C-minimal expansions of ACVF eliminate exists infinity

Will Johnson

June 8, 2014

1 Whatever

Let T be a C-minimal expansion of ACVF in a language L. We will show that T^{eq} eliminates \exists^{∞} . Suppose not. Let M_0 be a model of T^{eq} and $\phi(x; y)$ be a formula such that

$$\{b \in M_0 : \phi(M_0; b) \text{ is finite}\}$$

is not definable. In particular, for every $n \in \mathbb{N}$, there is some b_n such that $\phi(M_0; b)$ is finite but has size at least n.

Let N_0 be the expansion of M_0 obtained by adding a new sort $\mathbb{N} \cup \{\infty\}$ and a function symbol $f_{\psi}(y)$ taking values in $\mathbb{N} \cup \{\infty\}$ for every predicate $\psi(x; y) \in L$, interpreted in N_0 as

$$f_{\psi}(b) = |\psi(M_0; b)|$$

In particular, $n \leq f_{\phi}(b_n) < \infty$ for each $n \in \mathbb{N}$.

Let N be a saturated elementary extension of N_0 and let M be the reduct of M to L. By saturation, there is some $b_{\omega} \in M$ such that $\mathbb{N} < f_{\phi}(b_{\omega}) < \infty$ Say that a definable subset $\psi(M; b)$ of M is *pseudofinite* if $f_{\psi}(b)$ is less than ∞ . By the assumption, M has at least one infinite pseudofinite set, namely $\phi(M; b_{\omega})$.

Say that a definable set X in M is wild if there is some pseudofinite infinite definable family of subsets of X. That is, there is some infinite pseudofinite definable set Y and some definable family $X_b \subset X$ for $b \in Y$ such that $X_b \neq X_{b'}$ for $b \neq b'$ in Y. Say that a definable set X in M is tame if X is not wild.

Let K denote the home sort (the valued field sort). Since $\phi(M; b_{\omega})$ is in K^{eq} , the infinite pseudofinite set $\phi(M; b_{\omega})$ sits inside some 0-definable quotient of K^n , for some n. Consequently, $\phi(M; b_{\omega})$ is (the index set of) an infinite pseudofinite definable family of subsets of K^n , and K^n is wild. Therefore, it suffices to show that K^n is tame for every n.

Claim 1.1. Every pseudofinite subset of Γ (the value group) is finite.

Proof. This follows from the fact that Γ is o-minimal and densely-ordered.

Claim 1.2. If S is a pseudofinite set of balls of the same radius and the same type (open/closed), then S is finite.

Proof. This follows by C-minimality.

More precisely, write S as $\psi(M; b)$ for some formula $\psi(x; y)$ and parameter b. Let $\chi(z; y)$ be the formula such that $\chi(M; c)$ is the union of the balls in $\psi(M; c)$ for every $c \in M$. C-minimality ensures that there is an integer n such that $\chi(M; c)$ is a boolean combination of at most n balls, for every c.

The following statement holds in M_0

For every $c \in M_0$, if $\psi(M_0; c)$ is a set of balls of the same radius and the same type, then

$$|\psi(M_0;c)| < \infty \implies |\psi(M_0;c)| \le n.$$

Indeed, if $\psi(M_0; c)$ is a finite set $\{B_1, \ldots, B_m\}$ of balls of the same radius and same type, then the B_i are pairwise disjoint, so their union $\chi(M_0; c)$ is the disjoint union of B_1, \ldots, B_m . This disjoint union cannot be written as a boolean combination of fewer than m balls, so $n \ge m$.

Since N is an elementary extension of N_0 , the following holds:

For every $c \in M$, if $\psi(M; c)$ is a set of balls of the same radius and the same type, then

$$f_{\psi}(c) < \infty \implies f_{\psi}(c) \le n.$$

In particular, $S = \psi(M; b)$ has cardinality at most n.

Claim 1.3. If S is a pseudofinite set of balls, then S is finite.

Proof. Writing S as a union of the closed balls and the open balls, we may assume that all the elements of S are of the same type. Let $R \subset \Gamma$ be the set of radii of balls in S. Since S surjects onto R and S is pseudofinite, so is R. So R is finite, by Claim 1.1. The fibers of $S \rightarrow R$ are pseudofinite, hence finite by Claim 1.2. So S is finite.

Claim 1.4. K^1 is tame. That is, any pseudofinite set of subsets of K^1 is finite.

Proof. Let D be a definable family of subsets of K^1 . Suppose that D is pseudofinite. By C-minimality, each element of D has a canonical minimal swiss-cheese decomposition. Let S be the set of balls involved in the swiss cheese decompositions of elements of D. Then S is definable. It is also pseudofinite, since D is pseudofinite. By Claim 1.3, S is finite. As every element of D is a boolean combination of elements of S, and boolean algebras are locally finite, it follows that D is finite.

Claim 1.5. If X is tame, so is any (definable) subset of X. If X and Y are tame, then so is $X \cup Y$.

Proof. The first statement is clear, since there is less to check. For the second, let \mathcal{D} be a definable family of subsets of $X \cup Y$ which is pseudofinite. Note that $\{D \cap X : D \in \mathcal{D}\}$ is pseudofinite, because \mathcal{D} is pseudofinite, and hence finite, because X is tame. Similarly $\{D \cap Y : D \in \mathcal{D}\}$ is finite. Finally, the map

$$D \in \mathcal{D} \mapsto (D \cap X, D \cap Y)$$

is an injective map from \mathcal{D} to a cartesian product of finite sets.

Claim 1.6. Let $\pi : X \to Y$ be a definable map with finite fibers. If Y is tame, then so is X.

Proof. By saturation, there is a uniform upper bound k on the size of the fibers. We proceed by induction on k. The base case k = 1 is trivial. Suppose k > 1. Let \mathcal{D} be a pseudofinite definable family of subsets of X. Let

$$\mathcal{E} = \{\pi(D) : D \in \mathcal{D}\}$$

and

$$\mathcal{F} = \{ \pi(X \setminus D) : D \in \mathcal{D} \}$$

Then \mathcal{E} and \mathcal{F} are both pseudofinite definable families of subsets of Y. By tameness of Y, they are both finite. It suffices to show that the fibers of $\mathcal{D} \to \mathcal{E} \times \mathcal{F}$ are finite. Replacing \mathcal{D} with such a fiber, we may assume that $\pi(D)$ and $\pi(X \setminus D)$ don't depend on D, as D ranges over \mathcal{D} . Let $U = \pi(D)$ and $V = \pi(X \setminus D)$ for any/every $D \in \mathcal{D}$. Let $Y' = U \cap V$ and $X' = \pi^{-1}(Y')$. Then the map $D \mapsto D \cap X'$ is injective on \mathcal{D} , because every element D of \mathcal{D} contains $\pi^{-1}(U \setminus V)$ and is disjoint from $\pi^{-1}(V \setminus U)$. So it suffices to show that X' is tame. Let D be some arbitrary element of \mathcal{D} . Then $X' \cap D$ and $X' \setminus D$ each intersect every fiber of $X' \to Y'$, by choice of X'. In particular, the two maps

$$X' \cap D \to Y'$$
$$X' \setminus D \to Y'$$

have finite fibers of size less than k. By Claim 1.5, Y' is tame, and by induction, $X' \cap D$ and $X' \setminus D$ are tame. By Claim 1.5, X' is tame.

Claim 1.7. Suppose that $\pi : X \to Y$ is a definable surjection with finite fibers. Suppose that Y is tame. Then any pseudofinite definable set of sections of the surjection π is finite.

Proof. A section is determined by its image.

Claim 1.8. Suppose X and Y are tame. Then so is $X \times Y$.

Proof. Let \mathcal{D} be a pseudofinite definable family of subsets of $X \times Y$. For each $x \in X$, the set $Y_x := \{x\} \times Y \subset X \times Y$ is tame, so the collection

$$E_x := \{ D \cap Y_x : D \in \mathcal{D} \}$$

is finite. So $\pi : \bigcup_{x \in X} E_x \to X$ is a definable map of definable sets, with finite fibers. Each element $D \in \mathcal{D}$ induces a section of π , namely, the map σ_D sending a point $x \in X$ to (the code for) $D \cap Y_x$. This gives a definable injection from \mathcal{D} to sections of π . By Claim 1.7 and the fact that X is tame, it follows that \mathcal{D} is finite.

By Claims 1.8 and 1.4, K^n is tame for every n, so we have a contradiction.