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1 Intro

Let K be a field, and let T be ACFK , the theory of algebraically closed fields extending
K. Then ACFK is strongly minimal, eliminates imaginaries, and has the property that
every algebraically closed subset of the monster model is an elementary substructure (i.e., a
model). Denote the monster by M.

Let G be a connected algebraic group over K. Fix i ≥ 0, and a finite group M with
order prime to charK. We are going to give a purely model-theoretic construction which
should recover the ith etale cohomology group with coefficients in M of the variety G, base
changed to K (or to the monster—these should be the same).

If A is a set of parameters, let Gal(A) denote the profinite group Aut(acl(A)/ dcl(A)).
Because we eliminate finite imaginaries, the category of sets with continuous action of Gal(A)
is equivalent to the category of finite A-definable sets.1

If L is a field, Gal(L) agrees with the usual Galois group Aut(Lsep/L). If A ⊂ B, there
is a natural restriction map Gal(B)→ Gal(A).

Let n be sufficiently big. Let g1, . . . , gn, t be a Morley sequence over ∅ (i.e., over K) in
the generic type of G. For each non-empty I ⊆ {1, . . . , n}, let

LI = acl
(
{gj · g−1i : i, j ∈ I}

)
SI = {g ∈ G : gi · g |= p|LI}

where p is the generic type of G and the choice of i ∈ I doesn’t matter.

AI = dcl ({gi · t} ∪ LI)

where the choice of i ∈ I doesn’t matter.

GalI = Gal(AI).

Note that for I ⊂ J , we have inclusions LI ⊆ LJ , AI ⊆ AJ . Consequently we get
restriction maps GalJ → GalI . Also, SJ ⊂ SI , and t is in every SI .

1In particular, Grothendieck’s Galois theory applies to the category of finite A-definable sets, and Gal(A)
is the automorphism group of the forgetful functor from finite A-definable sets to finite sets.
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For each I, we have a cochain complex

0→ C0
I → C1

I → · · ·

coming from group cohomology of GalI with coefficients in M and continuous cochains. So
Ci

I is the abelian group of continuous functions from (GalI)
i to M . (M was our coefficient

group from earlier.) The restriction maps GalJ → GalI induce maps on cochains in the other
direction: Ci

I → Ci
J .

Form the total complex of the following double complex

0→
∏
i

C•i →
∏
i<j

C•ij →
∏

i<j<k

C•ijk → · · · → C•{1,2,...,n}

We are going to (hopefully) show that the ith cohomology group of this complex agrees with
the ith etale cohomology group of the variety G, with coefficients in M , assuming n was
sufficiently big relative to dimG and i.

This presumably means that we can (nearly) get the etale cochain complex of G as a
homotopy limit of the group-cohomology cochain complexes of the GalI .

1.1 Motivation, part 1

One can roughly think of GalI as “π1(SI)” (with basepoint t) for the following reason. Say
that a finite cover of SI is a type-definable set C and a relatively definable map π : C → SI

such that

• C is type-definable over LI

• the map g 7→ gi · π(g) (from C to realizations of the generic type of G over LI) is
relatively LI-definable. Here, i is some element of I; the choice of i does not matter.

• The map π has finite fibers.

A morphism between two finite covers (C1, π1) and (C2, π2) is an LI-definable map f : C1 →
C2 such that π2 ◦ f = π1. We get a category C of finite covers of SI .

If (C, π) is one of these finite covers, the fiber π−1(t) is a finite set, and we get a “fiber
functor” from C to finite sets. Grothendieck’s Galois theory applies: GalI is the automor-
phism group of this fiber functor and C is identified with the category of finite sets with
continuous GalI-action.

Indeed, note that π−1(t) is a finite set definable over {gi · t} ∪ LI , so we really get a
functor from C to the category of finite sets definable over {gi · t}∪LI . One checks that this
is an equivalence of categories. It remains to recall that the category of {gi · t}∪LI-definable
finite sets is equivalent to the category of finite sets with continuous GalI-actions.2

From the philosophy of Grothendieck’s Galois theory (and from how Grothendieck defines
the etale fundamental group), it therefore makes sense to think of GalI as the fundamental
group of SI , with basepoint at t.

2Everything we are saying here is a variant of the following general fact: Let T be a strongly minimal
theory, A be some algebraically closed set of parameters, and p be a stationary type over A. Consider the
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1.2 Motivation, part 2

Second of all, it makes sense to think of SI as an etale K(π1(SI), 1) (an Eilenberg-Maclane
space). Roughly speaking, SI is an intersection of a number of Zariski-open definable sets.
Among these Zariski opens, the ones which are etale Eilenberg-Maclane spaces are cofinal. . .

Ignoring the translation by gi, SI is essentially the set of generics over LI . So, it is the
intersection of all LI-definable dense opens in G. If U is any LI-definable dense open in G,
we can find a smaller LI-definable open V ⊂ U such that V is an Artin local neighborhood.

(Assuming I have the terminology right, an Artin local neighborhood is a hyperbolic
curve, or a fibration over such a curve with fibers also being Artin local neighborhoods.
From the homotopy long exact sequence of a fibration, it is clear that these are Eilenberg-
Maclane spaces, at least in characterstic 0.)

In particular, if we think of SI as an Eilenberg-Maclane space, then the group cohomology
of π1(SI) = GalI agrees with the geometric cohomology of SI as a “space.” In fact, the
cochain complexes are isomorphic in the derived category, morally.3

So, the main claim we are making is that we can get the etale cochains of G as a homotopy
limit of the “etale cochains” of SI .
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1.3 Motivation, part 3

So, we are roughly asserting that the etale cochains of G can be gotten (up to quasi-
isomorphism) as the homotopy limit of the etale cochains of the SI . Why should this hold?

All schemes will be over the moster M. Recall that M is our group of coefficients. View
it as a constant etale sheaf on G. Let 0 → M → I0 → I1 → · · · be an injective resolution

category of type-definable sets over A with relatively A-definable maps. Within this, form the (comma)
category of type-definable sets over the type-definable set of realizations of p. Within this, take the full
subcategory C of covers with finite fibers. Then, for every t |= p, there is a fiber functor from C to finite
tA-definable sets sending a cover (C, π) to the finite set π−1(t). This induces an equivalence of categories
from C to finite tA-definable sets, and the category of finite tA-definable sets is in turn equivalent to the
category of finite sets with continuous Gal(tA)-action. So we are in the setting of Grothendieck’s Galois
theory.

3If S is a K(G, 1), then the singular cochains of S and the group cohomology cochains of G (with
coefficients in Z) are isomorphic in the derived category. If S is a variety which is an etale K(G, 1), where
G = πet

1 (S), and M is a coefficient group which is torsion and prime to the characterstic, then it is presumably
also true that the etale cochains of S agree with the continuous cochains of G.

4There might be a way to make sense of the etale cochains of the type-definable set SI . We can try and
convert SI into a scheme by taking the coordinate ring of G (or some affine open containing S) as a variety
over M, and then localizing by all the right terms to throw out the translates by gi of the LI -definable
positive-codimension closed subschemes. Then take Spec of the resulting ring. I don’t know whether the
resulting object is particularly well-defined, though. If we ignored gi and started with the coordinate ring
over LI rather than M, this would just yield Spec of the fraction field of G over LI . This is an etale
Eilenberg-Maclane space, I believe, since etale cohomology of fields is the same as group cohomology of their
absolute Galois groups. The absolute Galois group of this function field is indeed the same thing as GalI .
Now, going back to the weird scheme over LI , it should just be the pullback of this function field along
SpecM→ SpecLI . This sort of base change does not usually change etale cohomology groups (with torsion
coefficients prime to the characteristic), if I understand correctly.
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of M . For each Zariski open U ⊂ G, we have the constant sheaf ZU on U , which we can
extend to a sheaf on G by extending by zero.

If I understand correctly, extension-by-zero is an exact functor which is the left adjoint
to the restriction/pullback functor from etale sheaves on G to etale sheaves on U . It follows
that the restriction/pullback functor sends injectives to injectives. In particular,

0→M |U → I0|U → I1|U → · · ·

is an injective resolution of the constant sheaf M on U .
Now, the etale cochains of G with coefficients in M are

0→ Γ(G, I0)→ Γ(G, I1)→ · · ·

or equivalently,
0→ Hom(ZG, I

0)→ Hom(ZG, I
1)→ · · ·

where ZG is the constant sheaf Z on G.
Similarly, the etale cochains of U with coefficients in M will be

0→ Γ(U, I0|U)→ Γ(U, I1|U)→ · · ·

or equivalently
0→ Hom(ZU , I

0)→ Hom(ZU , I
1)→ · · · ,

where the Hom’s are in sheaves on G, and ZU is the constant sheaf Z on U , extended by
zero to G.

Theorem 1.1. Suppose we are given a map I 7→ UI from non-empty subsets of {1, . . . , n}
to Zariski open subsets of G, and suppose that UI ⊃ UJ for I ⊂ J . For every point p ∈ G,
let XU,p be the abstract simplicial complex with

• Vertices the 1 ≤ i ≤ n such that p ∈ Ui

• Faces the I ⊂ {1, . . . , n} such that p ∈ UI

Fix k > 0, and suppose that for every i ≤ k+ 1 and p ∈ G, the ith homology group of XU,p is
the same as that of a point, i.e., Z for i = 0, and 0 for i > 0. Then the kth etale cohomology
group Hk(Get,M) is isomorphic to the kth cohomology group of the totalization of the double
complex

0→
∏
i

Hom(ZUi
, I•)→

∏
i<j

Hom(ZUij
, I•)→ · · · → Hom(ZU1,2,...,n , I

•)→ 0 (1)

Proof. Consider the double complex

0→ Hom(ZG, I
•)→

∏
i

Hom(ZUi
, I•)→

∏
i<j

Hom(ZUij
, I•)→ · · · (2)
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This double complex yields a map ψ of chain complexes from its first column Hom(ZG, I
•)

to the totalization of the remaining columns, i.e., to the totalization of (1). We claim that ψ
induces an isomorphism on cohomology groups up to the kth one. To prove this, it suffices
to show that the first k or k + 1 homology groups of the mapping cone of ψ vanish.5 But
the mapping cone of ψ is just the totalization of (2).

To show that the first k (co)homology groups of the totalization of (2) vanish, it suffices
to show that for each row, the first k cohomology groups vanish. Now the rth row is obtained
by applying the exact contravariant functor Hom(−, Ir) to the following chain complex of
sheaves on G:

0← ZG ←
⊕
i

ZUi
←
⊕
i<j

ZUij
← · · · . (3)

So it suffices to show that (3) is an exact sequence of sheaves, up to the kth degree. This
can be checked on stalks, at geometric points. If p is a geometric point, the stalk at p of (3)
is just the chain complex which yields reduced simplicial homology of the abstract simplicial
complex XU,p. By assumption, this reduced homology vanishes.6

For any p ∈ G = G(M), let Xp be the abstract simplicial complex whose vertices and
faces are the non-empty subsets I ⊆ {1, . . . , n} such that p ∈ SI . This forms an abstract
simplicial complex. We will see later (Theorem 2.1) that, if n was chosen sufficiently big
relative to i, the first i homology groups of Xp agree with the homology groups of a point,
for all p.

Now, pretend that the SI ’s are Zariski open sets, rather than type-definable sets. By the
theorem, the ith etale cohomology group of G agrees with the ith cohomology group of the
homotopy limit of the etale cochain complexes of the SI ’s. Since we are pretending that the
SI ’s are K(GalI , 1)’s, and the cochain complex of a K(G, 1) is quasi-isomorphic to the usual
group cohomology cochain complex, it should be plausible that we could instead take the
homotopy limit of the group cohomology cochain complexes of the GalI ’s.

2 Pointwise Triviality

Theorem 2.1. Fix k > 0. Suppose that n is [sufficiently big]. For each p ∈ G, let Xp be the
abstract simplicial complex with

• vertices the i ∈ {1, . . . , n} such that p ∈ Si

• faces the non-empty I ⊆ {1, . . . , n} such that p ∈ SI .

5We are using the fact that if K• is the mapping cone of a map of complexes C• → D•, then the homology
groups of C, D, and K are related by a long exact sequence.

6We are sweeping under the rug the fact that the geometric points here not only include the elements
of G(M), but also the analogs of scheme-theoretic points, which correspond to elements from elementary
extensions of M. The set of p for which XU,p has vanishing reduced homology groups in the right degrees
is a definable set, definable over M, because it is a boolean combination of the UI ’s. Since every element of
G(M) belongs to it, this remains true for elementary extensions of M.

5



(As SI ⊃ SJ for I ⊂ J , this is a well-defined abstract simplicial complex.)
Fix k ≥ 0. Suppose that n > k + 2dim(G) + tr.deg(p/∅) − tr.deg(p/g1, . . . , gn). Then

Hi(Xp) agrees with Hi(pt) for i ≤ k and all p.
In particular, if n is sufficiently big (at least k + 3dim(G)), then the first k + 1 reduced

homology groups of Xp vanish for all p.

We first prove a slightly simpler variant.

Theorem 2.2. Let T be a strongly minimal theory; let R() denote rank. Let A be some set
of parameters and p be a stationary complete type over A. Let g1, . . . , gn be an independent
sequence of tuples (not necessarily realizing p, or the same length), independent over A. Let
x realize p|A. Let Σ be the abstract simplicial complex on {1, . . . , n} which has I as a face
if and only if x realizes the non-forking extension of p to A ∪ {gi : i ∈ I}. Equivalently, I is
a face if

x |̂
A

{gi : i ∈ I}.

Fix kge0. Assuming that n > k+2R(x/A)−R(x/Ag1 · · · gn), the first k+1 homology groups
of Σ agree with those of a point.

Proof. We proceed by induction on k+R(x/A)−R(x/Ag1 · · · gn). The base case where this
number is negative is trivial, because then pigs fly. For I ⊂ {1, . . . , n}, we let gI denote
{gi : i ∈ I}.

Since n > R(x/A) = wt(x/A), x cannot fork with every gi. Reordering the gi, we may
assume that

g1 |̂
A

x (4)

In particular, there is at least one vertex in Σ.
Let Γ be the subcomplex of Σ supported on {2, . . . , n}. Let Ψ be the subcomplex of Γ

consisting of those I such that I ∪{1} is a face of Γ. Note that Σ is the mapping cone of the
inclusion Ψ ↪→ Γ. In particular, we get a long exact sequence of reduced homology groups:

· · · → H̃i(Ψ)→ H̃i(Γ)→ H̃i(Σ)→ H̃i−1(Ψ)→ · · ·

To show that H̃i(Σ) vanishes for i ≤ k, is suffices to prove one of the following two conditions:

• Ψ = Γ, in which case all reduced homology groups of Σ vanish

• H̃i(Γ) vanishes for i ≤ k and H̃i(Ψ) vanishes for i ≤ k − 1.

Note that I is a face of Ψ if and only if x |̂
A
gIg1. But, by (4), this is equivalent to x |̂

Ag1
gI .

Now g2, g3, . . . , gn is certainly an independent sequence over Ag1, and x realizes p|Ag1, and

n− 1 > (k − 1) + 2R(x/Ag1)−R(x/Ag1 · · · gn)

and

(k − 1) +R(x/Ag1)−R(x/Ag1g2 · · · gn) < k +R(x/A)−R(x/Ag1g2 · · · gn),
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all because R(x/A) = R(x/Ag1), by (4). So the inductive hypothesis applies to Ψ, and
H̃i(Ψ) vanishes for i ≤ k− 1. So we need to show that Ψ = Γ or that the first k+ 1 reduced
homology groups of Γ vanish.

Case 1: Suppose
g1 |̂

A

g2g3 · · · gnx.

Then for any I ⊂ {2, . . . , n}, we have

xgI |̂
A

g1, so x |̂
AgI

g1.

Therefore
x |̂

A

gIg1 ⇐⇒ x |̂
A

gI .

It follows that Ψ = Γ.
Case 2: Suppose that

g1 6 |̂
A

g2g3 · · · gnx.

Then
R(x/Ag1g2 · · · gn) < R(x/Ag2g3 · · · gn),

so
R(x/A)−R(x/Ag2 · · · gn) + k < R(x/A)−R(x/Ag1 · · · gn) + k.

Also,

n− 1 ≥ k + 2R(x/A)−R(x/Ag1 · · · gn) > k + 2R(x/A)−R(x/Ag2 · · · gn)

Therefore, we can apply the inductive hypothesis to A and g2, . . . , gn, concluding that the
first k + 1 reduced homology groups of Γ vanish.

Next, we prove Theorem 2.1

Proof. Proceed by induction on R(p/∅)−R(p/g1 · · · gn).
Because n > dim(G) ≥ wt(p/∅), the point p does not fork with every gi. Reordering the

gi, we may assume that p |̂ g1. Let x be g1 · p. Let h2, . . . , hn denote g2 · g−11 , · · · gn · g−11 .
As before, let Γ be the subcomplex of Xp supported on {2, . . . , n}, and let Ψ be the

subcomplex of Γ consisting of I such that {1} ∪ I is a face of Xp. As before, we have a long
exact sequence of reduced homology groups.

Note that the following are equivalent:

• I is a face of ψ

• p ∈ SI∪{1}

• g1 · p = x is generic over {hi : i ∈ I}.
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• x |̂ hI

Since g1 |̂ x, the element g1 · x is generic over x, hence over ∅. So it realizes a stationary
type over ∅. Also, the sequence h2, . . . , hn is an independent sequence over ∅. Moreover,

n− 1 > k − 1 + 2 dim(G) ≥ k − 1 + 2R(x/∅)−R(x/h2 · · ·hn).

so the first k reduced homology groups of Ψ vanish by Theorem 2.2.
It remains to show that Ψ = Γ or that the first k + 1 reduced homology groups of Γ

vanish. As before, we break into two cases:
Case 1: Suppose

g1 |̂ g2g3 · · · gnp

We claim that Ψ = Γ. Indeed, let I be a face of Γ. Let i0 be an element of I. The fact that
I is a face of Γ means that

gi0 · p |̂ {gi · g−1i0
: i ∈ I}. (5)

Now g1 is generic over pgI , and thus so is g1 · g−1i0
. In particular,

g1 · g−1i0
|̂ pgI .

Therefore, (5) implies
gi0 · p |̂ {gi · g−1i0

: i ∈ I} ∪ {g1 · g−1i0
},

so I ∪ {1} is a face of Xp.
Case 2: Suppose

g1 6 |̂ g2g3 · · · gnp

Then R(p/g2g3 · · · gn) > R(p/g1g2 · · · gn). In particular

n− 1 ≥ k + 2 dim(G) +R(p/∅)−R(p/g1 · · · gn) > k + 2 dim(G) +R(p/∅)−R(p/g2 · · · gn).

Also
R(p/∅)−R(p/g2 · · · gn) < R(p/∅)−R(p/g1 · · · gn),

so by induction, the first k + 1 reduced homology groups of Γ vanish.

3 Approximating type-definable sets with opens

Hold k fixed. Assume n > k+ 1 + 3 dim(G). We would like to show that the recipe of §1 for
computing the kth etale cohomology group of G, with coefficients in M , is correct.

Let ~g denote our fixed sequence of n inependent realizations g1, g2, . . . , gn of the generic
type of G. Let L = acl(~g). Recall that

LI = acl({gi · g−1j : i, j ∈ I}),

so that LI ≤ L for every I.
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Definition 3.1. A ~g-system is a map I 7→ UI from non-empty subsets of {1, . . . , n} to
non-empty Zariski open subsets of G (viewed as a scheme over M), subject to the following
conditions:

• If I ⊂ J , then UI ⊇ UJ .

• For any/every i ∈ I, the translate gi · UI is defined over LI = acl(gj · g−1i : j ∈ I).

The set of ~g-systems forms a poset, with U ≤ U ′ if UI ⊇ U ′I for every I. This poset is
directed, because I 7→ UI ∩ VI is a ~g-system if U and V are.

Definition 3.2. If U is a ~g-system, and p ∈ G(M), let XU,p be the abstract simplicial complex
from Theorem 1.1. The bad locus bad(U) of U is the set of points p for which the first k+ 1
reduced homology groups of XU,p don’t all vanish.

Being a boolean combination of U ’s, the set bad(U) is always L-constructible.
Recall the simplicial complex Xp from Theorem 2.1, for p ∈ G.

Lemma 3.3. Let U be a ~g-system. Let p be a complete type over L. Then there is some
U ′ ≥ U such that bad(U ′) does not contain the realizations of p.

Proof. Let x realize p. For each I ⊂ {1, . . . , n}, let gi ·CI be the smallest LI-definable Zariski
closed set containing gi · x, where i ∈ I. One checks that the choice of I does not matter,
and also that CJ ⊆ CI for I ⊆ J .

Note that CI = G exactly when gi · x is generic over LI , or equivalently, when x ∈ SI , or
equivalently, when I ∈ Xx. For each I, let

WI =
⋃

J⊆I, J /∈Xx

CJ .

Then WI ⊆ WJ for I ⊆ J , and WI is not all of G. If i ∈ I and J ⊆ I, then gj · CJ

is LJ -definable, so gj · CJ is LI-definable, so gi · CJ is LI-definable. Therefore gi · WI is
LI-definable.

Let U ′I = UI \WI . This is a ~g-system:

• If I ⊂ J , then UI ⊇ UJ and WI ⊆ WJ , so U ′I ⊇ U ′J .

• For any I, UI is Zariski dense in G, and WI is Zariski closed and not all of G, so U ′I is
non-empty, because G is irreducible.

• For any I and i ∈ I, gi · U ′I is LI-definable because gi · UI and gi ·WI are.

We claim that bad(U ′) does not contain x. Since bad(U ′) is L-constructible, this ensures that
all the realizations of p are not in bad(U ′).

To see this, note that the first k or so reduced homology groups of Xx vanish (by Theo-
rem 2.1), so it suffices to show that XU ′,x = Xx. Note that

I ∈ XU ′,x ⇐⇒ x ∈ U ′I ⇐⇒ x ∈ UI ∧
∧

J⊆I, J /∈Xx

⊥.
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So I ∈ XU ′,x if and only if x ∈ UI and for every J ⊆ I, J ∈ Xx. Given that Xx is an abstract
simplicial complex, this last clause is equivalent to I ∈ Xx. Moreover,

I ∈ Xx ⇐⇒ x ∈ SI =⇒ x ∈ UI ,

so we conclude I ∈ XU ′,x ⇐⇒ I ∈ Xx, for arbitrary I.

Lemma 3.4. Let F be a sheaf from a Godement resolution (more precisely, an infinite
product of skyscraper sheaves). Then the first k cohomology groups of the following sequence
vanish:

0→ Γ(G,F)→ lim
U

∏
i

Γ(Ui,F)→ lim
U

∏
i<j

Γ(Uij,F)→ · · · (6)

where the limits are direct limits over the poset of ~g-systems.

Proof. As an infinite product of skyscraper sheaves, there is basically a map from (geomet-
ric?) points of G to abelian groups

p 7→Mp

such that for any U ⊂ G,

Γ(U,F) =
∏
p∈U

Mp

Alternatively, we can write

Γ(U,F) =
∏
p∈G

MU,p,

where MU,p is Mp if p ∈ U , and 0 otherwise.
Now (6) is the direct limit over ~g-systems U , of the product over points p ∈ G, of the

sequence

0→Mp →
∏
i

MUi,p →
∏
i<j

MUij ,p → · · · (7)

In the category of abelian groups, direct limits and infinite products preserve exact sequences,
so the ith cohomology group of (6) is the direct limit of the product over p of the ith
cohomology group of (7). Now (7) is just the reduced simplicial cochains of XU,p with
coefficieints in Mp, so, the ith cohomology group of (6) is nothing but

lim
U

∏
p∈G

H̃ i(XU,p,Mp). (8)

So: we need to show that (8) vanishes. Let c be a non-zero element of
∏

p∈G H̃
i(XU,p,Mp)

for some U . We need to find U ′ ≥ U such that c|U ′ vanishes. It suffices to show that we can
find some U ′ ≥ U such that

bad(c|U ′) ( bad(c), (9)

where the overlines denote Zariski closure over L, and where bad(c) denotes the set of p such
that cp ∈ H̃ i(XU,p,Mp) does not vanish. Because if we can get (9), then we can iterate and
use Noetherian induction.
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Let V be one of the irreducible components of bad(c). By Lemma 3.3, we can find some
U ′ ≥ U such that bad(U ′) does not contain the generic type of V . Note that

bad(c|U ′) ⊆ bad(c) ∩ bad(U ′). (10)

Indeed, for any point p, (c|U ′)p is the image of cp under the natural map H̃ i(XU,p,Mp) →
H̃ i(XU ′,p,Mp) induced by the inclusion XU ′,p ⊂ XU,p, so if cp vanishes, so does (c|U ′)p. And
if XU ′,p has no reduced homology up to level k+ 1, then its ≤ kth reduced cohomology with
coefficients in Mp vanish, by universal coefficients or something.

Let W be the union of the irreducible components of bad(c) other than V (possibly
W = ∅). Then

bad(U ′) ∩ bad(c) = (bad(U ′) ∩W ) ∪ (bad(U ′) ∩ V ) ⊆ W ∪ (bad(U ′) ∩ V ).

Because closure preserves unions,

bad(U ′) ∩ bad(c) ⊆ W ∪ bad(U ′) ∩ V .

Now bad(U ′) ∩ V is an L-constructible set which is not Zariski dense in V , so

bad(U ′) ∩ V ( V

W ∪ bad(U ′) ∩ V ( W ∪ V = bad(c).

Meanwhile, by (10),

bad(c|U ′) ⊆ bad(U ′) ∩ bad(c).

So (9) holds.

Lemma 3.5. Let M → I0 → I1 → · · · be an injective resolution of the constant sheaf M
on G. For each ~g-system U , let C•U be the totalization of the double complex

0→
∏
i

Γ(Ui, I
•)→

∏
i<j

Γ(Uij, I
•)→ · · ·

If U ≤ U ′, we get a map of complexes C•U → C•U ′. Then: the first k cohomology groups of
limU C

•
U agree with the cohomology groups H i(G,M).

Proof. The functor sending an injective resolution I• to C•U preserves chain homotopies,
I’m pretty sure, so the choice of the injective resolution doesn’t matter (any two injective
resolutions of M are chain homotopy equivalent). So we may assume that I• is a Godement
resolution.

Consider the double complex

0→ Γ(G, I•)→ lim
U

∏
i

Γ(Ui, I
•)→ lim

U

∏
i<j

Γ(Uij, I
•)→ · · ·

Each row of this complex is exact, up to the kth column, by Lemma 3.4. So the totalization
of this complex is exact up to the kth column or so. But this totalization is the mapping
cone of the natural map from Γ(G, I•) to limU C

•
U .
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4 Connection to Group Cohomology

Recall that if K is a field, the category of etale sheaves (of sets) on SpecK is equivalent to
the category of sets with continuous action of the profinite group Gal(K). By a Gal(K)-
module, we will always mean an abelian group with a continuous linear action of Gal(K),
or equivalently, a sheaf of abelian groups on SpecK. Note that any submodule of a finitely
generated Gal(K)-module is finitely generated.

Given any morphism f of sites, there are pushforward and pullback functors f∗ and f ∗

on the sheaves of sets, as well as on the sheaves of abelian groups. In both cases, f ∗ is left
adjoint to f∗, and f ∗ is exact (preserves finite limits).7 In the abelian case, f∗ preserves
injective objects because of its exact left adjoint.

Lemma 4.1. Let V be an irreducible variety over an algebraically closed field K. Then the
pullback functor from (etale) sheaves on V to (etale) sheaves on SpecK(V ) sends injectives
to injectives.

Proof. Let I be an injective sheaf on V . Let C be the class of injections M → N of GalK(V )
modules such that

Hom(N, f ∗I)→ Hom(M, f ∗I)

is surjective. We want to show that C contains all injections. Because C is closed under
pushouts and transfinite compositions, it suffices to consider injections M → N with N
(and hence M) finitely generated.8

If U is any open subvariety, the pullback i∗ along the inclusion i : U → V has an exact
left adjoint i!, extension by zero. It follows that i∗ (restriction) preserves injectives. So we
may safely replace V with an open.

Because M and N are finitely generated, there is some finite quotient Q of GalK(V )
through which the action of GalK(V ) on N factors. Then

πet
1 (SpecK(V )) = GalK(V )→ Q

factors through πet
1 (SpecK(V )) → πet

1 (U) for some Zariski open U . It follows that M and
N (and the injection between them) can be extended to locally constant sheaves on U .
Replacing V with U , we may assume that M ↪→ N comes from an inclusion of locally
constant sheaves M ↪→ N on V , by pulling back to SpecK(V ).

Now, becauseM and N are locally constant with finitely generated stalks, it turns out9

that
Hom(M, f ∗I) = lim

U
Hom(M|U , I|U),

where the limit is a direct limit over Zariski opens, and similarly for N . Since M|U → N|U
is injective and the object I|U is an injection, it follows that

Hom(N|U , I|U)→ Hom(M|U , I|U)

7Todo: check the claims I just made.
8I’m basically just quoting the proof of the Baer criterion for injectivity, or the small object argument.
9I think? This argument is much less straightforward than I would have expected.
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is a surjection. Taking the direct limit, it follows that

Hom(N, f ∗I)→ Hom(M, f ∗I)

is surjective, which was what we wanted to show.

Given a ~g-system U , we can view each UI as a scheme over LI , and find scheme-theoretic
maps UJ → UI for I ⊂ J , in such a way that

UJ
//

��

SpecLJ

��
UI

// SpecLI

commutes, and base change to L turns the system of UI and maps between them into the
system of open subvarieties of G that we had previously.

(In the case where the UI are affine, we do the following: for each I let BI be the ring of
polynomial functions P : UI → A1 such that the map

gi · x→ P (x)

is an LI-definable map from gi · UI to A1, for i ∈ I. Whether or not P has this property
does not depend on the choice of i. Each BI is an LI-algebra, and for I ⊂ J we have maps
BI → BJ compatible with LI → LJ . Now take Spec of everything.

The reason for all this confusion is that UI is isomorphic to an LI-definable set, but is
not embedded in G in an LI-definable way.)

Henceforth we will view ~g-systems in this way.
Confusingly, we can also do this to the trivial ~g-system GI = G. Let GI denote the

scheme gotten in this way–it is canonically a torsor for the group scheme G base changed
from K to L. Let (UI)L and (GI)L denote the base changes of UI and GI to L. Then (GI)L
is canonically G base-changed to L, and (UI)L is an open subscheme of (GI)L.

Fix some injective resolution M → I• of M in the category of (etale) sheaves on GL (=
G base-changed to L.) So far, we have related the etale cohomology of G to the cohomology
groups of the total complex of the double complex

0→ lim
U

∏
i

Γ(Ui, I•)→ lim
U

∏
i<j

Γ(Uij, I•)→ · · · . (11)

Let KI be the fraction field of UI ; so SpecKI is essentially SI . Equivalently, KI is the
field generated by gi · t and LI . (The element t was chosen a long time ago to be generic over
all the g1, . . . , gn. We may as well take it generic over L.) If gI is the map (GI)L = GL → GI ,
then (11) is isomorphic to

0→ lim
U

∏
i

Γ(Ui, gi,∗I•)→ lim
U

∏
i<j

Γ(Uij, gij,∗I•)→ · · · (12)

13



If fI denotes the inclusion of SpecKI into GI , then

lim
U

Γ(UI ,F) = Γ(SpecKI , f
∗
IF)

for any sheaf F on GI . In particular, (12) is isomorphic to

0→
∏
i

Γ(SpecKi, f
∗
i gi,∗I•)→

∏
i<j

Γ(SpecKij, f
∗
ijgij,∗I•)→ · · · (13)

Let F•I denote f ∗I gI,∗I•. Then F i
I is an injective Gal(KI)-module, by Lemma 4.1 and the

fact that pushforwards preserve injections. However, gI,∗ needn’t be an exact functor, so we
don’t know that the chain complex

0→ f ∗I gI,∗M = M → F0
I → F1

I → · · · (14)

is exact.
At any rate, we have converted our chain complex to the (totalization of the) following:

0→
∏
i

Γ(SpecKi,F•i )→
∏
i<j

Γ(SpecKij,F•ij)→ · · · (15)

Also, recall that Gal(KI) is what we were calling GalI earlier. Let Ci
I(−) denote the ith

continuous cochains functor from GalI-modules to abelian groups. This functor is exact. For
any GalI-module N , there is a chain complex

0→ NGalI → C0
I (N)→ C1

I (N)→ · · · (16)

which is exact if N is injective. Note that the fixed-points functor (−)GalI is essentially the
same thing as the global sections functor on etale sheaves over SpecKI .

The totalization of the double complex (15) maps to the totalization of the triple complex

0→
∏
i

C•i (F•i )→
∏
i<j

C•ij(F•ij)→ · · · (17)

because of (16). In fact, this is a quasi-isomorphism, because the F•I ’s are injectives, so that
each row

0→
∏

I, |I|=j

Γ(SpecKI ,Fk
I )→

∏
I, |I|=j

C0
I (Fk

I )→
∏

I, |I|=j

C1
I (Fk

I )→ · · ·

of the mapping cone is exact.
Meanwhile, there is a map to (17) from the totalization of

0→
∏
i

C•i (M)→
∏
i<j

C•ij(M)→ · · · , (18)
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because of (14). Now (18) is just our model-theoretic definition from the introduction. So
we need to show that the map from (18) to (17) is a quasi-ismorphism.

For the usual reasons10 it suffices to prove the following:

Lemma 4.2. For fixed I, the natural map from C•I (M) to the totalization of C•I (F•I ), induced
by (14), is a quasi-isomorphism.

Proof. Write gI and fI and F•I as g and f and F• for simplicity. (So g is the map GL → GI ,
and fI is the inclusion of SpecKI into GI , and F• is f ∗g∗I•.)

Fix some injective resolution 0→M → J • of M in the category of etale sheaves on GI .
Because g∗I• are injective, we can find a map of chain complexes J • → g∗I• such that

0 //M

��

// 0

0 // J 0 //

��

J 1 //

��

J 2

��

// · · ·

0 // g∗I0 // g∗I1 // g∗I2 // · · ·

(19)

is a factorization of M → g∗I•.11
For each open subvariety U of GI , we know that

0 // Γ(U,J 0)

��

// Γ(U,J 1)

��

// · · ·

0 // Γ(U, g∗I0) // Γ(U, g∗I1) // · · ·

(20)

is a quasi-isomorphism, because the induced map on cohomology groups is exactly the natural
map from the etale cohomology groups of U to those of UL := U ×SpecLI

SpecL. As SpecLI

and SpecL are algebraically closed fields and U is a variety, and M is torsion and prime to the
characteristic, it follows from results in etale cohomology that this map on etale cohomology
groups is an isomorphism.

Passing to the direct limit over U in (20), we get that

0 // Γ(SpecKI , f
∗J 0)

��

// Γ(SpecKI , f
∗J 1)

��

// · · ·

0 // Γ(U, f ∗g∗I0) // Γ(U, f ∗g∗I1) // · · ·

(21)

10If I have a map of double complexes C•,• → D•,•, to check that the induced map on the totalizations is a
quasi-isomorphism, it suffices to check that the induced map Ci,• → Di,• on each row is a quasi-isomorphism.
This has to do with the fact that we can check whether a map of complexes is a quasi-isomorphism by checking
that the mapping cone is exact, and the fact that the totalization of a double complex is exact whenever
every row is.

11This should be true because M → J • is an anodyne cofibration, and g∗I• is a fibrant object, in the
injective model structure on cochain complexes. At any rate, M maps injectively into J 0 so we should be
able to find J 0 → g∗I0, by injectivity of g∗I0. Subsequent maps can be found by induction.
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is a quasi-isomorphism.
Now, we have six complexes (or double complexes) related as follows:

Γ(SpecKI , f
∗J •) //

��

C•I (f ∗J •)

��

C•I (M)oo

��
Γ(SpecKI ,F•) // C•I (F•) C•I (M)oo

(22)

The vertical arrows come from the map f ∗J • → f ∗g∗I• = F• obtained by applying f ∗

to (19). The horizontal arrows on the left (pointing to the right) come from (16). The
horizontal arrows on the right (pointing left) come from (14) and (19).

We claim that all six arrows are quasi-isomorphisms.

• The leftmost vertical arrow is a quasi-isomorphism by (21).

• The rightmost vertical arrow is a quasi-isomorphism because it is the identity map.

• The two horizontal arrows on the left (pointing right) are quasi-isomorphisms because
(16) is exact whenever the module is injective, and all the F• and f ∗J •’s are injective
(the latter by Lemma 4.1).

• The middle vertical arrow is a quasi-isomorphism, because the other three sides of the
left square are quasi-isomorphisms.

• The top right arrow (pointing left) is a quasi-isomorphism, because the functors Ci(−)
are exact, and 0→M → f ∗J 0 → f ∗J 1 → · · · is an exact sequence (as f ∗ is an exact
functor).

• The bottom right arrow is a quasi-isomorphism because the other three morphisms in
the square on the right are. This is what we wanted to prove.
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