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1 Introduction

Let T be an almost strongly minimal theory eliminating imaginaries, with monster model M.
For S a small set of parameters, let Gal(S) denote the profinite group Aut(acl(S)/ dcl(S)).
Let M be a small model of T , inside the monster model M. Let G be a connected M -definable
group.

1.1 The fundamental group

By a finite group cover of G, we will mean an M -definable connected group H with a
surjective M -definable map H → G, whose kernel K is finite. The kernel K must lie within
the center of H, because the action of H on K by conjugation yields a necessarily-trivial
homomorphism from the connected group H to the finite group of automorphisms of K.

If πi : Hi → G are finite group covers of G for i = 1, 2, a morphism of finite group
covers from H1 to H2 will be an M -definable group homomorphism f : H1 → H2 making
the obvious diagram commute. This makes finite group covers into a category.

Remark 1.1. 1. If f is a morphism of finite group covers, the map f : H1 → H2 must
be a surjection.

2. The category of finite group covers is a poset: if f, g are two morphisms from H1
π1→ G

to H2
π2→ G, then f = g.

3. The resulting poset is (co)directed, in the sense that if Hi
πi→ G for i = 1, 2 are two

finite group covers, then there is a third π3 : H3 → G and morphisms from H3 → G to
Hi → G for i = 1, 2.

Proof. 1. Since H1 → G factors through H1 → H2, the kernel of H1 → H2 is a subgroup
of the finite kernel of H1 → G. Since H1 → H2 has finite kernel, its image has the same
rank as G, H1, and H2. Consequently, it has finite index in H2. As H2 is connected,
the image must be all of H2.
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2. Let K be the kernel of H2 → G. For every x ∈ H1, let τ(x) be f(x) · g(x)−1. As f(x)
and g(x) have the same image in G, τ(x) ∈ K. So τ(x) ∈ Z(H2). Now for every x, we
have f(x) = τ(x) · g(x). Since f and g are homomorphisms, for any x, y we have

τ(xy)g(x)g(y) = τ(xy)g(xy) = f(xy) = f(x)f(y) = τ(x)g(x)τ(y)g(y).

As τ(y) is in the center of H2, it follows that τ(xy) = τ(x)τ(y), so τ is a homomorphism
from the connected group H1 to the finite group K. Therefore τ is trivial, and f = g.

3. Given H1 → G and H2 → G, let H3 = (H1 ×G H2)o. Then we have a commutative
diagram

H3
//

��

H1

��
H2

// G

Now H1 ×G H2 surjects onto G and has kernel equal to the product of the kernels of
H1 → G and H2 → G. Therefore H1 ×G H2 has the same rank as G, H1, and H2. Its
connected component, H3, has this same rank. As H3 is a subgroup of H1 ×G H2, the
kernel of H3 → G is still finite, so the image has the same rank as G, ans therefore is
all of G. So H3 does indeed surject onto G, and H3 is a finite group cover.

Say that H ′ → G dominates H → G if there is a morphism H ′ → H (over G).
As a cofiltered category, we can take the inverse limit of kerH → G as H → G ranges

over the finite group covers of G. Let π1(G) denote the resluting profinite group.

1.2 The first cohomology group

Let g1, g2, . . . , gn be a Morley sequence of generics over Mt, of length n, for n > 1. For
non-empty I ⊂ n, let

GalI = Gal({gi : i ∈ I} ∪ aclM({gi · g−1
j : i, j ∈ I}))

There are natural restriction maps GalI → GalJ for I ⊃ J ; these are always surjections.1

1In general, if A ⊃ C are small sets of parameters, Gal(A)→ Gal(C) is surjective iff tp(A/C) is stationary.
If tp(A/C) is stationary and A |̂

C
B, then tp(AB/CB) is also stationary. In particular, if A and B are

independent over C = acl(C), then Gal(ABC)→ Gal(BC) is surjective. Here, apply this with

C = aclM (gi · g−1
j : i, j ∈ J)

A = aclM (gi · g−1
j : i, j ∈ I)

B = gj0

for some j0 ∈ J . The independence holds because tp(gj0/A) is generic.
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If A is an abelian group of coefficients, we have been defining H1(G,A) to be the first
cohomology group of the total complex of the double complex

...
...

0 //
∏

iC
2(Gali, A) //

OO

∏
i<j C

2(Gali, A) //

OO

· · ·

0 //
∏

iC
1(Gali, A) //

OO

∏
i<j C

1(Gali, A) //

OO

· · ·

0 //
∏

iC
0(Gali, A) //

OO

∏
i<j C

0(Gali, A) //

OO

· · ·

(1)

where Cj(Π, A) is continuous cochains of the profinite group Π, with (non-twisted) coeffi-
cients in A.

Theorem 1.2. H1(G,A) is isomorphic to the continuous homomorphisms from π1(G) to A.

2 Preliminary reductions

Since our coefficients are untwisted, the maps from the zeroth row of (1) to the first row all
vanish.2 Moreover, the cohomology groups of the bottom row are A, 0, 0, · · · , because

0→ A→
∏
i

A→
∏
i<j

A→
∏
i<j<k

A→ · · ·

is exact.
So, to calculate H1(G,A), we can drop the bottom row of (1) and take the zeroth coho-

mology group of the total complex of the result. In other words, H1(G,A) is just the kernel
of ∏

i

C1(Gali, A)→
∏
i

C2(Gali, A)⊕
∏
i<j

C1(Galij, A).

Now kerC1(GalI , A)→ C2(GalI , A) is just the set of continuous homomorphisms from GalI
to A.3 So, H1(G,A) is precisely the kernel of∏

i

Homcts(Gali, A)→
∏
i<j

Homcts(Galij, A). (2)

2C0(Π, A) is just A, and the map C0(Π, A)→ C1(Π, A) sends a ∈ A to the function g 7→ g · a− a. Since
the action on A is trivial, this vanishes.

3Recall that C1(Π, A) consists of continuous functions from Π to A. If f is such a function, its image δf
in C2(Π, A) is the function (g, h) 7→ g · f(h)− f(g ·h) + f(g). If the action of Π on A is trivial, as it is in our
case, then δf = 0 if and only if f is a homomorphism, clearly.
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Let G denote Gal1,...,n, and let KI denote the kernel of G → GalI . Since all the restriction
maps are surjective, GalI is G/KI . A continuous homomorphism from GalI to A is equivalent
to a continuous homomorphism G → A whose kernel contains K.

Consequently, an element of the kernel of (2) consists of an n-tuple (f1, . . . , fn) of con-
tinuous homomorphisms G → A such that ker fi contains Ki, and for every i < j, fi and
fj induce the same map from G/Kij to A. This last condition is equivalent to fi = fj.
So really, an element of H1(G,A) is just a continuous homomorphism f : G → A whose
kernel contains every Ki, or equivalently, contains K1K2 · · ·Kn (which is indeed a normal,
topologically closed subgroup).

So it remains to identify π1(G) with G/(K1K2 · · ·Kn). Call this group Π.
For simplicity, we will assume henceforth that n = 2. It can be shown that Π

doesn’t depend on the choice of the gi, or on n, as long as n > 1. At any rate, I showed
somewhere else that H1(G,A) can be calculated with n = 2 and doesn’t depend on the gi.

So, Π = G/K1K2.

2.1 Some categories

2.2 Covers from group extensions

Definition 2.1. If H is a finite group cover of G, an H-cover of G is an M-definable set
S with an M-definable transitive action of H on S, and an M-definable map πS : S → G
which is a map of H-sets, viewing G as an H-set via the left action.

A morphism of H-covers S → S ′ is an M-definable map f : S → S ′ of H-sets, such that
πS′ ◦ f = πS. This makes H-covers into a category.

If H ′ dominates H, then any H-cover can be made canonically into an H ′-cover, via the
usual way of viewing H-sets as H ′-sets under the map H ′ → H. In fact, H-covers embed
into H’-covers via a full and faithful functor, i.e., an embedding of categories.

Definition 2.2. The category of finite set covers of G is the colimit4 of the categories of
H-covers, as H ranges over the finite group covers of G.

Remark 2.3. This category can also be described more concretely as the category whose
objects are finite group covers πH : H → G of G, but whose morphisms H → H ′ are those
of the form

h 7→ φ(h) · k

where φ is a morphism of finite group covers, and k is an element of kerH ′ → G. That is,
we allow homomorphisms and translations by elements of the fiber over 1.

(We may be subtly using the fact that π1(G) is abelian here. I’ll try to avoid using this
remark in the future.)

4Or rather, homotopy colimit, if that makes a difference. As long as the operation of taking this kind of
directed colimit respects equivalences, it shouldn’t matter.

4



If 1→ K → H → G is a finite group cover of G, there is a functor from the category of
H-covers of G to the category of finite sets with a transitive action of K, namely the functor
which sends πS : S → G to π−1

S (1).

Exercise 2.4. This is an equivalence of categories.

Taking the colimit over H, it follows that there is an equivalence of catgories between
finite set covers of G and finite sets with a transitive continuous π1(G) action, and the functor
between these categories is given by taking the fiber over the identity.

2.3 Covers?

Recall that Gal12 = G, Gali = G/Ki, and Π = G/K1K2.
If S is any set of parameters, the category of finite sets with continuous Gal(S)-action

is equivalent to the category of finite S-definable sets.5 Under this equivalence, sets with a
transitive Gal(S)-action correspond to finite S-definable sets which isolate algebraic types
over S. That is, a finite S-definable set X corresponds to a finite set with transitive Gal(S)-
action if and only if all elements of X have the same type over S.

The following categories are equivalent:

• The category of finite sets with continuous Π-action.

• The category of triples (S1, S2, f) where Si is a finite set with Gali-action, for i = 1, 2,
and f is a Galij-equivariant bijection S1 to S2.

• The category of triples (X1, X2, f), where Xi is a finite giM -definable set, and f is a
g1 aclM(g2 · g−1

1 )-definable bijection between X1 and X2.

Under this equivalence, a triple (X1, X2, f) corresponds to a transitive Π-set if one of the
following equivalent conditions holds:

• Every element of X1 has the same type over g1M .

• Every element of X2 has the same type over g2M .

Let C be the category of triples (X1, X2, f) satisfying these equivalent conditions. The
map Fi : (X1, X2, f) 7→ Xi is a functor from C to finite sets, for i = 1, 2, and clearly f yields
a natural isomorphism between F1 and F2. The following diagram of categories commutes,
up to natural isomorphism:

FiniteTransitiveΠSets //

))

C
F1 or F2

��
FinSet

5There is an obvious forgetful functor from finite S-definable sets to finite sets with a Gal(S)-action. This
is clearly faithful, easily full, and essentially surjective by elimination of imaginaries.
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The category of triples (X1, X2, f) can be thought of as “covers” defined by glueing data,
for the following reason, which won’t be used in what follows, since it doesn’t seem to line
up with the kind of covers of G we were considering earlier. If not interested, skip to §2.4.

We can define a category of “finite covers” of the type-definable set

G1 := {x ∈ G : g1 · x is generic over M}

A cover should be a type-definable set Σ over M , and a relatively definable map π : Σ→ G1

with finite fibers, such that x 7→ g1 ·π(x) is M -definable. A map between such covers should
be an M -definable map making the obvious diagram commute.

We can similarly define a notion of “finite covers” of G2. For

G12 = {x ∈ G : g1 · x is generic over aclM(g2 · g−1
1 )}

we need to replace M with aclM(g2 ·g−1
1 ). There are functors from finite covers of Gi to finite

covers of G12. The category of “covers of G” should be6 the (homotopy or category-theoretic)
pullback of

Covers(G1)

��
Covers(G2) // Covers(G12)

That is, a “cover of G” should be a cover Si of Gi for i = 1, 2, and an isomorphism between
the induced covers of G12 coming from S1 and S2.

Now, it turns out that the category of covers of Gi is equivalent to the category of finite
sets defined over giM , via the functor which takes fibers over the identity 1 ∈ G. In fact,
one checks that the category of finite covers of GI is equivalent to the category of GalI-sets
in a compatible way. So the category of “covers of G” is nothing but the category of finite
Π-sets.

2.4 Some Grothendieck Galois Theory

Fact 2.5. Suppose Π1 and Π2 are two profinite groups. Let CΠ denote the category of finite
non-empty sets with continuous transitive Π-action, for Π any profinite group. Suppose we
have a functor F : CΠ1 → CΠ2 such that the following diagram commutes, up to isomorphism
of functors:

CΠ1

F //

$$

CΠ2

��
FinSet

where the functors to FinSet are the forgetful functors to finite sets. Then, F is isomorphic
to a functor coming from a surjective homomorphism Π2 → Π1. The functor F is full and
faithful, and is essentially surjective if and only if Π2 → Π1 is an isomorphism.

6If G was the union of G1 and G2, and G12 was their intersection, this would certainly make sense.
Neither of these statements is true, but the set of points where they fail has high enough codimension that
it shouldn’t matter.
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This is essentially a part of Grothendieck’s Galois theory, if I recall correctly. At any
rate, it’s not all that hard to see directly. A functor F compatible with the forgetful functors
as above amounts to a functorial way of assigning a Π2-action to Π1-sets. To show that this
must arise from a homomorphism Π2 → Π1, it suffices to show that for every finite quotient
Q of Π1, and every p ∈ Π2, there is some q ∈ Q such that for every Q-set X, the assigned
Π2-action on X has p act by multiplication by q. (Because then the map p 7→ q must be
a homomorphism Π2 → Q, and as Q varies these must assemble into a homomorphism
Π2 → Π1.) This in turn follows by looking at how Π2 acts on Q with the left regular action:
if p ∈ Π2 maps 1 ∈ Q to q ∈ Q, then for any Q-set X, and any x ∈ X, there is a unique
morphism of Q-sets from Q to X sending 1 to x. It necessarily sends q to q ·x. Since it must
also be a morphism of Π2-sets, it sends p · 1 = q to p · x. So p · x = q · x.

So any such functor must come from a homomorphism Π2 → Π1. The homomor-
phism must be surjective, or else it would not send connected/transitive Π1-sets to con-
nected/transitive Π2-sets. Once we know that Π2 → Π1 is surjective, the functor F is
automatically full and faithful, and it is easy to see that it is an equivalence if and only if
Π2 → Π1 is an isomorphism. (Otherwise, there are Π2-sets for which the action does not
factor through Π1.)

2.5 Another reduction

Returning to our model-theoretic setting, we want to produce an isomorphism between
the profinite groups Π and π1(G). By §2.4, it suffices to produce a functor from (finite,
continuous, transitive) π1(G)-sets to Π-sets, that is essentially surjective, and compatible
with the forgetful functors.

Above, we have identified the category of suitable π1(G)-sets with the category of finite
set covers of G. The forgetful functor is identified with the fiber functor at 1.

Likewise, we identified the category of suitable Π-sets with the category of triples (X1, X2, f),
with Xi a finite giM -definable set, and f a g1 aclM(g2 · g−1

1 )-definable bijection X1 → X2,
such that each element of Xi has the same type over giM , for either/both values of i. Un-
der this equivalence, the forgetful functor to finite sets corresponds to the functor sending
(X1, X2, f) to X1.

Let α be some arbitrary element of the inverse limit of π−1
H (g2 · g−1

1 ) as H ranges over
finite group covers of G. So α is a system 〈αH〉 of elements αH ∈ H all of which map to
g2 · g−1

1 in G. Each αH is in aclM(g2 · g−1
1 ), of course.

(If you like, you can think of α as an element of the pro-definable group that is the inverse
limit of the finite group covers of G. This pro-definable group acts on the finite set covers
of G.)

Using α, we get a functor Fα from the category of finite set covers of G to the category
of triples (X1, X2, f) as above. Specifically, given a finite set cover πS : S → G, where S
is acted on transitively by H a finite group cover of G, we set Xi = π−1

S (gi), and let f be
induced by the action of αH ∈ H on S (so f comes from “multiplication by α”). This does
not depend on the choice of H, and is functorial.
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To apply Fact 2.5, we just need to show that the functor

S
Fα7→ (X1, X2, f) 7→ X1

from finite set covers of G, to finite sets, is isomorphic to the fiber-at-1 functor. An iso-
morphism can be exhibited by choosing some element β in the inverse limit of π−1

H (g1), as
πH : H → G ranges over finite group covers of G. Then “multiplication by β” gives a
functorial map from π−1

S (1) to π−1
S (g1) = X1 as S ranges through finite set covers of G, in

the same way that f came from “multiplication by α.”
In light of all the discussion above, to prove Theorem 1.2, it remains to prove that Fα is

essentially surjective.
That is, we need to prove the following statement:
Let Xi be a finite non-empty giM -definable set for i = 1, 2. Suppose every element of X2

has the same type over g2M . Suppose f is a g1 aclM(g2 · g−1
1 )-definable bijection X1 → X2.

Then there is a finite set cover πS : S → G and M -definable bijections between π−1
S (gi) and

Xi, such that the following diagram commutes:

π−1
S (g1) //

��

X1

��
π−1
S (g2) // X2

where the vertical arrow π−1
S (g1)→ π−1

S (g2) comes from “multiplication by α.”

3 Generically given groups

The proof of this basically boils down to a statement about generically given groups and
generically given covers of groups. We collect this fact in the following theorem.

Theorem 3.1. Suppose G is a connected group of finite Morley rank, defined over a model
M . Suppose that g1, g2, g3 are independent and generic over M . Suppose that ai for 1 ≤ i ≤ 3
and dij for 1 ≤ i < j ≤ 3 are tuples, satisfying the following conditions:

• For each i, ai ∈ aclM(gi) and gi ∈ dclM(ai).

• For each i < j, dij ∈ aclM(gj · g−1
i ), and gj · g−1

i ∈ dclM(dij).

• The type of (ai, gi) over M does not depend on i.

• The type of (ai, aj, dij) over M does not depend on i < j.

• a1 and a2 are interdefinable over d12M .

• d12 is interdefinable over M with the canonical base of tp(a1a2/d12M), which is sta-
tionary because a2 ∈ dclM(a1d12) and tp(a1/d12M) is a non-forking extension of the
stationary type tp(a1/M).

8



Then there is a finite group cover H and an H-cover S of G (both defined over M), and
elements s1, s2, s3 ∈ S and hij ∈ H such that

• gj · g−1
i = πH(hij)

• gi = πS(si)

• hij is interdefinable with dij over M , and tp(hijdij/M) doesn’t depend on i, j.

• si is interdefinable with ai over M , and tp(siai/M) doesn’t depend on i.

• h13 = h23 · h12 and sj = hijsi for i < j.

Proof (sketch). Let p be the type of any of the ai over M . Let q be the type of any of the dij
over M . The fact that each ai is interalgebraic with gi, and that dij is interalgebraic with
gj · g−1

i , easily has as a consequence that ai |̂ M dij and aj |̂ M dij. If aj = f(ai, dij), then
f(−, dij) induces a function from realizations of p to realizations of p, and the assumption
on canonical bases makes dij be a code for this function. We get the group H by closing the
set of germs of such functions under composition. That is, an element of H is the germ at p
of a function of the form f(f(−, d), d′) for d and d′ two realizations of q. In this group, d13

ends up being the product of d12 and d23.
One gets S by looking at germs of functions from q to p. Each realization of p yields such

a function f(a,−), and the closure of this collection under the action of H yields the set S.
The maps H → G and S → G come from extending homomorphically the maps on

generics, which in turn come from the M -definable function which sends dij to gj · g−1
i .

This function does not depend on i, j, because the assumptions imply that the type of
(ai, aj, gi, gj, dij) over M does not depend on i, j.

4 Applying generically given groups

Now suppose we are given a g1-definable set φ(M, g1) and a g0-definable set ψ(M, g0), and

f : φ(M, g1)→ ψ(M, g0)

defined over g0 aclM(g1 · g−1
0 ), such that all elements of φ(M, g1) have the same type over

Mg1. Write f as fg0,c1 , for some c1 ∈ aclM(g1 · g−1
0 ). Enlarging c1, we may assume that

g1 · g−1
0 ∈ dclM(c1). Now c1 and g1 · g−1

0 are interalgebraic over M , and

g1 · g−1
0 |̂

M

g0, so c1 |̂
M

g0.

In particular, tp(c1/Mg0) is stationary. Let c2, c3 be independent realizations of this type,
over Mg0. Let g2, g3 be chosen so that

c1g1 ≡Mg0 c2g2 ≡Mg0≡ c3g3 ≡Mg0 .
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As g1 · g−1
0 ∈ dclM(c1), it follows that g1 ∈ dclM(c1, g0). Therefore, the independence of

c1, c2, c3 over Mg0 implies the independence of c1g1, c2g2, c3g3 over Mg0. Also, c1g1, c2g2, and
c3g3 have the same type over Mg0. In particular, c1g1, c2g2, c3g3 and g1, g2, g3 are Morley
sequences over Mg0. As g1 and g0 are independent generics, it follows that g0, g1, g2, g3 is a
Morley sequence of generics, over M .

Moreover, for i = 1, 2, 3, we have a bijection

fg0,ci : φ(M, gi)→ ψ(M, g0),

and ci ∈ aclM(gi · g−1
0 ).

Consider the composition

h12 := f−1
g0,c2
◦ fg0,c1 : φ(M, g1)→ φ(M, g2).

The code for this bijection (viewed as a finite set of ordered pairs) is in aclM(g1, g2), and also
in

dclM(g0, aclM(g1 · g−1
0 ), aclM(g2 · g−1

0 ))

= dclM(g1, aclM(g1 · g−1
0 ), aclM(g2 · g−1

0 ))

Using the finite satisfiability of tp(g1 ·g−1
0 / aclM(g1, g2)) in M , it follows that ph12q is actually

in
dclM(g1 aclM(g2 · g−1

1 )).

(Indeed, if r(x) is tp(g1 · g−1
0 / aclM(g1, g2)), then some finite subtype of r(x) witnesses the

fact that
ph12q ∈ dclM(g1, aclM(x), aclM(g2 · g−1

1 · x)).

If we now choose x ∈M with this property, then

ph12q ∈ dclM(g1,M, aclM(g2 · g−1
1 ))

as claimed.)
So we can write h12 as hg1,e12 for some e12 in aclM(g2 ·g−1

1 ). Enlarging e12, we may assume
that g2 · g−1

1 ∈ dclM(e12).
On the set of realizations of tp(e12/M, g2 · g−1

1 ), consider the equivalence relation

e ∼ e′ ⇐⇒ hg1,e = hg1,e′ .

This equivalence relation is definable over M ∪ {g2 · g−1
1 } because of g1 |̂ M g2 · g−1

1 , and
definability of types in stable theories. Let d12 be the equivalence class of e12. Then:

• d12 ∈ aclM(g2 · g−1
1 )

• g2 · g−1
1 is still in dclM(d12)

• h12 is defined over Mg1d12, so we can write it as hg1,d12 .
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• If d′ is a conjugate of d12 over dclM(g2 · g−1
1 ), then hg1,d′ 6= hg1,d12 .

As c1g1, c2g2, c3g3 was a Morley sequence over Mg0, it follows that tp(cicjgigj/Mg0) does
not vary for 1 ≤ i < j ≤ 3. Therefore we can find d23 and d13 such that tp(cicjgigjdij/Mg0)
does not vary for 1 ≤ i < j ≤ 3.

By choice of d12, it follows that

φ(M, g1)
fg0,c1 //

hg1,d12
��

ψ(M, g0)

φ(M, g2)

fg0,c2
88

commutes. Therefore,

φ(M, gi)
fg0,ci //

hgi,dij
��

ψ(M, g0)

φ(M, gj)

fg0,cj
88

commutes for 1 ≤ i < j ≤ 3. Because all the maps are bijections, it follows that

φ(M, g1)

hg1,d12
��

hg1,d13

&&
φ(M, g2)

hg2,d23// φ(M, g3)

commutes, i.e., hg2,d23 ◦ hg1,d12 = hg1,d13 .
Now choose some b1 ∈ φ(M, g1), and let

b2 = hg1,d12(b1) ∈ φ(M, g2)

b3 = hg2,d23(b2) = hg1,d13(b1)

Let ai = bigi (concatenation) for each i. We claim that Theorem 3.1 applies to our chosen
ai, gi, dij.

• As we noted above, g1, g2, g3 are a Morley sequence over Mg0. Since g1 is generic over
Mg0, it follows that g0, g1, g2, g3 is an independent sequence of generics over M . So
g1, g2, g3 are independent and generic over M .

• For each i, gi ∈ dclM(ai) because ai = bigi. On the other hand, bi is in the finite
Mgi-definable set φ(M, gi), so ai ∈ aclM(gi).

• It was noted above that dij ∈ aclM(gj · g−1
i ) and gj · g−1

i ∈ dclM(dij).

• For i < j, gi ≡M gj of course. If σ is an automorphism over M sending gi to gj, then
σ(bi) ∈ φ(M, gj). All elements of φ(M, gj) have the same type over Mgj (because we
assumed this for j = 1, and symmetry), so

σ(bi) ≡Mgj bj, or equivalently, σ(bi)σ(gi) ≡M bjgj.

Thus bigi ≡M bjgj. So tp(aigi/M) does not depend on M .
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• By choice of d13 and d23, tp(gigjdij/M) does not depend on i, j. So for i < j and
i′ < j′, we can find σ over M , sending gigjdij to gi′gj′di′j′ . Now σ(bi) is in φ(M, gi′).
All elements of φ(M, gi′) have the same type over Mgi′ , so

σ(bi) ≡Mgi′
bi′

Equivalently
σ(bi)σ(gi) ≡M bi′gi′ .

Now tp(bi′gi′/M) is stationary and

σ(bi)bi′gi′ |̂
M

di′j′

(because the left side is interalgebraic with gi′ and the right side is interalgebraic with
g−1
i′ · gj′ , which is independent from gi′ .) By stationarity, it follows that

σ(bi)σ(gi) ≡Mdi′j′
bi′gi′ ,

or equivalently
σ(bi, gi, dij) ≡M bi′gi′di′j′ .

Thus
bigidij ≡M bi′gi′di′j′ .

Now gi · g−1
j ∈ dclM(dij) via a function not depending on i, j, so

bigigjdij ≡M bi′gi′gj′di′j′ .

Likewise, bj = hgi,dij(bi) is definable from gi and bi and dij in a way not depending on
i, j, so

bigibjgjdij ≡M bi′gi′bj′gj′di′j′

As i, j and i′, j′ were arbitrary, it follows that tp(ai, aj, dij/M) does not depend on i, j.

• a1 and a2 are interdefinable over d12M : given a1d12M , we can define g1 and g2 · g−1
1 ,

and hence hg1,d12(b1) = b2 and g2. Given a2d12M , we can define g2 and g2 · g−1
1 , hence

g1 and then h−1
g1,d12

(b2) = b1.

It remains to check that d12 is interdefinable over M with a canonical base for the stationary
type tp(a1a2/d12M). If C is this canonical base, then certainly C ⊆ dclM(d12M), so it
remains to show that C is no smaller, i.e., that d12 ∈ dclM(C). First note that

g2 · g−1
1 ∈ dcl(a1, a2) ∩ dclM(d12M),

so certainly g2 · g−1
1 is definable from C. Therefore d12 is algebraic over C. If d12 were not

definable, it would have some conjugate d′ over C. This would also be a conjugate over
g2 · g−1

1 , of course, so by choice of d12, we have hg1,d′ 6= hg1,d12 . So there is some β ∈ φ(M, g1)
such that hg1,d′(β) 6= hg1,d12(β).
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Each of d12 and d′ is interalgebraic over M with g2 · g−1
1 , which is independent from g1.

Since β and b1 are algebraic over g1, it follows that

b1βg1 |̂
M

d12d
′.

Now b1 and β have the same type over Mg1, hence b1g1 and βg1 have the same type over
M . As types over M are stationary, it follows that

b1g1 ≡Md12d′ βg1, or equivalently b1 ≡Md12d′g1 β.

The fact that hg1,d12(β) 6= hg1,d′(β) therefore implies that hg1,d12(b1) 6= hg1,d′(b1).
Let N be a mildly saturated and homogeneous model containing Md. Moving N , we

may assume that a1a2 |̂ Md
N . Then

tp(a1a2/N) is a non-forking extension of tp(a1a2/Md12)

and in particular has the same canonical base. Also,

d′ ∈ aclM(g2 · g−1
1 ) = aclM(d12) ⊂ N,

so d′ ∈ N , and C ∈ N . Because we chose N to be mildly saturated and homogeneous, we
can find an automorphism σ of N which fixes C and sends d12 to d′. Because σ fixes the
canonical base of tp(a1a2/N), it can be extended to an automorphism of the monster fixing
a1a2. Now we have a contradiction, because σ fixes b1, b2, g1, g2 and

hg1,d12(b1) = b2

hg1,d′(b1) 6= b2,

so that d′ 6≡Mb1b2g1g2 d12. So the assumption that d12 was not definable over C was false.
We have verified that Theorem 3.1 applies, yielding a finite group cover H of G and a

finite set cover S, among other things.
From the conclusion of that theorem, we get s1 ∈ π−1

S (g1) which is interdefinable over
M with a1. This yields an Mg1-definable bijection between φ(M, g1), which is the set of
conjugates of b1 over Mg1, and the set of conjugates of s1 over Mg1. We claim that this
latter set is exactly π−1

S (g1). First of all, if s′ ≡Mg1 s1, then certainly πS(s′) ≡Mg1 πS(s1) = g1,
so πS(s′) = g1. Conversely, suppose πS(s′) = g1. Then s′ has the same rank over M as g1,
and is therefore generic. Since S has a single generic type (being an orbit of a connected
group H), it follows that s′ ≡M s1. Then (s′, πS(s′)) = (s′, g1) ≡M (s1, πS(s1)) = (s1, g1), so
s′ ≡Mg1 s

′. So we get an Mg1-definable bijection µg1 between φ(M, g1) and π−1
S (g1), sending

b1 to s1.
Now consider the commutative square of bijections

π−1
S (g0) //

��

ψ(M, g0)

π−1
S (g1)

µg1 // φ(M, g1)

fg0,c1

OO
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where the vertical arrow from π−1
S (g0) to π−1

S (g1) comes from multiplication by α or αH .
There is a unique bijective dotted arrow making the diagram commute. If ν denotes this
bijection, then ν is on one hand definable over aclM(g0) because it is a bijection between
two g0M -definable sets. On the other hand, it is a composition of three maps which are
respectively definable over

• g0 and α ∈ aclM(g1 · g−1
0 )

• µg1 which is g1M -definable, hence definable from g0 and g1 · g−1
0 .

• fg0,c1 which is defined over g0 and c1 ∈ aclM(g1 · g−1
0 ).

So
pνq ∈ aclM(g0) ∩ dclM(g0 aclM(g1 · g−1

0 ))

Using the finite satisfiability of tp(g1 · g−1
0 / aclM(g0)) in M , it follows that pνq is in fact in

dclM(g0).
Therefore, in the category of triples (X0, X1, f), our original triple (X0, X1, f) is isomor-

phic to Fα(S), completing the proof of Theorem 1.2.
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