
Pseudofinite counting functions mod n

Will Johnson

August 28, 2013

1 Introduction

Let M be a structure and R be a finite ring (commutative and unital). Unless stated
otherwise, “definable” means “definable with parameters.” Let Def(M) denote the collection
of definable sets in M . Recall the following definitions. A weak R-valued Euler characteristic
is a function χ : Def(M)→ R such that

• χ(∅) = 0

• χ(X) = 1 if X is a singleton

• χ(X) = χ(Y ) if X and Y are in definable bijection.

• χ(X × Y ) = χ(X) · χ(Y )

• χ(X ∪ Y ) = χ(X) + χ(Y ) if X and Y are disjoint.

Equivalently, χ is a homomorphism from the Grothendieck ring K(Def(M)) to R. If the
following additional property holds, then χ is called a strong Euler characteristic:

If f : X → Y is a definable function and r ∈ R is such that for every y ∈ Y ,
χ(f−1(y)) = r, then

χ(X) = r · χ(Y ).

An Euler characteristic χ is definable if for every definable function f : X → Y and every
r ∈ R, the set {y ∈ Y : χ(f−1(y)) = r} is definable.

If R = Z/nZ and M is a finite structure, there is a (unique) Euler characteristic
χ : Def(M) → Z/nZ assigning every set its size mod n. This χ is always strong and ∅-
definable. If M is an ultraproduct of finite structures, then there is a canonical strong Euler
characteristic χ : Def(M) → Z/nZ coming from the ultraproduct. Specifically, if M is an
ultraproduct

∏
i∈IMi/U , and X is a definable set in M of the form φ(M ; a), and a is the

class of some tuple 〈ai〉i∈I ∈
∏

i∈IMi, then take χ(X) to be the ultralimit of |φ(Mi; ai)| mod
n. This limit Euler characteristic will always be strong, but need not be definable.
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In the case where M is an ultraproduct of finite fields it is known that this canonical
Z/nZ-valued Euler characteristic is not ∅-definable. Here, we show that it is definable with
parameters, and that it is in a certain sense definable in terms of the non-standard Frobenius.
Moreover, this definition scheme yields a recipe which takes an arbitrary pseudofinite field K
and a choice of a topological generator of Gal(K), and yields a strong definable Z/nZ-valued
Euler characteristic on K.

In more detail, define a garden1 to be a difference field (K, σ) such that every element
of K has a finite orbit under σ. Interpreted in the language of difference fields, this is not a
first-order condition. However, the class of gardens can be viewed as a first-order elementary
class by working in a multi-sorted language with a sort Kn for the fixed field of σn, for
every n ≥ 1. One includes the difference field structure on each Kn, and the inclusion maps
Kd → Kn for d|n. For notational simplicity, however, we will denote a garden as (K, σ),
rather than (K1, K2, . . .). The following facts are known, or easy to show:

1. If K is a pseudo-finite field and σ is a topological generator of Gal(K) ∼= Ẑ, then
(Kalg, σ) is an existentially closed garden, and all EC gardens are of this form.

2. In particular, the class of gardens has a model companion, whose models are the
gardens (K, σ) such that K = Kalg and the fixed field K1 of σ is pseudo-finite.

3. If (K, σ) is an EC garden, then every definable subset of K1 (the fixed field of σ) is
already definable (with parameters) in K1 as a pure pseudo-finite field. This is easy.

4. If q = pr is a prime power, define the qth Frobenius garden Fq to be Falgq = Falgp with
σ equal to the qth power Frobenius map x 7→ xq. Any non-principal ultraproduct
of Frobenius gardens is an EC garden, and up to elementary equivalence, every EC
garden arises this way.

5. If K is a garden, let Abs(K) denote the sub-garden consisting of the absolute numbers,
i.e., the numbers algebraic over the prime field. Then two EC gardens K1 and K2 are
elementarily equivalent if and only if Abs(K1) is isomorphic to Abs(K2).

6. EC gardens have elimination of imaginaries (proven by Hrushovski). We probably
won’t use this fact.

7. EC gardens are supersimple of finite SU-rank, and have a well-defined dimension theory.

Although the Frobenius gardens Fq are infinite, they have the property that every de-
finable set is finite, so we have a unique Z/nZ-valued Euler characteristic coming from
the counting function. Any ultraproduct (K, σ) of Frobenius gardens therefore gets a non-
standard mod-n counting function, which will be a strong Euler characteristic χ : Def(K)→
Z/nZ.

1Hrushovski considers this kind of structure, but apparently doesn’t give a name to it. Hence this silly
name that I just made up.
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We will show that this function is ∅-definable. Restricting to the fixed field, we get strong
Euler characteristics on pseudo-finite fields, which are definable (but not ∅-definable).

Equivalently, the unique mod-n Euler characteristics on the Frobenius gardens are uni-
formly definable across q. In other words,

Theorem 1.1. For every formula φ(x; y) in the language of gardens, and every n, k, there
is a formula ψ(y) such that for F a Frobenius garden and b a tuple from F ,

|φ(F ; b)| ≡ k mod n ⇐⇒ F |= ψ(b).

As an example, suppose x is a variable from the sort K1, things fixed by σ, and suppose
φ(x; ) says that x 6= 0. So φ(Fq) is F×q . Then |F×q | = q − 1, which is congruent to 2 mod 5
if and only if q is congruent to 3 mod 5. We can detect this occurrence by looking at the
action of σ on the 5th roots of unity, which will always live in Fq4 . In particular, we can take
ψ to be the sentence

∃y : y5 = 1 ∧ σ(y) = y3,

where y is a variable from the sort fixed by σ4.
Let Ẑ denote the Prufer ring, the inverse limit of Z/nZ as n ranges over positive integers.

Specifying a (weak) Euler characteristic χ : Def(M)→ Ẑ on a structure M is equivalent to
specifying a collection of Z/nZ-valued (weak) Euler characteristics χn : Def(M) → Z/nZ
satisfying some obvious compatibilities (χn(X) is the mod n reduction of χm(X) if n divides
m). By abuse of terminology, we say that χ : Def(M)→ Ẑ is strong or definable if every χn
is strong or definable, respectively. Note that if M is finite (or if every sort of M is finite),
then there is a unique Ẑ-valued Euler characteristic, and it is strong and definable. If M is an
ultraproduct of finite structures, then M again has a canonical Ẑ-valued Euler characteristic,
which is strong but not necessarily definable. Then a restatement of Theorem 1.1 is the
following:

Theorem 1.2. If (K, σ) is an EC garden, then there is a ∅-definable Ẑ-valued Euler char-
acteristic χ : Def(K) → Ẑ which is uniformly defined across all EC gardens, and which
agrees with the non-standard counting functions when (K, σ) is an ultraproduct of Frobenius
gardens.

If K0 is a pseudofinite field, then we get a map from topological generators of Gal(K0)
to Ẑ-valued strong definable Euler characteristics of K0. So pseudo-finite fields have many
Ẑ-valued strong definable Euler characteristics.

Remark 1.3. Not all Ẑ-valued strong definable Euler characteristics arise this way, for
stupid reasons. If K0 is pseudo-finite and σ, τ are two topological generators of Gal(K0),
then the above recipe yields two Ẑ-valued Euler characteristics χσ and χτ . From the chinese
remainder theorem, one knows that Ẑ is a product

∏
p Zp. Concoct a new Ẑ-value Euler

characteristic χ that agrees with χσ on the 2-adic part of Ẑ, and agrees with χτ on the p-adic
part, for odd p. I doubt that χ is of the form χρ for any ρ ∈ Gal(K0).
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Remark 1.4. One can similarly define what it means to be Zp-valued strong definable Euler
characteristic. It might well be the case that the above construction produces all Zp-valued
strong definable Euler characteristics. My attempts to prove this haven’t worked out, however.

Remark 1.5. If (K, σ) is an EC garden, then (K, σ) has strong definable Ẑ-valued Euler
characteristics other than the canonical one. Indeed, (K, σ−1) is also an EC garden, and
its canonical Ẑ-valued Euler characteristic disagrees with that of (K, σ), but is still a strong
definable Euler characteristic, because (K, σ) and (K, σ−1) have the same definable sets.

2 Reduction to the case of curves

Theorem 1.2 follows directly from Theorem 1.1. By the Chinese remainder theorem, in
Theorem 1.1 we may reduce to the case where n is a prime power `k. The above discussion
works with Ẑ replaced with Z`, and so in what follows we will work with Z`-valued Euler
characteristics. The prime ` will remain fixed through what follows. When there are prime
powers q being discussed, we will not assume that q is prime to `.

If M is a structure, we can encode a Z`-valued Euler characteristic on M in terms of
the predicates which pick out the definable sets X such that χ(X) ≡ n mod `k, for every
n ∈ Z/`kZ. Specifically, for each predicate φ(x; y) in the original language of M , each k and
each n ∈ Z/`kZ, we add a predicate φn,k(y) such that φn,k(b) holds if and only if χ(φ(M ; b))
is congruent to n mod `k. This allows us to treat Z`-valued Euler characteristics as first
order structure.

Let T0 denote the set of first-order statements true of the Frobenius gardens. A model
of T0 is either a Frobenius garden or an EC garden. Now for each q, let F ′q denote the qth
Frobenius garden Fq with the additional data of the unique Z`-valued Euler characteristic
χ. Let T denote the set of statements true in all the F ′q. For example, the fact that χ is a
strong Z`-valued Euler characteristic is included in T .

It suffices to show that every model of T0 has a unique expansion to a model of T , since
Theorem 1.1 then follows by By Beth’s implicit definability theorem. In fact, since T is
a conservative extension of T0, it suffices to show that every model of T0 has at most one
expansion to a model of T .

If (K, σ) |= T0, let’s say that a Z`-valued Euler characteristic Def(K) → Z` is nice if
(K, σ, χ) |= T . We need to show that any two nice Euler characteristics on a model of T0
agree.

If (K, σ) is a Frobenius garden, this is automatic, since there is only one Z`-valued Euler
characteristic, owing to the finiteness of every definable set. It remains to consider the case
where (K, σ) is an EC garden. If (K, σ) is an EC garden and X is a definable subset of
(K, σ), say that X is determined if any two nice Euler characteristics on (K, σ) assign the
same value to X. (If (K, σ) admits no nice Euler characteristics, then every set is vacuously
determined.) It suffices to show that every definable subset of every EC garden is determined.

Several observations should be made about this notion:

1. If two sets are in definable bijection, and one is determined, then so is the other.
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2. Finite sets are determined.

3. If X and Y are determined, so are their cartesian product X × Y and their disjoint
union X

∐
Y .

4. If X, Y and X ∩ Y are determined, then so is X ∪ Y , by inclusion-exclusion. More
generally, if X1, . . . , Xn is a family of overlapping sets, and any intersection of the
Xi’s is determined, then

⋃n
i=1Xi is also determined. Again, this follows by inclusion

exclusion.

5. If X and Y are two sets, and the symmetric difference of X and Y is finite, then X is
determined if and only if Y is determined.

For now, we will make the following assumption, which encapsulates most of the algebraic
geometry of the argument:

Assumption 2.1. Let (K, σ) be an EC garden. Let C be an absolutely irreducible smooth
curve defined over K1 (the fixed-field of σ). Then the definable set C(K1) is determined.

We will verify this assumption in the next section. For now, we will prove Theorem 1.1
assuming Assumption 2.1.

Recall that in EC gardens, we have a well-defined rank R(a/B), which can be defined as
the transcendence degree of the difference field generated by a and B over the difference field
generated by B. Also, if X is a definable set, its rank R(X) is defined to be the maximum
of R(a/B) as a ranges over X(M), where B is a set of parameters over which X is defined,
and M is a saturated elementary extension of our original EC garden. This does not depend
on the choice of B. The rank R satisfies the Lascar inequalities, is definable in families, is
finite, and has the property that R(X) > 0 if and only if X is infinite. Moreover, sets in
definable bijection have the same rank. (Presumably this rank is the same thing as SU-rank,
though this fails in the more general case of ACFA so I’m leery about asserting this.)

Lemma 2.2. Let (K, σ) be an EC garden and X ⊂ (K1)
n be a quantifier-free definable set of

rank 1. Then there are absolutely irreducible smooth affine curves C1, . . . , Cm ⊂ An, defined
over K1, such that X differs from

⋃m
i=1Ci(K1) by a finite set.

Proof. We may assume (K, σ) is saturated. Recall that the sorts of (K, σ) are K1, K2, . . .,
where Kn is the fixed-field of σn. Each Kn is a degree-n Galois extension of K1, so after
naming parameters we may identify Kn with (K1)

n. In particular, after choosing a basis
for each Kn and naming the structure coefficients (in K1), there is a very nice way of
interpreting Kn in K1. In particular, we can identify elements of Kn with n-tuples in K1,
and all the function symbols on Kn and between the Kn’s are given by terms. Consequently,
any quantifier-free definable subset of (K1)

n can be expressed entirely using terms from the
K1 sort. Since σ acts trivially on K1, it follows that the definition can be expressed entirely
in the language of rings. In other words, X must be φ(K1) for some formula φ(−) in the
language of rings over K1. Let L be a small subfield of K1 containing the parameters needed
to define φ(−). We may assume that L is relatively algebraically closed in K1.
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If a and B are from K1, then the rank R(a/B) is merely the transcendence degree of a
over B. Consequently, the fact that R(a/L) ≤ 1 for every a from X implies that every a ∈ X
belongs to an L-definable curve or L-definable finite set. By compactness, X is in the union
of finitely many L-definable curves. Let C1, . . . , Cm be those affine curves C over L such
that there is at least one point in X which is generic on C, i.e., one point a ∈ X such that
qftp(a/L) is the generic type of C. (If there were infinitely many such curves, then X would
not be contained in a finite union of curves over L.) Then X differs from

⋃m
i=1Ci(K1) at only

finitely many points. Indeed, if a ∈ (K1)
n is a point that belongs to exactly one of X and⋃m

i=1Ci, then R(a/L) = 0. First of all, if a ∈ X, then R(a/L) ≤ R(X) = 1, so the only way
this could fail is if R(a/L) = 1. But then qftp(a/L) is the generic type of some curve C, and
by choice of the Ci’s, C is one of them. Thus x ∈

⋃m
i=1Ci. Conversely, if a ∈

⋃m
i=1Ci, then

certainly R(a/L) = tr.deg(a/L) is at most 1. So unless R(a/L) = 0, we have R(a/L) = 1.
But then a is the generic point on some Ci. By choice of the Ci, there is some b ∈ X such
that b is also a generic point on Ci, over L. This implies that qftp(a/L) = qftp(b/L). As X
is quantifier-free definable over L, a ∈ X.

So the symmetric difference of X and
⋃m
i=1Ci(K1) contains only points of rank 0. As it

is a definable set, it must have rank 0, hence be finite. Finally, we observe that the Ci are
definable over L. To see this, embed K1 into a monster model of ACF. Each Ci is the curve
corresponding to tp(a/L) for some a ∈ K1. The canonical base of stp(a/L) is in both acl(L)
and dcl(aL) ⊂ K1. As L is relatively algebraically closed in K1, this canonical base must be
in L, so tp(a/L) is stationary and Ci is defined over L.

Lemma 2.3. Let (K, σ) be an EC garden and X be a quantifier-free definable set of rank 1.
Then X is determined.

Proof. The set X might live in some sorts other than K1, but because of the facts mentioned
at the start of the previous proof, X is in definable bijection with a quantifier-free definable
set Y ⊂ (K1)

n. Since X is determined if and only if Y is determined, we may replace X
with Y and then assume that X ⊂ (K1)

n. Then the previous lemma applies, so X differs at
only finitely many points from a set of the form

⋃n
i=1Ci(K1), where each Ci is an absolutely

irreducible affine curve defined over K1. We may assume that the Ci are distinct, so Ci ∩Cj
is finite for i 6= j. By remarks above, it suffices to show that

⋃n
i=1Ci(K1) is determined. By

inclusion-exclusion, it suffices to show that any intersection of Ci(K1)’s is determined. An
intersection of more than one is finite, hence determined, so it remains to see that Ci(K1)
is determined for each i. Let C ′i be a smooth projective model of Ci. Then C ′i(K1) and
Ci(K1) differ at only finitely many points, and C ′i(K1) is determined by Assumption 2.1, so
by remarks above, Ci(K1) is determined.

We will use the following fact, which is an easy consequence of model completeness of
the theory of EC gardens and the ability to amalgamate gardens over algebraically closed
bases:

Fact 2.4. Let φ(x) be a formula in the language of gardens, with x a tuple. Then φ(x) is
equivalent in EC gardens to a statement of the form

∃y : ψ(y;x)
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where y is a tuple from various sorts, where ψ(y;x) is quantifier-free, and where (K, σ) |=
ψ(a; b) implies R(a/b) = 0 for any EC garden (K, σ) and tuples a, b.

Lemma 2.5. Let (K, σ) be an EC garden. Let X be a definable set of rank 1. Then there is
a quantifier-free definable set Y and a definable surjection function f : Y → X such that the
fiber products Y , Y ×X Y , Y ×X Y ×X Y , . . . are also quantifier-free definable sets of rank 1.
Furthermore, we may assume that Y is defined over the same parameters that X is defined
over, and that the fibers of f are finite and uniformly bounded in size.

Proof. We may assume that (K, σ) is sufficiently saturated. The set X is of the form φ(K; b)
for some parameter b. By Fact 2.4, φ(x; y) is of the form ∃z : ψ(x; y; z), where ψ(a; b; c)
implies that R(c/ab) = 0 in any EC garden. Let Y be the set of (x; z) such that ψ(x; b; z)
holds. Then Y is defined over b. Let f : Y → X be the coordinate projection. By definition
of X, this is surjective. The nth fiber product is clearly just the set of (x; z1, . . . , zn) such
that

∧n
i=1 ψ(x; b; zi) holds. This is a quantifier-free definable set. It has rank 1: suppose

(a; c1, . . . , cn) is a tuple satisfying
∧n
i=1 ψ(a; b; ci). Then because ψ(a; b; ci) holds, R(ci/ab) =

0 for each i. And a ∈ X, so R(a/b) ≤ 1. Consequently,

R(ac1 · · · cn/b) ≤ R(c1/ab) + · · ·+R(cn/ab) +R(a/b) ≤ 0 + . . .+ 0 + 1 ≤ 1.

So the nth fiber product has rank at most 1. Since it surjects onto X, it has rank 1.
The fibers of f are finite and uniformly bounded in size: by saturation, it suffices to

show they are finite. But for each a ∈ X, the fiber f−1(a) is exactly ψ(a; b;K). Since every
element of this set has rank 0 over a, b, this set must be finite.

Lemma 2.6. Let (K, σ) be an EC garden. Let Y → X be a definable surjection, and
suppose all fibers have size at most m. Suppose that the first m fiber products Y , Y ×X Y ,
Y ×X Y ×X Y , . . . are determined. Then X is determined.

Proof. Let χ and χ′ be two nice Euler characteristics. For 1 ≤ k ≤ m, let Xk denote the
set of a ∈ X such that f−1(a) has size m. Let αk and βk denote χ(Xk) and χ′(Xk). Let Yj
denote the j-fold fiber product of Y over X. So Y1 = Y and Y0 = X. There is a natural
projection map fj : Yj → X, and the fiber over a point in Xk has size kj. Because χ and χ′

are strong Euler characteristics, it must be the case that

χ(Yj) =
m∑
k=1

αkk
j

χ′(Yj) =
m∑
k=1

βkk
j.

Now since Yj is determined for j = 1, . . . ,m, we know that

m∑
k=1

αkk
j =

m∑
k=1

βkk
j
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for j = 1, . . . ,m. By invertibility of the Vandermonde matrix 〈kj〉1≤k≤m, 1≤j≤m, we have
αi = βi for 1 ≤ i ≤ m. Consequently,

χ(X) =
m∑
k=1

αk =
m∑
k=1

βk = χ′(X).

As χ and χ′ were arbitrary, X is determined.

Lemma 2.7. Let D be a definable set in an EC garden (K, σ). Suppose D has positive rank.
Then there is a definable map f from D to a definable set of rank 1, such that every fiber of
f has lower rank than D itself.

Proof. We may assume that D lives in a power of K1, since Kn is in definable bijection with
Kn

1 . We prove the lemma for D ⊂ Km
1 , by induction on m.

For the base case where m = 1, D can have rank at most 1. Take f to be the identity
map. Clearly this works. For the inductive step, suppose m > 1. Let π be a coordinate
projection Km

1 → K1 such that π(D) is infinite. (If no such coordinate projection existed,
then D would be finite.) Let

E = {x ∈ K1 : R(π−1(x) ∩D) = R(D)}.

This is definable. By Lascar inequalities, E must have SU-rank 0, so E is a finite set
{e1, . . . , ek}. By the inductive hypothesis, for each i there is a definable map fi from π−1(ei)∩
D to a set of rank 1, with every fiber of lower dimension than SU(π−1(ei) ∩D) = SU(D).
Let R be the set of points of D not projecting onto E. Let g be the restriction of π to R.
Then g is a map from R to a set of rank 1, and the fibers of g have lower rank than SU(D).
Conclude by taking f to be the map from D to the disjoint union of g(R) and the ranges of
the fi’s.

Finally we prove Theorem 1.1, assuming Assumption 2.1.

Proof (of Theorem 1.1). We prove by induction on n that every definable set of rank n in
every EC garden is determined. As explained above, this suffices to prove Theorem 1.1. The
case where n = 0 is obvious. Combining Lemmas 2.3, 2.5 and 2.6, we get the base case where
n = 1. For the inductive step, suppose we know that all definable sets of rank at most n ≥ 1
are determined. It then follows by Beth’s implicit definability theorem that the restriction
of nice Euler characteristics to definable sets of rank at most n are definable. In other words,
if χ and χ′ are two nice Euler characteristics on an EC garden, then not only do χ and χ′

agree on sets of rank at most n, but in any definable family {Eb}b∈B of sets of rank at most
n, for any k and m, the set of b such that χ(Eb) ≡ m mod `k is a definable subset of B.

Now fix some EC garden (K, σ) and some definable set X of rank n+ 1. Let χ and χ′ be
two nice Euler characteristics on (K, σ). By Lemma 2.7, there is a definable map f : X → Y
where Y is a set of lower rank, and where the fibers of f have rank at most n. For each
y ∈ Y , let Xy denote f−1(Y ). Then {Xy}y∈Y is a definable family of sets of rank at most n.
Therefore, for each y we have χ(Xy) = χ′(Xy). Moreover, for any k and m, the set of y ∈ Y
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such that χ(Xy) ≡ m mod `k is a definable subset of Y . Denote this set Yk,m; it is also the
set of y ∈ Y such that χ′(Xy) ≡ m mod `k.

Because χ and χ′ are strong Euler characteristics, it follows that for each k,

χ(X) ≡
∑

m∈Z/`kZ

mχ(Yk,m) mod `k

χ′(X) ≡
∑

m∈Z/`kZ

mχ′(Yk,m) mod `k

Now Yk,m is a definable subset of Y , and Y has rank at most n, so by induction χ(Yk,m) =
χ′(Yk,m). Hence the right hand sides agree, and we conclude that χ(X) ≡ χ′(X) mod `k for
every k. It follows that χ(X) = χ′(X). As χ and χ′ were arbitrary, X is determined. This
completes the inductive proof.

It remains to verify Assumption 2.1.

3 The case of smooth curves

From algebraic geometry and the Weil conjectures, one knows a great many facts about
smooth curves over finite fields. Let C be a smooth absolutely irreducible curve over Fq.
Let J be the Jacobian of C. Let g be the genus of C. One knows that there exist algebraic
integers α1, . . . , α2g, each with absolute value

√
q, such that for any n,

|C(Fqn)| = 1− αn1 − · · · − αn2g + qn

|J(Fqn)| =
2g∏
i=1

(1− αni )

Let φ : J → J be an isogeny. It is known that there exist algebraic integers β1, . . . , β2g such
that for any polynomial P (X) ∈ Z[X],

deg(P (φ)) =

2g∏
i=1

P (βi),

where deg(P (φ)) is 0 if P (φ) : J → J is not an isogeny, and is the degree of P (φ) as an
isogeny, otherwise, i.e., the length of the finite group scheme kerP (φ). If φ : J → J is the
qth-power geometric Frobenius, then for P (X) = Xn− 1, the endomorphism P (φ) has as its
kernel exactly the points of J(Fqn). Since this is finite, P (φ) is an isogeny, and in fact it is
a separable isogeny, by looking at the tangent space. Thus degP (φ) is just the set-theoretic
size of the kernel. So

2g∏
i=1

(1− βni ) = degP (φ) = |J(Fqn)| =
2g∏
i=1

(1− αni ).
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This holds for all n. Using the fact that |αi| =
√
q, one can prove that the βi are the same

as the αi, up to permutation.
In summary,

Fact 3.1. If C is a smooth curve over a finite field Fq, J is the Jacobian of C, and φ : J → J
is the qth-power geometric Frobenius, then there exist algebraic integers α1, . . . , α2g such that
for every n,

|C(Fqn)| = 1− αn1 − · · · − αn2g + qn

and for every P (X) ∈ Z[X],

degP (φ) =
n∏
i=1

P (αi).

Now if we know the values of deg(φ−n) =
∏2g

i=1(αi−n) for all n, then we can interpolate
to find the coefficients of the characteristic polynomial of φ, i.e., the symmetric polynomials
in the αi’s. In particular, we can determine

∑2g
i=1 αi, which almost determines |C(Fq)|. This

is roughly how we’ll prove that C(K1) is determined, for (K, σ) an EC garden.
Often, φ − n will not be a separable isogeny. To get a handle on its degree, we need to

use some basic facts about finite group schemes over algebraically closed fields.

Fact 3.2. Let K be an algebraically closed field. The category of commutative finite group
schemes over K is abelian. Every object has a canonical decomposition as a sum of a constant
group scheme (coming from a commutative finite group) and a local group scheme, i.e.,
a group scheme G with Gred = 0, or equivalently, with exactly one K-point. If K has
characteristic zero, every finite group scheme is constant. Consequently the simple group
schemes are of the form Z/`Z for ` a prime. If K has characteristic p, then one additionally
has the local group schemes µp = SpecK[X]/(Xp − 1) and αp = SpecK[X]/(Xp −X) (with
their usual multiplicative and additive group laws). If 0 → G → G′ → G′′ → 0 is an
exact sequence, then l(G′) = l(G′′) + l(G), where l(G) denotes the length or order of the
group scheme G, i.e., the dimension of the coordinate ring of G as a K-vector space. A
finite group scheme G is always annihilated by multiplication by l(G). If G is a local group
scheme, then l(G) is a power of p.

From the equation l(G′) = l(G′′) + l(G) and the fact that these orders are finite, one
sees that every commutative finite group scheme admits a composition series with simple
quotients. If G is reduced/constant then the quotients will all be reduced/constant (because
one can take the set-theoretic composition series in this case), and if G is local then the
quotients will all be local (because a local group scheme cannot map surjectively onto a
non-local group scheme, and cannot contain a non-local group scheme as a subgroup). If G
and G′ are simple commutative finite group schemes, and one of G or G′ is reduced/constant
while the other is local, then there are no homomorphisms between G and G′, because G
and G′ are not isomorphic. If G and G′ are arbitrary commutative finite group schemes,
and one is reduced/constant while the other is local, then there are still no homomorphisms
G→ G′, by an inductive argument using the compositions series of G and G′.
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Consequently, if we write an arbitrary commutative finite group scheme G as a direct
sum G0 ⊕Gred, with G0 local and Gred reduced, then

End(G) ∼= End(G0)⊕ End(Gred)

Lemma 3.3. Let G be a finite commutative group scheme. Suppose ` is a prime (possibly
the characteristic) and `k divides the order of G. Then `k divides the order of the `k-torsion
in G.

Proof. We may assume k > 0. First of all we show that there is a subgroup scheme H ≤ G
of order `k. If G is reduced, then G comes from a finite group and H exists by the Sylow
theorems or the classification of finite abelian groups. If G is local, then l(G) is a power
of p, the characteristic, so ` = p. Using the composition series of G in terms of µp and αp,
it follows that some subgroup of G has order pk. Finally, if G is neither local nor reduced,
then we can write G as a direct sum Gred⊕G0, with Gred the reduced part of G and G0 the
local part. Then l(G) = l(Gred) · l(G0). Therefore we can partition k as k = kred + k0, so
that `kred divides l(Gred) and `k0 divides l(G0). Then we can find Hred ≤ Gred and H0 ≤ G0

having orders `kred and `k0 , respectively. Taking H = Hred +H0 ⊂ G, we then conclude that
l(H) = `k.

Now that we have H, note that H is annihilated by its order `k, so H is a subgroups
cheme of the `k-torsion of G. Therefore, the order of the `k-torsion of G is divisible by the
order of H, which is `k.

Lemma 3.4. If K is a field of characteristic p and X is a finite K-scheme of length less than
or equal to pn, then the n-fold iterate of the absolute Frobenius factors through Xred ⊆ X,
where Xred is the maximal reduced closed subscheme of X.

Proof. Write X = SpecA, where A is K-algebra of dimension at most pn. Let I be the
nilradical of A, so Xred = SpecA/I. For α ∈ I, we have αp

n
= 0. In fact, if P (X) ∈ K[X]

generates the kernel of of the homomorphism K[X] → K[α] sending X to α, then K[α] ∼=
K[X]/(P (X)). Nilpotence of α implies that some power of X is divisible by P (X), forcing
P (X) = Xm for some m. Then K[X]/(P (X)) = K[X]/(Xm) has dimension m over K, so
m ≤ pn. As P (α) = 0, αm vanishes and hence αp

n
does as well.

So every element of the nilradical I has vanishing pnth power, or equivalently is killed by
the nth iterate of the absolute Frobenius. This means that the nth iterate of the absolute
Frobenius map factors through A → A/I, a map which is equivalent to Xred → X on the
level of schemes.

Lemma 3.5. Let G be a finite commutative group scheme over Falgq ; suppose that G is defined
over Fq, i.e., G = G′ ×SpecFq SpecFalgq for some group scheme G′ over Fq. Thus there is a
qth power geometric Frobenius map φ : G→ G, which is automatically a homomorphism of
group schemes over Falgq . If the order of G is q or less, then φ : G→ G factors through the
reduced part Gred of G.
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Proof. Let Absq denote the qth-power absolute Frobenius. The qth-power geometric Frobe-
nius φ : G → G is obtained by pulling back Absq : G′ → G′ along SpecFalgq → SpecFq.
If τ : G → G is the coefficient-twisting isomorphism obtained by pulling back Absq :
SpecFalgq → Falgq along G → SpecFalgq , then it so happens that τ ◦ φ = Absq. Thus
φ = τ−1 ◦ Absq. Now by Lemma 3.4, Absq : G → G factors through Gred → G. The

composition Gred ↪→ G
τ−1

→ G factors through Gred ↪→ G, because Gred is a reduced scheme.
Consequently, τ−1 ◦ Absq must also factor through Gred → G.

Fix `. For each prime power q, consider Fq with the following additional structure:

1. For each genus g curve C defined over Fq, the values of the symmetric polynomials of
the α1(C), . . . , α2g(C) as elements of Z`. Specifically, for each k, n, m, g, and each
formula φ(x; y) in the language of rings, we include predicates which pick out the
values of b such that φ(Falgq ; y) is a smooth curve of genus g, and the nth symmetric
polynomial of the α1(C), . . . , α2g(C) is congruent mod `k to m.

2. For each genus g curve C over Fq and each P (X) ∈ Z[X] the numbers NP (X),k,
NP (X),k,red and NP (X),k,0 defined as follows: let J be the Jacobian of C. Let φ : J → J
be the qth power geometric Frobenius on J . Let GP (X),k(C) denote the part of J anni-
hilated by both P (φ) and `k, i.e., the `k-torsion in kerP (φ), or the kernel of the action
of P (φ) on the `k-torsion. Let NP (X),k(C), NP (X),k,0(C) and NP (X),k,red(C) denote the
order of the group schemes GP (X),k(C), its local part, and its reduced part. We can
make these into first-order structure by using the fact that all are bounded by the order
of the `k-torsion in J , which is `2kg.

Call Fq with this extra structure F ′q, and let T ′ be the set of all first-order statements
true in the F ′q. Recall that T0 is the theory of the Fq’s as pure gardens.

Lemma 3.6. Each model of T0 can be extended to a model of T ′ in at most one way. Thus,
by Beth’s implicit definability theorem, the extra structure on the Fq’s is uniformly definable
in the language of gardens.

Proof. The following first-order statements are true of the above data, in every Fq:

(a) NP (X),k(C) = NP (X),k,red(C) ·NP (X),k,0(C).

(b) NP (X),k,red(C) actually equals the number of points in J(Falgq ) which are `k-torsion and
annihilated by P (φ), because the reduced part of GP (X),k(C) is the constant group
scheme coming from this set-theoretic abelian group. Note that φ : J(Falgq )→ J(Falgq )
is the same map as σ, so we can also say that NP (X),k,red(C) equals the number of
points in J(Falgq ) which are `k-torsion and annihilated by P (σ).

(c) The numbers NP (X),k,red(C) and NP (X),k,0(C) are always at least one, hence never zero.
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(d) `k dividesNP (X),k if and only if `k divides
∏2g

i=1 P (αi(C)). This follows by Lemma 3.3 and

the fact that
∏2g

i=1 P (αi(C)) is exactly the degree of P (φ), hence the order of the finite
group scheme kerP (φ) (unless P (φ) isn’t an isogeny, in which case kerP (φ) contains
an abelian variety, so `k certainly divides the order of the `k-torsion in kerP (φ), and
`k also divides 0 = degP (φ)).

(e) If the first sort (the fixed field of σ) has more than `2kg elements, then NX,k,0(C) =
N0,k,0(C). To see this, note that the `k-torsion is a commutative group scheme of order
`2kg, defined over Fq, with geometric qth-power Frobenius induced by φ. Let H be the
`k-torsion, and write H as the sum of the reduced part Hred and the local part H0.
Since q > `2kg, Lemma 3.5 implies that φ must map H into Hred. By the comments
before Lemma 3.3, the action of φ on H must send Hred into Hred and H0 into H0. In
particular, φ must annihilate H0. Therefore, the entirety of H0 is in the kernel of φ.
Now G0,k(C) is H and GX,k(C) is the kernel of the action of φ on H. So the local part
of G0,k(C) lies entirely in GX,k(C), and therefore the two groups have the same local
part, so N0,k,0(C) = NX,k,0(C).

(f) If NX,k,0(C) = N0,k,0(C), then NP (X),k,0(C) = NP (0),k,0(C) for every P (X) ∈ Z[X]. The
first statement asserts that φ acts trivially on the local part of the `k-torsion, and if
this holds, then P (φ) acts just like P (0).

(g) For n ∈ Z, Nn,k(C) equals gcd(n, `k)2g, where gcd(x, y) denotes the greatest common
divisor of x and y. Indeed, Gn,k(C) is exactly the maximal subgroup scheme of J
annihilated by both multiplication by n and by multiplication by `k. Equivalently,
Gn,k(C) is the part of J annihilated by the ideal (n, `k) ⊂ Z, which is the principal
ideal generated by gcd(n, `k). So Gn,k(C) is just the gcd(n, `k)-torsion in J . By well-
known facts about Abelian varieties, this group scheme has order gcd(n, `k)2g.

It follows that these first-order statements hold in every model of T ′. Now let M be a model
of T0. If (K, σ) is a Frobenius garden Fq, then this is witnessed by some first-order statement
(specifically the statement saying that K1 has exactly q elements). It is part of the axioms
of T ′ that if the underlying garden is isomorphic to Fq, then the extra structure must be
whatever it is for F ′q. In particular, the extra structure is uniquely determined. (Maybe it’s
worth pointing out that every automorphism of Fq as a garden extends to an automorphismi
of F ′q.)

So suppose that (K, σ) is an EC garden instead of a Frobenius garden. Suppose we
have two ways of expanding K to a model of T ′. Denote one with the symbols above,
and the other with primed symbols. By (e), one knows that NX,k,0(C) = N0,k,0(C) and
N ′X,k,0(C) = N ′0,k,0(C) for every C. Consequently, by (f)

NP (X),k,0(C) = NP (0),k,0(C) and N ′P (X),k,0(C) = N ′P (0),k,0(C) (1)

for every P (X) and k and C. By (b), we know that

NP (X),k,red(C) = N ′P (X),k,red(C) (2)
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for every P (X) and k and C, because both sides must actually equal the number `k-torsion
points in J(K) annihilated by P (σ). (Note that the `k-torsion must live in some sort Km

where m depends only on `k, so the number of `k-torsion points is truly something that can
be expressed by first-order conditions in our multi-sorted structure.) Similarly, by (g)

Nn,k(C) = gcd(n, `k)2g = N ′n,k(C) (3)

for every k and every n ∈ Z. Combining (a), (c), (2) and (3),

Nn,k,0(C) =
Nn,k(C)

Nn,k,red(C)
=

N ′n,k(C)

N ′n,k,red(C)
= N ′n,k,0(C) (4)

for every k and every n ∈ Z. By (1), it follows that

NP (X),k,0(C) = NP (0),k,0(C) = N ′P (0),k,0(C) = N ′P (X),k,0(C) (5)

for arbitrary P (X), k, and C. Finally, combining (a), (2) and (5), we see that

NP (X),k(C) = NP (X),k,0(C) ·NP (X),k,red(C) = N ′P (X),k,0(C) ·N ′P (X),k,red(C) = N ′P (X),k(C) (6)

for arbitrary P (X), k, and C.
Combining (6) with (d), we see moreover that for any k and P (X) and C,

`k|
2g∏
i=1

P (αi(C)) ⇐⇒ `k|
2g∏
i=1

P (α′i(C)).

In other words, ∣∣∣∣∣
2g∏
i=1

P (αi(C))

∣∣∣∣∣
`

=

∣∣∣∣∣
2g∏
i=1

P (α′i(C))

∣∣∣∣∣
`

(7)

for arbitrary P (X) and C. By Lemma 3.7 below, it follows that the αi(C) are a permutation
of the α′i(C). Consequently, the elementary symmetric polynomials take the same values.
Combined with (6), (2) and (5), we see that our two expansions of (K, σ) are the same.

Lemma 3.7. Let α1, . . . , αn and β1, . . . , βn be two n-element multisets of elements of Qalg
` .

In fact, suppose that the αi are the roots of some degree n polynomial over Q`, and assume
the same for the βi. Suppose that for every polynomial P (X) ∈ Z[X], the following holds:∣∣∣∣∣

n∏
i=1

P (αi)

∣∣∣∣∣
`

=

∣∣∣∣∣
n∏
i=1

P (βi)

∣∣∣∣∣
`

. (8)

Then the αi are a permutation of the βi.
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Proof. By continuity, (8) continues to hold for P (X) in Z`[X]. By clearing denominators,
it clearly even extends to P (X) ∈ Q`[X]. Let γ be an arbitrary element of Qalg

` . We will
show that γ occurs with the same multiplicity in the αi’s as in the βi’s. Let P (X) be the
minimal polynomial of γ over Q`. Let γ1 = γ, γ2, . . . , γm be the roots of P (X). There are
no multiplicities. Let d be the multiplicity of γ among the αi’s, possibly zero. By Galois
symmetry γj also occurs with multiplicity d among the αi’s, for each j. Now if ε is small,
then

n∏
i=1

m∏
j=1

(αi − γj + ε) =
n∏
i=1

P (αi + ε)

is proportional to εdm (i.e., O(εdm) and Ω(εdm)). Indeed, each term (αi − γj + ε) approaches
a nonzero constant if αi 6= γj, and is proportional to ε if αi = γj. The total number of pairs
(i, j) such that αi = γj is exactly dm (d for each value of j).

It follows that

lim
ε→0

|
∏n

i=1 P (αi + ε)|`
|εdm|`

exists and is nonzero. Similarly, if e denotes the multiplicity of γ among the βi’s, then

lim
ε→0

|
∏n

i=1 P (βi + ε)|`
|εem|`

exists and is nonzero. The numerators of the fractions in these two limits are the same, by
assumption. The only way both limits can exist and be non-zero is therefore if em = dm,
implying e = d. So γ occurs the same number of times among the αi’s as among the βi’s.
As γ was arbitrary, we are done.

Finally, we prove Assumption 2.1.

Proof (of Assumption 2.1). We need to show that size mod `k of C(Fq) is ∅-definable in the
Frobenius garden Fq in terms of the coefficients of C, uniformly across q. By Lemma 3.6,
the function which takes (the coefficients of) a smooth projective curve C/Fq and returns
α1(C) + · · · + α2g(C) mod `k is uniformly ∅-definable across q. It turns out that the value
mod `k of q is also uniformly ∅-definable across Fq, i.e., for every k and m there is a sentence
φk,m in the language of gardens such that Fq |= φk,m if and only if q ≡ m mod `k. Specifically,
we can take φk,m to be

∃y : y`
k

= 1 ∧ σ(y) = ym,

where y is a variable from the appropriate sort that will contain all the `k-roots of unity.
Now the function which takes (the coefficients of) a smooth projective curve C/Fq and

returns 1 − α1(C) − · · · − α2g(C) + q mod `k, or equivalently, returns |C(Fq)| mod `k, is
uniformly ∅-definable across the Frobenius gardens.

Consequently, in the terminology of §2, C(K1) is determined for every smooth projective
curve C. Every smooth curve C ′ differs from some smooth projective curve C by finitely
many points, so C ′(K1) is determined as well, proving Assumption 2.1.
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