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1 Whatever

Let T be a C-minimal expansion of ACVF in a language L. We will show that T eq eliminates
∃∞. Suppose not. Let M0 be a model of T eq and φ(x; y) be a formula such that

{b ∈M0 : φ(M0; b) is finite}

is not definable. In particular, for every n ∈ N, there is some bn such that φ(M0; b) is finite
but has size at least n.

Let N0 be the expansion of M0 obtained by adding a new sort N ∪ {∞} and a function
symbol fψ(y) taking values in N∪ {∞} for every predicate ψ(x; y) ∈ L, interpreted in N0 as

fψ(b) = |ψ(M0; b)|

In particular, n ≤ fφ(bn) <∞ for each n ∈ N.
Let N be a saturated elementary extension of N0 and let M be the reduct of M to L.

By saturation, there is some bω ∈M such that N < fφ(bω) <∞ Say that a definable subset
ψ(M ; b) of M is pseudofinite if fψ(b) is less than ∞. By the assumption, M has at least one
infinite pseudofinite set, namely φ(M ; bω).

Say that a definable set X in M is wild if there is some pseudofinite infinite definable
family of subsets of X. That is, there is some infinite pseudofinite definable set Y and some
definable family Xb ⊂ X for b ∈ Y such that Xb 6= Xb′ for b 6= b′ in Y . Say that a definable
set X in M is tame if X is not wild.

Let K denote the home sort (the valued field sort). Since φ(M ; bω) is in Keq, the infinite
pseudofinite set φ(M ; bω) sits inside some 0-definable quotient of Kn, for some n. Conse-
quently, φ(M ; bω) is (the index set of) an infinite pseudofinite definable family of subsets of
Kn, and Kn is wild. Therefore, it suffices to show that Kn is tame for every n.

Claim 1.1. Every pseudofinite subset of Γ (the value group) is finite.

Proof. This follows from the fact that Γ is o-minimal and densely-ordered.

Claim 1.2. If S is a pseudofinite set of balls of the same radius and the same type (open/closed),
then S is finite.
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Proof. This follows by C-minimality.
More precisely, write S as ψ(M ; b) for some formula ψ(x; y) and parameter b. Let χ(z; y)

be the formula such that χ(M ; c) is the union of the balls in ψ(M ; c) for every c ∈ M .
C-minimality ensures that there is an integer n such that χ(M ; c) is a boolean combination
of at most n balls, for every c.

The following statement holds in M0

For every c ∈ M0, if ψ(M0; c) is a set of balls of the same radius and the same
type, then

|ψ(M0; c)| <∞ =⇒ |ψ(M0; c)| ≤ n.

Indeed, if ψ(M0; c) is a finite set {B1, . . . , Bm} of balls of the same radius and same type,
then the Bi are pairwise disjoint, so their union χ(M0; c) is the disjoint union of B1, . . . , Bm.
This disjoint union cannot be written as a boolean combination of fewer than m balls, so
n ≥ m.

Since N is an elementary extension of N0, the following holds:

For every c ∈ M , if ψ(M ; c) is a set of balls of the same radius and the same
type, then

fψ(c) <∞ =⇒ fψ(c) ≤ n.

In particular, S = ψ(M ; b) has cardinality at most n.

Claim 1.3. If S is a pseudofinite set of balls, then S is finite.

Proof. Writing S as a union of the closed balls and the open balls, we may assume that all
the elements of S are of the same type. Let R ⊂ Γ be the set of radii of balls in S. Since
S surjects onto R and S is pseudofinite, so is R. So R is finite, by Claim 1.1. The fibers of
S � R are pseudofinite, hence finite by Claim 1.2. So S is finite.

Claim 1.4. K1 is tame. That is, any pseudofinite set of subsets of K1 is finite.

Proof. Let D be a definable family of subsets of K1. Suppose that D is pseudofinite. By
C-minimality, each element of D has a canonical minimal swiss-cheese decomposition. Let
S be the set of balls involved in the swiss cheese decompositions of elements of D. Then S is
definable. It is also pseudofinite, since D is pseudofinite. By Claim 1.3, S is finite. As every
element of D is a boolean combination of elements of S, and boolean algebras are locally
finite, it follows that D is finite.

Claim 1.5. If X is tame, so is any (definable) subset of X. If X and Y are tame, then so
is X ∪ Y .

Proof. The first statement is clear, since there is less to check. For the second, let D be a
definable family of subsets of X ∪ Y which is pseudofinite. Note that {D ∩ X : D ∈ D}
is pseudofinite, because D is pseudofinite, and hence finite, because X is tame. Similarly
{D ∩ Y : D ∈ D} is finite. Finally, the map

D ∈ D 7→ (D ∩X,D ∩ Y )

is an injective map from D to a cartesian product of finite sets.
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Claim 1.6. Let π : X → Y be a definable map with finite fibers. If Y is tame, then so is X.

Proof. By saturation, there is a uniform upper bound k on the size of the fibers. We proceed
by induction on k. The base case k = 1 is trivial. Suppose k > 1. Let D be a pseudofinite
definable family of subsets of X. Let

E = {π(D) : D ∈ D}

and
F = {π(X \D) : D ∈ D}

Then E and F are both pseudofinite definable families of subsets of Y . By tameness of Y ,
they are both finite. It suffices to show that the fibers of D → E ×F are finite. Replacing D
with such a fiber, we may assume that π(D) and π(X \D) don’t depend on D, as D ranges
over D. Let U = π(D) and V = π(X \ D) for any/every D ∈ D. Let Y ′ = U ∩ V and
X ′ = π−1(Y ′). Then the map D 7→ D ∩X ′ is injective on D, because every element D of D
contains π−1(U \ V ) and is disjoint from π−1(V \U). So it suffices to show that X ′ is tame.
Let D be some arbitrary element of D. Then X ′ ∩D and X ′ \D each intersect every fiber
of X ′ → Y ′, by choice of X ′. In particular, the two maps

X ′ ∩D → Y ′

X ′ \D → Y ′

have finite fibers of size less than k. By Claim 1.5, Y ′ is tame, and by induction, X ′∩D and
X ′ \D are tame. By Claim 1.5, X ′ is tame.

Claim 1.7. Suppose that π : X → Y is a definable surjection with finite fibers. Suppose that
Y is tame. Then any pseudofinite definable set of sections of the surjection π is finite.

Proof. A section is determined by its image.

Claim 1.8. Suppose X and Y are tame. Then so is X × Y .

Proof. Let D be a pseudofinite definable family of subsets of X × Y . For each x ∈ X, the
set Yx := {x} × Y ⊂ X × Y is tame, so the collection

Ex := {D ∩ Yx : D ∈ D}

is finite. So π :
⋃
x∈X Ex → X is a definable map of definable sets, with finite fibers. Each

element D ∈ D induces a section of π, namely, the map σD sending a point x ∈ X to (the
code for) D∩Yx. This gives a definable injection from D to sections of π. By Claim 1.7 and
the fact that X is tame, it follows that D is finite.

By Claims 1.8 and 1.4, Kn is tame for every n, so we have a contradiction.
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