some C'-definable closed ball A containing B_i , and some open ball A' of the same radius, with $A \supset A' \supseteq B_i$, and (the code for) A' is not algebraic over C'. Now $\lceil A' \rceil$ is an element $\alpha \in \operatorname{res} A'$, and α is definable from $\lceil A \rceil$ and $\lceil B_i \rceil$. As $\lceil A \rceil$ is C'-definable and $\lceil B_i \rceil$ is algebraic over a and C', it follows that $\alpha \in \operatorname{acl}(C'a)$. By Lemma 2.5, $\alpha \in \operatorname{acl}(C'f(a))$.

Since f(a) realizes the generic type of k^m over C'b, we have $f(a) \downarrow_{C'} b$. Consequently $\alpha \downarrow_{C'} b$. If $b \in B_i$, then the code α for A' is algebraic over C'b, so we would have $\alpha \downarrow_{C'} \alpha$. This contradicts the fact that A' is not algebraic over C'.

Let $a^1 = a$ and $B_i^1 = B_i$. Choose a^2, a^3, \ldots and B_i^j such that

$$\langle a^{j} \sqcap B_{1}^{j} \sqcap \Box B_{2}^{j} \urcorner \cdots \rangle_{j=2,3,\dots}$$

is a Morley sequence over $ba \ulcorner B_1 \urcorner \cdots$ for the type

 $\operatorname{tp}(a^{\Box}B_1^{\Box}B_2^{\Box}\cdots/C')$

which is generically stable by Lemma 2.1. Then

$$\langle a^{j} \vdash B_1^{j} \dashv \vdash B_2^{j} \dashv \cdots \rangle_{j=1,2,\dots}$$

²This is using Remark 1.1.

is a Morley sequence for this type, over C'. Also, $a^2 \models p | C'b$, so $\phi(a^2; b)$ holds if and only if $\phi(x; b) \in p(x)$. Therefore, it suffices to show for each *i* that

$$b \in B_i^2 \iff b \in B_i^1.$$

Note that B_i^1, B_i^2, \ldots is a Morley sequence over C', and B_i^2, B_i^3, \ldots is a Morley sequence over C'b. If $B_i = B_i^1$ is C'-definable, this sequence is constant, so $b \in B_i^1 \iff b \in B_i^2$. Otherwise, by total indiscernibility, the B_i^j are pairwise disjoint (for fixed *i*). So $b \notin B_i^j$ for all j > 1. But by the claim, $b \notin B_i^1$ either. So we are done.

Theorem 2.8. Suppose that $C' \supseteq C$ and $a \models p|C$ and f(a) realizes the generic type of k^m over C'. Then $a \models p|C'$. So the (arbitrary generically stable type p) is stably dominated, in some sense of the words.

Proof. Take some set C'' of real elements such that $C' \subset \operatorname{dcl}(C'')$. Moving C'' over C', we may assume that f(a) realizes the generic type of k^m over C''. Replacing C' with C'', we may assume that C' is made of real elements.

Let b_1, \ldots, b_n be a tuple from C', and suppose $\phi(x; b)$ is in p(x). It suffices to show that $\phi(a; b)$ holds. It suffices to show that $a \models p | Cb_1 b_2 \cdots b_n$.

We prove by induction on i that $a \models p|Cb_1 \cdots b_i$. The base case where i = 0 is given. Suppose that $a \models p|Cb_1 \cdots b_{i-1}$. By Lemma 2.6, we need only show that $\operatorname{tp}(f(a)/Cb_1 \cdots b_i)$ is the generic type of k^m . This is clear, though, since $\operatorname{tp}(f(a)/C')$ was generic in k^m , and $Cb_1 \cdots b_i \subset C'$.