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1 The conjectural picture

Let T be an almost strongly minimal theory. Work inside a monster model M of T eq. Let M
be a model (a small elementary substructure of M). If G is an M -definable group, and H is
an M -definable subgroup, we can consider the homogeneous space G/H with the left-action
by G. We will define “etale cohomology groups” Hn

M(G/H,A) for all n ≥ 0 and all abelian
groups A. We would like the following things to hold:

1. If T is ACFp and A is finite of order prime to p, then Hn
M(G/H,A) should agree with

the usual etale cohomology of the variety G/H with coefficients in A. In particular, it
shouldn’t depend on M .

2. More generally, if G and H are algebraic groups over a definable field K (not necessarily
pure), and A has order prime to charK, then Hn

M(G/H,A) should agree with the usual
etale cohomology of the variety G/H.

3. For fixed G and H, there should be some non-zero integer N such that for all finite
abelian groups A with order prime to N , Hn

M(G/H,A) is finite and does not depend
on the choice of M . We call these “suitable” A, and drop the subscript M .

4. If
H1
� � //

��

G1

��
H2
� � // G2

is a commutative diagram of definable homomorphisms of groups (yielding a definable
map G1/H1 → G2/H2), and A is suitable, there should be a map Hn(G2/H2, A) →
Hn(G1/H1, A).

5. If G1/H1 → G2/H2 is an isomorphism, the induced map on suitable cohomology groups
should be an isomorphism. For example, Hn(G,A) should be the same whether we
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regard G as a homogeneous space under the left regular action of G, or the two-sided
action of G×G, corresponding to the commutative diagram

1 // 1 �
� //

��

G // //

ι1
��

G // 1

1 // G �
� ∆ // G×G µ // // G // 1

where ∆ is the diagonal map, µ is the map (g, h) 7→ g ·h−1, and ι1 is the inclusion of the
first factor. In particular, we should be able to unambiguously talk about Hn(G,A).

6. Ideally, any map of homogeneous spaces which is defined using the group operation and
definable homomorphisms should yield a map on the cohomology groups in the other
direction. More precisely, if C is the category of pairs (G,H) with H a subgroup of G,
and D is the category of definable sets, there is a natural functor C → D sending (G,H)
to G/H. Let C ′ be the smallest subcategory of D containing the image of C → D,
and closed under taking inverses of morphisms which happen to be isomorphisms in D.
Then we would like Hn(−, A) to extend to a well-defined contravariant functor from
C ′ to finite abelian groups.

7. Hn(G/H,A) should depend functorially on A, and short exact sequences 0 → A′ →
A→ A′′ → 0 should yield the usual long exact sequences on cohomology groups.

8. If S and S ′ are two homogeneous spaces, there should be a Künneth formula relating
H•(S × S ′, A) to H•(S,A) and H•(S ′, A).

9. There should be a cup-product on H•(S,R), for R a suitable ring.

10. There should be a Hopf-algebra structure on H•(G,R), for G a group and R a ring.
(This would probably follow from the previous points: it would essentially just mean
that H•(G,R) has all the algebraic structure obtained by taking the structure mor-
phisms µ : G × G → G and ε : 1 → G and the inverse map G → G and applying the
contravariant functor H•(−, R) to them.)

11. If S has n connected components, then Hk(S,A) should be the direct sum of n copies
of Hk(S0, A), where S0 is one of the connected components.

12. If S is connected, H0(S,A) should just be A.

13. If G is connected, H1(G,A) should classify definable extensions of G by the abelian
group A.

14. There should be Serre spectral sequences. For example, the cohomology of G/H should
be related to the cohomology of G and of H. More generally, if G1 < G2 < G3, there
should be a Serre spectral sequence relating the cohomology of G2/G1 and G3/G2 to
the cohomology of G3/G1. This would require discussing cohomology with twisted
coefficients, however.
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15. If G is an abelian group, A should be suitable as long as there are no primes p dividing
|A| such that G[p] is infinite. Moreover, for G connected, Hn(G,Z/pm) should have
an explicit description (as an abstract group) in terms of the p-torsion of G. If the
p-torsion of G is isomorphic to a k-dimensional Fp-vector space, then Hn(G,Z/pm)
ought to agree with the usual topological cohomology group Hn(T k,Z/pm), where T k

is a k-torus.

If everything outlined above holds, it is conceivable that these cohomology groups could
prove useful for the study of groups of finite Morley rank.

2 Review of homological algebra

We will always work with cochain complexes C•, so the differentials go Ci → Ci+1 (rather
than Ci+1 → Ci, as they would in a chain complex). We will only consider nonnegative
gradings, so Ci will vanish for i < 0.

A map of complexes C• → D• is a quasi-isomorphism if the induced map on homology
groups is trivial. An equivalent condition is that the total complex of the following double
complex is exact:

...
...

...

0

OO

// 0

OO

// 0

OO

// · · ·

D0

OO

// D1
//

OO

D2
//

OO

· · ·

C0

OO

// C1

OO

// C2
//

OO

· · ·
(In general, the total complex of this double complex is the mapping cone of C• → D•,
which is exact if and only if C• → D• is itself a quasi-isomorphism.)

The derived category D(Z) is obtained by taking the category of cochain complexes of
Z-modules (abelian groups), and formally inverting all the quasi-isomorphisms. Formally in-
verting morphisms in a large category is usually dangerous (the hom-sets can become proper
classes), but it is well-known that this does not happen in the case of derived categories,
because there is a calculus of fractions. The following facts about D(Z) are well-known:

• D(Z) is an additive category, but not an abelian category.

• The functor Hn(−) sending a cochain complex to its nth cohomology group, extends
to D(Z) in a canonical way (this is obvious from the definition).

• If f, g : C• → D• are two maps of cochain complexes, and f and g are related by a
homotopy (that is, f i− gi = di−1si + si+1di for some maps si : Ci → Di−1), then f and
g have the same image in D(Z).
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• If the cohomology of C is N concentrated in degree n, and the cohomology of D
is M concentrated in degree m, then Hom(C,D) in the derived category is exactly
Extn−m(N,M).

• Consider the functor which takes a cochain complex C0,• → C1,• → · of cochain
complexes, and outputs the total complex of the associated double complex. This
functor respects quasi-isomorphisms, and consequently extends uniquely to a similar
functor from cochain complexes in D(Z), to D(Z). In the case of cochain complexes
of the form

0→ C• → D• → 0

the output is just the mapping cone of C• → D•, part of the triangulated category
structure. (The more general case is probably just an iteration of the mapping cone
operation.)

We will frequently use the following fact about double complexes, which is an easy exercise
in diagram-chasing:

Fact 2.1. Let
...

...

C0,1 //

OO

C1,1

OO

// · · ·

C0,0 //

OO

C1,0 //

OO

· · ·
be a double complex. If every row is exact, or every column is exact, then the associated total
complex is exact. More generally, if every row is exact in the first k places, then the total
complex is exact in the first k places.

3 Assumptions

We assume that the ambient theory T is almost strongly minimal, eliminates imaginaries,
and that acl(∅) is a model. These assumptions have the following (well-known) consequences:

• Stability, total transcendentality, finite Morley rank, ℵ1-categoricity, NFCP

• Morley rank agrees with Lascar rank and weight, and is definable.

• Every algebraically closed set is a model.

• If A is a set of parameters and X is an infinite A-definable set, then X has a strongly
minimal acl(A)-definable subset.

• In particular, there is an acl(0)-definable strongly minimal set.

4



• If A is a set of parameters, X is an A-definable set, and n ≤ U(X), then there is an
A-definable subset of X of rank n.

• If S is any acl(0)-definable strongly minimal set, and e is any element (any imaginary),
then e is interalgebraic with a tuple from S.

• If X, S are A-definable, with S strongly minimal, then there is a finite-to-finite A-
definable correspondence between X and a power of S. That is, if n = U(X), then
there is an A-definable subset Y ⊂ X × Sn whose projections onto X and Sn are
surjective with finite fibers.

• We get almost skolem functions: if f : X → Y is a definable surjection (over some set of
parameters), then there is a subset X ′ ⊂ X definable over the same set of parameters,
such that the restriction X ′ → Y of f to X ′ is surjective with finite fibers.

• Every type-definable group is definable. There are no descending chains of definable
groups. Zilber’s indecomposability theorem holds.

The base assumptions hold in any simple group of finite Morley rank, after naming all the
elements of the prime model, and passing to T eq. Moreover, the base assumption remains
true when more parameters are named.

4 Special opens

Fix S a definable set with a transitive definable action of a definable group G. We assume
(for now) that G and S are connected. This ensures that G and S have unique generic
types gen(G) and gen(S). We also assume that G, S, and the group action are all 0-definable.
We don’t assume that the action of G on S is faithful. Let KCG be the kernel of the action,
so G/K acts faithfully and transitively on S.

If A is any small set, let SA denote the set of s ∈ S such that tp(s/A) is generic. If g ∈ G,
we can look at the translate g · SA of SA by g. Call such sets special opens. These will play
the role of Zariski open subsets of S in our construction.

Lemma 4.1. Let H be a connected acl(0)-definable subgroup of G, containing K. Suppose
H is strictly bigger than K. Let s realize the generic type of S over acl(0). Then H does not
fix s.

Proof. Suppose for the sake of contradiction that H fixes s. The subgroup K is exactly⋂
s∈S Stab(s). By Baldwin-Saxl, K can be written as a finite intersection

⋂n
i=1 Stab(si) for

some s1, . . . , sn ∈ S. Let g ∈ G be generic over s1, . . . , sn. Then g · si is generic over ∅ for
every i. So g ·si and s have the same strong type over ∅. As H, G, and S are acl(∅)-definable,
H must fix g · si. This holds for each i. So if h ∈ H, then h · g · si = g · si, or equivalently,
hg ∈ Stab(si). Since this holds for every i, hg ∈ K. Since K is a normal subgroup, h ∈ K.
As h was arbitrary, H ≤ K, a contradiction.
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Lemma 4.2. There exists an n, and strong types p1, . . . , pn over acl(0) in S, such that K
has finite index in

⋂n
i=1 Stab(pi), and U(pi) = U(S)− 1.

Proof. Proceeding by induction, it suffices to show that if H is a connected subgroup of
G, containing K, then there is some type p in S, over acl(0), of rank U(S) − 1, such that
Stab(p) does not contain H. (Then we can replace H with (H ∩ Stab(p))0 and iterate the
construction, shrinking H until it becomes K, and starting with H = G.)

Take s0 generic in S, over acl(0). Let c be the code for the orbit pH · · · s0q. Since H is
not K and s0 is generic in S, H ·s0 is not just s0. Since H is connected, H ·s0 is infinite, hence
has positive rank. Let α ∈ H · s0 be such that U(α/c) = U(H · s0) − 1. Let p = stp(α/∅).
We claim that U(p) = U(S)− 1 and that H 6⊆ Stab(p).

For the first claim, note first that

U(s0/∅)− U(α/∅) = U(s0/c)− U(α/c)

by the Lascar inequalities, and the fact that c ∈ dcl(α) ∩ dcl(c). By choice of α,

U(α/c) = U(H · s0)− 1 ≥ U(s0/c)− 1

(as s0 ∈ H · s0), so
U(α/∅) ≥ U(s0/∅)− 1 = U(S)− 1. (1)

On the other hand, if β ∈ H · s0 is chosen so that U(β/c) = U(H · s0), then

U(β/∅)− U(α/∅) = U(β/c)− U(α/c) = 1,

so
U(α/∅) < U(β/∅) ≤ U(S).

Combining with (1), we see that U(p) = U(α/∅) = U(S)− 1.
Next, suppose for the sake of contradiction that H ⊆ Stab(p). Let h be generic in H,

over α. The assertion that h ∈ Stab(p) implies that h · α and α have the same strong type
over h, hence over ∅. In particular, U(h · α/∅) = U(α/∅). As h · α and α both define c, this
implies that

U(h · α/c) = U(h · α/∅)− U(c/∅) = U(α/∅)− U(c/∅) = U(α/c).

In particular, U(h · α/c) < U(H · s). But this is impossible, since tp(h/c, α) is generic in H,
so that tp(h · α/c) should be generic in the homogeneous space H · s.

Lemma 4.3. The following are equivalent:

• g′ · SA′ ⊆ g · SA.

• acl(A) ⊆ acl(A′) and g−1g′ is in K · (G ∩ acl(A′)).
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Proof. We may (and do) assume that g′ = 1. Suppose that acl(A) ⊆ acl(A′) and g ∈ K ·
(G∩acl(A′)). Changing g by an element of K, we may assume that g ∈ G∩acl(A′). Suppose
x ∈ SA′ . Then stp(x/A′) is generic in S. As g ∈ acl(A′), we also see that stp(g−1 · x/A′)
is generic. As acl(A) ⊆ acl(A′), we see that stp(g−1 · x/A) is generic in S, or equivalently,
x ∈ g · SA. As x was arbitrary in SA′ , we conclude that SA′ ⊆ g · SA.

Conversely, suppose that SA′ ⊆ g · SA. By the previous lemma, we can find p1, . . . , pn
strong types over ∅, in S, of rank one less than S, such that (

⋂n
i=1 Stab(pi)) /K is finite. Let

s1, . . . , sn realize p1 ⊗ · · · ⊗ pn, independent from A, g,A′. For each i,

U(si/A) = U(pi) = U(S)− 1,

so si /∈ SA. Therefore g · si /∈ g · SA, so g · si /∈ SA′ . By definition of SA′ , it follows that

U(g · si/A′) ≤ U(S)− 1 = U(si/A
′g) = U(g · si/A′g).

Consequently g · si |̂ A′ g. Let qi = stp(g · si/A′). Then g · pi = qi, since si |= pi|A′g and
g · si |= qi|A′g.

Consider the following set

Z =

{
g ∈ G :

n∧
i=1

g · pi = qi

}
This set is type-definable over acl(A′), because pi and qi are based in acl(A′). It is also a coset
of
⋂n
i=1 Stab(pi), hence, a finite union of cosets of K. Since acl(A′) is a model, there is some

g′′ ∈ acl(A′) such that g′′ and g are in the same coset of K. Equivalently, g ∈ K ·(G∩acl(A′)).
It remains to show that acl(A) ⊆ acl(A′). By the forward direction of this lemma, since

g ∈ K · (G ∩ acl(A′)), it follows that

SA′ = g−1SA′ .

Since g−1SA′ ⊆ SA, we see that
SA′ ⊆ SA. (2)

Fix some strongly minimal set T definable over acl(∅). For reasons noted earlier, A and A′

are interalgebraic with T ∩ acl(A) and T ∩ acl(A′), so it suffices to show that T ∩ acl(A) ⊆
T ∩ acl(A′). Suppose this failed. Take some t0 ∈ T such that t0 ∈ acl(A) \ acl(A′).

Let s0 ∈ S be generic over A ∪ A′ ∪ {t0}. Let n = U(S). For the same reasons noted
earlier, s0 is inter-algebraic over the empty set with some n-tuple (t1, . . . , tn) ∈ T n. Then
U(t1, . . . , tn/A ∪ A′ ∪ {t0}) = n, so t1, . . . , tn is generic in T n over A ∪ A′ ∪ {t0}. The
fact that t0 /∈ acl(A′) implies that (t0, t1, . . . , tn) is generic in T n+1, over A′. Consequently,
(t0, t2, . . . , tn) is generic in T n over A′, and so

stp(t0, t2, . . . , tn/A
′) = stp(t1, t2, . . . , tn/A

′).

Therefore we can find some s1 such that

s1t0t2 · · · tn ≡acl(A′) s0t1t2 · · · tn
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In particular, this means that s1 is inter-algebraic over the empty set with the tuple (t0, t2, . . . , tn),
and that s1 is generic in S, over A′. So s1 ∈ SA′ . By (2), s1 ∈ SA. Then

U(S) = n = U(s1/A) = U(t0, t2, . . . , tn/A) = U(t2, . . . , tn/A) = n− 1,

where the penultimate identity holds because t0 ∈ acl(A). So we have a contradiction, and
the assumption that T ∩ acl(A) 6⊆ T ∩ acl(A′) was false.

Definition 4.4. If A is a small set of parameters, Gal(A) denotes Aut(acl(A)/ dcl(A)). This
is naturally a profinite group.

Remark 4.5. We get natural restriction maps Gal(B)→ Gal(A) whenever B ⊇ A.

Definition 4.6. Let U be a special open of the form g ·SA. Let s ∈ U . Define π1(U, s) to be
the profinite group Gal({g−1 · s} ∪ acl(A)).

Remark 4.7. This doesn’t depend on the choice of g and A. If g′ · SA′ = g · SA, then
acl(A) = acl(A′), and g−1g′ ∈ acl(A) (up to a factor from K), so that g−1 · s and (g′)−1 · s
are interdefinable over acl(A). That is,

dcl({g−1 · s} ∪ acl(A)) = dcl({(g′)−1 · s} ∪ acl(A′)),

so one gets the same group.

Remark 4.8. More generally, suppose that s ∈ U ⊂ U ′. Writing U,U ′ as g ·SA and g′ ·SA′,
we know that acl(A) ⊇ acl(A′), and that g−1 · g′ ∈ acl(A), after changing g by a factor from
K. Now it is clear that

dcl({g−1 · s} ∪ acl(A)) ⊇ dcl({(g′)−1 · s} ∪ acl(A′))

so we get a map π1(U, s)→ π1(U ′, s).

Remark 4.9. If U is a special open, and s, s′ are two points in U , then π1(U, s) and π1(U, s′)
are non-canonically isomorphic, because g−1 · s and g−1 · s′ have the same type over acl(A).

Remark 4.10. Suppose we name some small set of parameters B, adding new constant
symbols to the language. Suppose U = g · SA is a special open in the new expansion. Then
U was a special open g · SA∪B in the original expansion, and if s ∈ U , the groups π1(U, s)
are the same calculated either way. So in some sense, π1(U, s) doesn’t depend on the choice
of the base model over which we are working.

Remark 4.11. Let G′ be a subgroup of G, still acting transitively on S. (Maybe also assume
that G′ is still connected.) Then every special open in S with respect to G′ is (obviously) still
a special open in S with respect to G, and π1(U, s) is the same calculated in either setting. So
π1(U, s) is in some sense immune to increasing or decreasing the size of the group G acting
on S (provided that we stay within the realm of groups acting transitively on S).
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Lemma 4.12. The poset of special opens is a join semilattice. The join of two special opens
g ·SA and g′ ·SA′ is g ·SB, where B = acl(A∪A′∪{c}), and c is the code for the equivalence
class of g−1 · g′ mod K. We denote the join of U and U ′ by U ∧ U ′. Note that U ∧ U ′ does
not change when we vary the base model (in so far as that is allowed), and is also unchanged
when we increase or decrease G (in so far as that is allowed).

Proof. An easy exercise involving Lemma 4.3.

Also note that for a fixed special open U = g ·SA, the lattice of special opens inside U is
isomorphic to the (order-reversed) lattice of algebraically closed sets containing A.

5 Defining the cohomology groups

Let U1, U2, . . . be a collection of special opens in S, of length ω. For I a non-empty finite
subset of ω, let UI denote the join

∧
i∈I Ui. For I ⊂ J , we have an inclusion UI ⊇ UJ .

Choose some s ∈ S generic over all the parameters involved with the Ui’s. Then s ∈ UI for
every I ⊂f ω. The map I 7→ π1(UI , s) yields a contravariant functor from finite non-empty
subsets of ω to pro-finite groups.

Fix some abelian group A. For each I, let C•I denote the cochain complex arising from
the group cohomology of π1(UI , s) with coefficients in A. So, Cn

I is the abelian group of
continuous functions from (π1(UI , s))

n to A, with the discrete topology on A.
Then we have a covariant functor from the poset of finite non-empty subsets of ω to the

category of chain complexes. We would like to view this as an ω-dimensional ω×2×2×2×· · ·
complex, and take the total complex.

More precisely, we take the cohomology of the total complex of the following double
complex:

0→
∏
i

C•i →
∏
i<j

C•i,j →
∏
i<j<k

C•i,j,k → · · ·

Denote this by H•({Ui}, s, A), for now.
In the case where Ui = gi·SAi

, and where the sequence g1, g2, . . . , A1, A2, . . . is independent
over acl(∅), and g1, g2, . . . is a Morley sequence in the generic type ofG, this will be our desired
group cohomology. The independence of the choices will be seen in §7.

6 Heuristic motivation for the definition

We give a vague heuristic justification for this definition in the case where the theory is that
of algebraically closed fields extending C.

First we observe that special opens U are “morally” Eilenberg-Maclane spaces, because
of the following fact:

Fact 6.1. Let V be an irreducible variety over C. Then there is a Zariski open U ⊂ V such
that U is a K(π1(U), 1)-space, where π1(U) denotes the usual topological homotopy group.
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Proof. Abusing terminology(?), I’ll call something an Eilenberg-Maclane space (EM-space)
if its analytification is a K(G, 1)-space for some G, or equivalently, if its universal cover is
contractible. Any curve of negative Euler characteristic is an EM space, because its analytic
universal cover is the open unit disk. If E → B is a fibration (in the sense of homotopy
theory) and B and the fiber are both EM spaces, then E is an EM space, because of the
homotopy long exact sequence of the fibration.

We proceed by induction on dimV , the case of curves being already handled. In the
case of dimension n > 1, take some dominant rational map from V to An−1. Shrinking V
to a Zariski open, we may assume that this is a true morphism of varieties. The fibers are
generically one-dimensional; shrinking V we may assume that all the non-empty fibers are
one-dimensional. Replacing An−1 with the (definable) set of pairs (p,X), where p ∈ An−1

and X is an irreducible component of the fiber over p, we get a map V → W whose fibers
are all irreducible curves. By the “almost skolem functions” mentioned earlier, we can find
some closed subset Z ⊂ V whose intersection with a generic fiber of V → W is finite,
but sufficiently big that the generic fiber of V \ Z → W has negative Euler characteristic.
Replacing V with V \ Z, we may assume that the generic fibers of V → W have negative
Euler characteristic. Shrinking W to a Zariski open (and hence shrinking V as well), we may
assume that the map is a fibration, and that every fiber has negative Euler characteristic.
Shrinking W even further, by the induction hypothesis, we may assume that W is an EM
space. Then V → W is a fibration with fibers and base being EM spaces, so V is an EM
space.

Now, since U is morally an Eilenberg-Maclane space, the cochain complex of cochains on
U should be quasi-isomorphic to the cochain complex from group cohomology of π1(U). If
we take coefficients in Z/`, we should be able to replace π1(U) with its profinite completion,
which is the π1(U) constructed in Section 4. Let C•U be the cochain complex of this profinite
group, with coefficients in Z/`.

Let 0→ Z/`→ F0 → F1 → · · · be an injective resolution of the constant sheaf Z/` on
the variety S. The restriction of Fn to the “open” U is still an injective sheaf on Fn, so the
cochain complex of cochains on U can also be gotten (up to quasi-isomorphism) as

0→ F0(U)→ F1(U)→ · · ·

In other words, we think or pretend that C•U is quasi-isomorphic to F•(U).
Now suppose that g1, g2, . . . realize a Morley sequence in the generic type of G, and

Ui = gi · S∅. In this case, the recipe in the previous section yields the total complex of the
following double complex:

0→
∏
i

C•Ui
→
∏
i<j

C•Uij
→

∏
i<j<k

C•Uijk
→ · · ·

By what we have just said, this should be quasiisomorphic to the total complex of the double
complex

0→
∏
i

F•(Ui)→
∏
i<j

F•(Uij)→
∏
i<j<k

F•(Uijk)→ · · ·
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We want this to be quasi-isomorphic to the complex 0→ F0(G)→ F1(G)→ · · · . To show
this, it suffices to show that the total complex of the following double complex is exact:

...
...

...

F1(S)

OO

//
∏

iF1(Ui)

OO

//
∏

i<j F1(Uij)

OO

// · · ·

F0(S)

OO

//
∏

iF0(Ui)

OO

//
∏

i<j F0(Uij)

OO

// · · ·

It suffices to show that the rows of this double complex are exact. It suffices to show that if
F is an arbitrary injective sheaf, then the complex

0→ F(S)→
∏
i

F(Ui)→
∏
i<j

F(Uij)→ · · ·

is exact. By injectivity of F , it suffices to show that the following chain complex of sheaves
is exact:

· · · →
⊕
i<j

ZUij
→
⊕
i

ZUi
→ ZS → 0 (3)

where ZU denotes the constant sheaf Z on U , extended by zero off of U .
This can be checked on stalks. If p is a point, the stalk of ZU is Z if p ∈ U , and 0

otherwise (since we are pretending that U is open). From this, the stalk of (3) at a point
p more or less becomes the (reduced) simplicial homology groups of the following abstract
simplicial complex:

• There is a non-degenerate 0-simplex (a point) for each i such that p ∈ Ui, that is, for
each i such that (gi)

−1 · p is generic over ∅.

• There is an edge between i and j if p ∈ Uij, that is, if (gi)
−1 · p is generic over (gj)

−1gi.

• There is a face between i, j, and k if p ∈ Uijk, that is, if (gi)
−1 ·p is generic over (gj)

−1gi
and (gj)

−1gk.

• . . .

But one can see directly that this abstract simplicial complex is contractible. It suffices to
show that if ∆ is any finite subcomplex of the above complex, then there is some vertex
k such that the cone of ∆ to the point k is also in the above abstract simplicial complex.
That is, if Σ is a finite subset of ω, we want to find some k /∈ Σ such that for every I ⊆ Σ,
p ∈ UI ⇐⇒ p ∈ UIk. We can do this by taking k such that

gk |̂ p, {gi : i ∈ I}

11



Indeed, suppose that p ∈ UI . Choose some j ∈ I. The statement that p ∈ UI means that
g−1
j · p is generic over {g−1

j · gi : i ∈ I}. Since gk is independent from p and gi for i ∈ I, gk is

generic in G over the same. Generic types are fixed by translation, so g−1
j · gk is also generic

over p and gi for i ∈ I. Therefore

g−1
j · gk |̂ p, {gi : i ∈ I}

This implies
g−1
j · gk |̂

{g−1
j ·gi:i∈I}

g−1
j · p

Since tp(g−1
j · p/{g−1

j · gi : i ∈ I}) is generic, so is its non-forking extension

tp(g−1
j · p/{g−1

j · gi : i ∈ I ∪ {k}})

Therefore p ∈ UIk. Conversely, if p ∈ UIk then p ∈ UI . Therefore the abstract simplicial
complex on the vertices I ∪ {k} is a cone of the abstract simplicial complex on the vertices
in I. This ensures that the entire thing is contractible, and so the stalk of (3) at p is exact.

This completes the heuristic justification of why one should get the correct cohomology
groups in this way. Later, I may work on making this argument precise.

7 Well-definedness

In §5 we defined H•({Ui}, s, A) for Ui special opens in a homogeneous space S with a group
action G, for s a point in UI :=

∧
i∈I Ui for every I ⊂f ω, and for A an abelian group.

In this section, we will show that for properly chosen Ui, the choice of Ui does not matter.
We may also show that the choice of s does not matter.

Assume for simplicity that G acts faithfully on S. Fix some abelian group A. Fix some
medium-sized model M , and some s0 generic in S over M . If U = g · SA is a special open,
with g, A ⊂M , then ΠU will denote π1(U, s), and C•U will denote the complex of continuous
cohains of ΠU with coefficients in A (with the discrete topology and trivial action of ΠU).

Lemma 7.1. Suppose that A1, . . . , An is an independent sequence of small sets over ∅.
For I ⊂ {1, . . . , n}, let Ai denote the algebraic closure of the union of the Ai for i ∈ I.
Suppose that a1, . . . , am are elements of A{1,...,n}. Suppose that I ⊂ {1, . . . , n}. Suppose that
M |= χ(a1, . . . , am) for some formula χ. Then M |= χ(a′1, . . . , a

′
m) where each a′i is in AI .

Moreover, we can arrange that the following things are true for each i:

• If ai ∈ AI , then a′i = ai.

• If ai ∈ AJ , then ai ∈ AJ∩I .

Proof. Note that the second bullet point subsumes the requirement that a′i ∈ AI , by taking
J = {1, . . . , n}.

For each i, J such that ai ∈ AJ , let φi,J(x; bi,J ; ci,J) be a formula such that

12



• φi,J(ai; bi,J ; ci,J) holds

• for any b, c in the monster, φi,J(M; b, c) is finite

• bi,J ∈ AJ∩I

• ci,J ∈ AJ\I

Such a formula exists because ai ∈ acl(AJ∩I ∪ AJ\I).
By the independence assumption,

AI |̂ A{1,...,n}\I .

It follows that
{ai : ai ∈ AI} ∪ {bi,J : ai ∈ AJ} |̂ {ci,J : ai ∈ AJ}

The type of {ci,J : ai ∈ AJ} over {ai : ai ∈ AI} ∪ {bi,J : ai ∈ AJ} is finitely satisfiable in
acl(∅), because acl(∅) is a model. It contains the following formula (witnessed by taking xi
to be ai):

∃x1, . . . , xn : χ(x1, . . . , xn) ∧

( ∧
i:ai∈AI

xi = ai

)
∧

( ∧
i,J :ai∈aJ

φi,J(xi; bi,J ; yi,J)

)

Consequently, we can find c′i,J in acl(∅) and a′i in M such that the following things hold:

• χ(a′1, . . . , a
′
n)

• If ai ∈ AI , then a′i = ai.

• If ai ∈ AJ , then φi,J(a′i; bi,J ; c′i,J). In particular, a′i is algebraic over bi,J ∈ AJ∩I and
c′i,J ∈ acl(∅). So a′i ∈ AJ∩I .

Lemma 7.2. Suppose that A1, . . . , An is an independent sequence of small sets over ∅.
For I ⊂ {1, . . . , n}, let Ai denote the algebraic closure of the union of the Ai for i ∈ I.
Suppose that a1, . . . , am are elements of A{1,...,n}. Suppose that I ⊂ {1, . . . , n}. Suppose that
M |= χ(a1, . . . , am) for some formula χ. Then M |= χ(a′1, . . . , a

′
m) where each a′i is in AI .

Moreover, we can arrange that the following things are true for each i:

• If ai ∈ AI , then a′i = ai.

• If J1, . . . , Jk are such that

ai ∈ dcl(AJ1 ∪ · · · ∪ AJk),

then
a′i ∈ dcl(AJ1∩I ∪ · · · ∪ AJk∩I).

13



Proof. For each i and J1, . . . , Jk such that ai ∈ dcl(AJ1 ∪ · · · ∪AJk), write ai as f(b1, . . . , bk)
where bi ∈ AJi . Add the bi’s to the list (a1, . . . , an), and add replace χ with χ ∧ ai =
f(b1, . . . , bk). Do this for all the original i and J1, . . . , Jk. Apply the previous lemma. Now
we have a′i and b′j such that a′i = f(b′1, . . . , b

′
k), where each b′j ∈ AJj∩I .

Lemma 7.3. Suppose that A1, . . . , An is an independent sequence over ∅. Suppose Ai =
acl(Ai) for each i. For I ⊂ {1, . . . , n}, let

AI = acl

(⋃
i∈I

Ai

)
.

Let s be generic in S over
⋃n
i=1Ai. Let ΠI denote Gal(sAI). Let m ≥ 0 be an integer. For

I ⊂ J there are natural restriction maps ΠJ → ΠI . Suppose that I, J1, . . . , J` are subsets of
{1, . . . , n}, and let J =

⋃`
i=1 Ji. Let J0 = I. Let R be an abelian group, with the discrete

topology. For 0 ≤ j ≤ `, let gj be a continuous function from Πm
Jj

to R. Suppose that when
pulled back to Πm

J∪I , we have

g0 =
∑̀
j=1

gj (4)

Then there exist continuous maps g′j : Πm
Jj∩I → R such that when pulled back to Πm

I ,

g0 =
∑̀
j=1

g′j.

Proof. For each i, choose an element ci ∈ acl(sAJi) such that gi(σ1, . . . , σm) is determined
by (σ1(ci), . . . , σm(ci)). Let Σi be an enumeration of the conjugates of ci over dcl(sAJi),
viewed alternatively as a tuple or a set. Let φi(x; di) be a formula such that φi(M; di) = Σi,
di ∈ dcl(sAJi), and φi(M; d) is finite for every d ∈M.

Consider the finite set Σ :=
∏`

i=1 Σi. Let E be some finite subset of dcl(sAJ∪I) and
φ(x; y) be a formula such that two elements of Σ have the same type over dcl(sAJ∪I) if and
only if they have the same φ-type over E.

By the previous lemma, applied to s, A1, . . . , An, with s ∈ AI , we can find Σ′i, Σ′, E ′,
and c′i such that all the following things hold:

• c′i is the first element of Σ′i, and Σ′i is a tuple of the same length as Σi

• The underlying set of Σ′i is dcl(sAJi∩I)-definable.

• c′0 = c0 and Σ′0 = Σ0 remain unchanged

• Σ′ is
∏`

i=1 Σ′i

• t1, t2 ∈ Σ have the same φ-type over E if and only if t′1, t
′
2 ∈ Σ′ have the same φ-type

over E ′.
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• E ′ is a finite subset of dcl(sAI).

From the last two bullet points (and the choice of E), we see that if t′1, t
′
2 ∈ Σ′ have the same

type over dcl(sAI), then t1 and t2 have the same type over dcl(sAI∪J).
Next we define g′i : Πm

Ji∩I → R. Given σ′1, . . . , σ
′
m ∈ ΠJi∩I = Gal(s acl(AJi∩I)), look at

σ′j(c
′
i). Since c′i ∈ Σ′i and the underlying set of Σ′i is dcl(s acl(AJi∩I))-definable, σ′j(c

′
i) is in

Σ′i. So it is q′j for some qj ∈ Σi. Let σj be an element of Gal(sAJi) sending ci to qj. Define

g′i(σ
′
1, . . . , σ

′
m) := gi(σ1, . . . , σm).

The choice of σ1, . . . , σm doesn’t matter, because we arranged that

gi(σ1, . . . , σm)

depends only on (σ1(ci), . . . , σm(ci)), which we have specified as (q1, . . . , qm). Also, g′i is
continuous, because g′i(σ

′
1, . . . , σ

′
m) depends only on (σ′1(c′i), . . . , σ

′
m(c′i)).

For i = 0, note that AJ0∩I = AJ0 , Σ′0 = Σ0, c′0 = c0, and q′j = qj, so that

σj(c0) = qj = q′j = σ′j(c
′
0) = σ′j(c0),

so we may as well take σj = σ′j. Thus g′0 = g0.
It remains to show that

g′0 =
∑̀
i=1

gi

holds, where the summands are pulled back to be functions on Πm
I .

Let σ′1, . . . , σ
′
m be elements of ΠI = Gal(sAI). Let t = c0c1 · · · c`. For each 1 ≤ j ≤ m,

let t′j = σ′j(t
′). Since t′j and t′ have the same type over dcl(sAI), and both are in Σ′, it

follows that tj and t have the same type over dcl(sAI∪J). So there is some automorphism
σj ∈ Gal(sAI∪J) sending t to tj.

Now for every i, σj restricts to an automorphism in Gal(sAJi∩I). This automorphism
sends ci to qi,j, the ith entry of tj. Then q′i,j is the ith entry of t′j = σ′j(t

′), so q′i,j = σ′j(c
′
i).

By definition of g′i, it follows that

g′i(σ
′
1, . . . , σ

′
m) = gi(σ1, . . . , σm).

Therefore we have

g0 =
∑̀
i=1

gi =⇒ g′0 =
∑̀
i=1

g′i.

Lemma 7.4. Suppose that A1, . . . , An is an independent sequence over ∅. Suppose Ai =
acl(Ai) for each i. For I ⊂ {1, . . . , n}, let

AI = acl

(⋃
i∈I

Ai

)
.
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Let s be generic in S over
⋃n
i=1Ai. Let ΠI denote Gal(sAI). Let m ≥ 0 be an integer.

Let R be an abelian group, with the discrete topology. Let Cm
I denote the abelian group of

continuous functions from ΠI to R. Then the following sequence is exact, except at the last
place:

0→ Cm
∅ →

∏
i

Cm
i →

∏
i<j

Cm
ij → · · · →

∏
i

Cm
1,...,̂i,...,n

→ Cm
1,...,n → 0 (5)

Proof. We proceed by induction on n. For n = 1, we need to show that the sequence

0→ Cm
∅ → Cm

1

is exact, i.e,. that Cm
∅ → Cm

1 is injective. It suffices to show that the map

Gal(s acl(A1)) = Π1 → Π∅ = Gal(s acl(∅))

is surjective. Given σ an automorphism of acl(s) fixing s and acl(∅) pointwise, we need to
extend it to an automorphism of the monster fixing s and acl(A1) pointwise. If c and d
are tuples enumerating acl(s) and acl(A1), respectively, then c |̂

acl(∅) d. By stationarity of

strong types over models, σ(c) and c have the same type over d acl(∅). So σ(c)d and cd have
the same strong type over ∅. So we can find σ′ an automorphism of the monster, fixing
acl(∅) pointwise, acting like σ on c = acl(s), and fixing d = acl(A1) pointwise. Since σ fixes
s pointwise, so does σ′, so σ′ fixes s and acl(A1) pointwise, as desired.

For the inductive step, note that the complex in question is the total complex of the
double complex

Cm
n

//
∏

i<nC
m
in

//
∏

i<j<nC
m
ijn

// · · ·

Cm
∅

//

OO

∏
i<nC

m
i

//

OO

∏
i<j<nC

m
ij

//

OO

· · ·

By induction, each row is exact except possibly in the last place. (To apply induction to the
top row, add names for the elements of An to the language.) It follows that (5) is exact in
the first n− 1 places. Therefore we only need to check exactness at the penultimate place.

So, for each i, we are given fi a continuous function from Πm
1,...,̂i,...,n

to R, such that when

pulled back to Πm
1,...,n,

f1 + f2 + · · ·+ fn = 0.

We need to find gij for i < j, a continuous function from Πm
{1,...,n}\{i,j} to R, such that for

each i,

fi =
∑
j<i

gji −
∑
j>i

gij. (6)

We show by induction on 0 ≤ m ≤ n that there exists gij such that (6) holds for i ≤ m. The
base case m = 0 is trivial; take all the gij = 0.

Suppose that (6) holds for all i ≤ m. Replacing fi with fi−
∑

j<i gji−
∑

j>i gij, we may
assume that fi = 0 for i ≤ m. If m = n, then

∑
i fi = fn = 0, so every fi vanishes and we can
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take gij = 0. So assume that m < n. By the previous lemma, applied to I = {1, . . . , n} \m
and Jj = {1, . . . , n} \ (m+ j), we can find f ′m+1, . . . , f

′
n such that

fm +
n∑

i=m+1

f ′i = 0,

and f ′i comes from ΠI∩Ji−m
= Π{1,...,n}\{m,i}. Set gij = f ′ij for i = m and j > m, and gij = 0

otherwise. Then
fm =

∑
j<i

gji −
∑
j>i

gij.

Also, for i < m, gij and gji vanish, so

fi = 0 =
∑
j<i

gji −
∑
j>i

gij.

Thus (6) holds for all i ≤ m, completing the proof of the inductive step (for the induction
on m). By taking m = n, we get that (6) holds for all i, completing the inductive step for
the induction on n.

Lemma 7.5. Let A1, A2, . . . be an independent sequence over ∅. Suppose each Ai is alge-
braically closed, and let AI = acl(Ai : i ∈ I), as usual. Let s be generic in S over all the
AI ’s. Let ΠI = Gal(sAI). Let R be some abelian group. Let C•I be the cochain complex
from group cohomology of ΠI with coefficients in R. Then the rows of the following double
complex are exact, making the total complex also be exact:

...
...

...

C1
∅

OO

//
∏

iC
1
i

OO

//
∏

i<j C
1
ij

OO

// · · ·

C0
∅

OO

//
∏

iC
0
i

OO

//
∏

i<j C
0
ij

OO

// · · ·

Proof. Fix m, and consider the complex

Cm
∅ →

∏
i

Cm
i →

∏
i<j

Cm
ij → · · · (7)

For each n, (7) happens to be the total complex of the following double complex (pretend
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there is a column of zeros on both the left and the right sides):

...
...

...
...

∏
n<j1<j2

Cm
j1,j2

//

OO

∏
i1≤n<j1<j2

Cm
i1,j1,j2

//

OO

· · · //

OO

· · · //

OO

∏
n<j1<j2

Cm
1,...,n,j1,j2

OO

∏
n<j1

Cm
j1

//

OO

∏
i1≤n<j1

Cm
i1,j1

//

OO

∏
i1<i2≤n<j1

Cm
i1,i2,j1

//

OO

· · · //

OO

∏
n<j1

Cm
1,...,n,j1

OO

Cm
∅

//

OO

∏
i1≤n

Cm
i1

//

OO

∏
i1<i2≤n

Cm
i1,i2

//

OO

· · · //

OO

Cm
1,...,n

OO

Suppose each row is exact except in the last place. Then the total complex (7) is exact in
the first n places. Since n was arbitrary, (7) is exact. So it suffices to show that each row
is exact except in the last place. Since a product of exact sequences is exact, it suffices to
show for each J ⊂ {n+ 1, n+ 2, . . .} that

0→ Cm
J →

∏
i≤n

Cm
i,J → · · · → Cm

1,...,n,J → 0

is exact except at the last place. This actually follows from the previous Lemma, after adding
new constant symbols for all the elements of acl(AJ) to our base language.

Definition 7.6. A sequence g1, A1, g2, A2, . . . is pleasant if it is independent over acl(∅), and
if g1, g2, . . . is a Morley sequence in the generic type of G, over ∅.

Lemma 7.7. Let 〈gi, Ai〉i∈I be an infinite pleasant sequence, and suppose J is an infinite
and coinfinite subset of I. Then the cohomology groups computed using the special opens
〈gi · SAi

〉i∈I agree with the ones computed using 〈gj · SAj
〉j∈J . In fact, the natural map

between the associated chain complexes is a quasi-isomorphism.

Proof. Let J ′ = I \ J . For i ∈ I, let Ui be the special open gi · SAi
. For T a finite subset of

I, let UT be the join of Ui for i ∈ T .
Consider the double complex of complexes whose (i, i′)th entry is the product of C•T∪T ′ ,

where T ranges over i-element subsets of J , and T ′ ranges over the i′-element subsets of J ′.
(Take the (0, 0) entry to be 0). We want the bottom row of this complex to be quasiisomor-
phic to the entire complex. This will hold as long as the other rows are quasi-isomorphic to
zero. Each row other than the bottom one is a product of sequences of the form

0→ C•T ′ →
∏
j∈J

C•T ′j →
∏

j1<j2∈J

C•T ′j1j2 → · · · (8)
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for T ′ a finite subset of J ′, so it suffices to show that each of these is exact (after passing to
the total complex).

Write UT ′ as g0·SA0 for some g0 and A0. Note that g0 and A0 are algebraic over 〈gj, Aj〉j∈J ′ .
So

g0, A0 |̂ 〈gj, Aj〉j∈J .
Since

〈gj〉j∈J |̂ 〈Aj〉j∈J
it follows that in fact

g0, A0〈Aj〉j∈J |̂ 〈gj〉j∈J
So 〈gj〉j∈J is a Morley sequence in the generic type of G, over g0, A0, and Aj for j ∈ J . As
the generic type is stabilized by everything, 〈g−1

0 · gj〉j∈J also is a Morley sequence in this
same type, over g0, A0, and Aj for j ∈ J . Thus

〈g−1
0 · gj〉j∈Jg0A0〈Aj〉j∈J ≡∅ 〈gj〉j∈Jg0A0〈Aj〉j∈J

It follows that the sequence 〈g−1
0 · gj, Aj〉j∈J is independent over A0. Let Bj denote acl(g−1

0 ·
gj, Aj).

Now for any j1 < · · · < jn in J ,

UT ′j1···jn = g0 · SA∪Bj1
∪···∪Bjn

.

Let s′ = g0 · s. Then

π1(UT ′j1···jn , s) = Gal(s′ acl(A ∪Bj1 ∪ · · · ∪Bjn)) = π1(SA∪Bj1
∪···∪Bjn

, s′).

Since Bj1 , Bj2 , . . . is independent over A, (8) is just the sequence that is exact by Lemma 7.5.

If I1 and I2 are two pleasant sequences, we can always find a pleasant sequence I3 such
that the concatenations I1I3 and I2I3 are pleasant. By four applications of Lemma 7.7, the
cohomology groups computed by I1 and by I2 are isomorphic. In fact, the isomorphism is
canonical:

Theorem 7.8. For each (infinite) pleasant sequence I, let H•I denote the cohomology groups
computed using I. There is a unique system of isomorphisms ηI,I′ : H•I

∼→ H•I′ for any two
pleasant sequences I, I ′, such that ηI′′,I′ ◦ ηI,I′ = ηI,I′′ and such that if I ⊃ I ′, then ηI,I′ is
the natural restriction map from H•I to H•I′. (In fact, we could also work with the underlying
chain map in the derived category, rather than working with just the cohomology groups.)

Proof. Uniqueness follows from four applications of Lemma 7.7, as mentioned above. Exis-
tence remains to be shown.

The map I 7→ H•I is a contravariant functor from the poset of pleasant sequences to the
category of sequences of groups. If I, J are two pleasant sequences such that I ∩ J = ∅ and
the union I ∪ J is a pleasant sequence, let νI,J denote the concatenation

H•I
∼← H•I∪J

∼→ H•J .

19



Now suppose I, J,K are pairwise disjoint, and I ∪J ∪K is pleasant. Then νJ,K ◦νI,J = νI,K ,
because of the following diagram in which every map is an isomorphism:

H•I∪K

��

// H•I

νI,J

��

νI,K

pp

H•I∪J∪K

ee

//

��

H•I∪J

bb

��

H•K

H•J∪K

ee

// H•J

νJ,K

kk

The diagram commutes because of functoriality of I 7→ H•I .
For any I, I ′, let ηI,I′ be the concatenation

H•I
νI,J→ H•J

νJ,I′→ H•I′ ,

where J is some pleasant sequence such that IJ and I ′J are pleasant.
We claim that the choice of J does not matter. Indeed, let J ′ be some other choice.

Let K be some pleasant sequence, independent from I, I ′, J, J ′. Then the following diagram
commutes:

H•J

νJ,K

��

νJ,I′

!!
H•I

νI,K //

νI,J
==

νI,J′ !!

H•K
νK,I′ // H•I′

H•J ′

νJ′,K

OO

νJ′,I′

==

Now if I, I ′, I ′′ are any three pleasant sequences, we can find some pleasant sequence J
independent from I ∪ I ′ ∪ I ′′, and then

ηI,I′′ = νJ,I′′ ◦ νI,J = νJ,I′′ ◦ νI′,J ◦ νJ,I′ ◦ νI,J = ηI′,I′′ ◦ ηI,I′ .

It remains to show that if I ⊃ I ′, then ηI,I′ is the original map from the functor H•−. Take
J a pleasant sequence independent from I. Then functoriality of H•− gives a commutative
diagram of isomorphisms

H•I′ H•I′J
oo // H•J

H•I

OO

H•IJ

OO

oo

<<

The map from H•I to H•J is νI,J , and the map from H•J to H•I′ is νJ,I′ , so the map from H•I
to H•I′ is indeed ηI,I′ .
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Lemma 7.9. Let 〈gi, Ai〉i∈I and 〈gj, Aj〉j∈J be two sequences, with the gi and gj elements
of G, with the Ai and Aj small sets, and I ∩ J = ∅. Suppose that 〈gi, Ai〉i∈I is pleasant.
Let BI and BJ be the union of the underlying sets of 〈gi, Ai〉i∈I and 〈gj, Aj〉j∈J , respectively.
Suppose BI |̂ BJ . Then the cohomology groups computed using the cover 〈gi · SAi

〉i∈I agree
with those computed using 〈gi · SAi

〉i∈I∪J .

Proof. Same as the proof of Lemma 7.7, with I and J in place of J and J ′; we never needed
to assume that 〈gj, Aj〉j∈J ′ was pleasant.

Lemma 7.10. Let 〈gi, Ai〉i∈I be an infinite sequence. Let I ′ be a cofinite subset of I such
that 〈gi, Ai〉i∈I′ is pleasant. Suppose that each Ai is in the algebraic closure of a finite tuple.
Then the cohomology groups computed using 〈gi · SAi

〉i∈I agree with those computed using
〈gi · SAi

〉i∈I′.
Proof. Each Ai has finite weight. From this, it is not hard to find an infinite subset I ′′ ⊂ I ′

such that
〈gi, Ai〉i∈I′′ |̂ 〈gi, Ai〉i∈I\I′′ (9)

Specifically, we just take I ′′ to be I ′ \C, where C ⊂ I ′ is a finite subset such that 〈gi, Ai〉i∈C
contains the canonical base of the strong type of 〈gi, Ai〉i∈I\I′ over 〈gi, Ai〉i∈I′ . Then (9) is
implied by

〈gi, Ai〉i∈I\I′ |̂
〈gi,Ai〉i∈C

〈gi, Ai〉i∈I′′ and 〈gi, Ai〉i∈C |̂ 〈gi, Ai〉i∈I′′

Now the cohomology groups computed using I ′′ agree with those using I ′ (by Lemma 7.7),
and also with those using I ′ (by Lemma 7.9).

Lemma 7.11. Let 〈gi, Ai〉i∈I be an infinite sequence, with each Ai of finite rank (i.e., in the
algebraic closure of a finite tuple). Suppose that some cofinite subsequence of 〈gi, Ai〉i∈I is
pleasant. Suppose I is totally ordered, with a least element i0. Let UI and C•I denote the
usual things. Then the total complex of

0→ C•i0 →
∏
i0<i

C•i0i →
∏

i0<i<j

C•i0ij

is exact.

Proof. This measures the difference between the cohomology calculated with and without
gi0 · SAi0

.

Lemma 7.12. Let 〈gi, Ai〉i∈I be an infinite sequence. Let I ′ be an infinite subset of I such
that 〈gi, Ai〉i∈I′ is pleasant. Suppose that each Ai is in the algebraic closure of a finite tuple.
Then the cohomology groups computed using 〈gi · SAi

〉i∈I agree with those computed using
〈gi · SAi

〉i∈I′.
Proof. Same proof as Lemma 7.7, but using Lemma 7.11.

Remark 7.13. An analog of Theorem 7.8, proven the same way, is true, with “pleasant”
replaced with “having an infinite pleasant subsequence, and Ai’s of finite weight.” In fact,
tracing through the proofs, we only need the Ai’s to have finite weight for i in the complement
of the pleasant subsequence.
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