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1 Introduction

The theory of fields with n unrelated valuations has a model companion,
by the thesis of van den Dries [11]. One can also include orderings and p-
valuations. More precisely, suppose that for 1 ≤ i ≤ n, the theory Ti is
ACVF, RCF, or pCF for some p. Arrange that for i 6= j, the languages of
Ti and Tj overlap only in the language of rings. Then one forms the theory⋃n
i=1(Ti)∀, whose models are fields1 K with additional structure making K

a model of (Ti)∀, for each 1 ≤ i ≤ n. In van den Dries’s notation,
⋃n
i=1(Ti)∀

would be denote ((T1)∀, (T2)∀, . . . , (Tn)∀).
For example, if each Ti is ACVF, then (Ti)∀ is the theory of valued fields,

and
((T1)∀, (T2)∀, . . . , (Tn)∀)

is the theory of fields with n different valuations. If each Ti is RCF, the (Ti)∀
is the theory of ordered fields, and ((T1)∀, (T2)∀, . . . , (Tn)∀) is the theory of
fields with n orderings. The case of pCF is similar, though for technical
reasons one must use the Macintyre language. The Ti can be mixed; for
example

(ACV F∀, RCF∀, 3CF∀)

is the theory of fields with a valuation, an ordering, and a 3-valuation (+
Macintyre predicates). In all these cases, van den Dries proves that a model
companion

((T1)∀, (T2)∀, . . . , (Tn)∀)

1Or rather, domains. We’re going to sweep this issue under the rug.
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exists. In fact, van den Dries’s result is more general than what we have
stated, allowing the Ti’s to be arbitrary theories with quantifier elimination
such that the (Ti)∀ are “t-theories” (Definition III.1.2 in [11]).

We will only consider the case where the Ti are ACVF, RCF, or pCF, how-
ever. In these cases, we will prove the following about the model companion
((T1)∀, . . . , (Tn)∀), which we denote T for simplicity:

1. T is NTP2, but is never NsOP (obviously), and not NIP if n > 1. See
Theorems 6.7 and 6.1. If n = 1, then T is one of ACVF, RCF, or pCF,
which are all known to be NIP.

2. In fact, T is “strong” in the sense of Adler [1], i.e., every type has finite
burden. The burden of affine m-space is exactly mn, where n is the
number of valuations and orderings. See Theorem 6.7.

3. Forking and dividing agree over sets in the home sort, so every set in the
home sort is an “extension base for forking” in the sense of Chernikov
and Kaplan [3]. See Theorem 7.5.

4. Forking in the home sort has the following characterization (Theo-
rem 7.10). Suppose K |= T , and A,B,C ⊂ K are subsets of the
home sort. For 1 ≤ i ≤ n, let Ki be a model of Ti extending the reduct
of K to the language of Ti. For example, in the case of n orderings,
Ki could be a real closure of K with respect to the ith ordering. Then
A |̂

C
B if and only if A |̂

C
B holds in Ki for every i. The choice of

the Ki does not matter.

In many of the cases, (1) follows from Samaria Montenegro’s recent proof
of Conjecture 5.1 in [4], which states that bounded pseudo-real-closed and
pseudo-p-closed fields are NTP2. This includes the case

(RCF∀, RCF∀, . . . , RCF∀)

of existentially closed fields with n orderings, as well as the case when ever
Ti is pCF for some p. I don’t know whether Montenegro has also proven the
remaining cases of (1) and (2). As far as I know, (3) and (4) are new. I
believe (3) also holds of sets of imaginaries, which would imply that Lascar
strong type and compact strong type agree, by [12] Corollary 3.6. But I have
not proven this yet. In the case of fields with n orderings, this should follow
from elimination of imaginaries, which Montenegro may have proven.
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In the case where every Ti is ACVF, the model companion T is the theory
of existentially closed fields with n valuations. In this case, the above results
can be expressed more cleanly. It turns out (Theorem 4.1) that the model
companion is axiomatized by the following axioms: (K, v1, v2, . . . , vn) is a
model if and only if K is algebraically closed, each vi is non-trivial, and vi
and vj induce different topologies on K, for i 6= j. In this case, forking is
characterized as follows: A |̂

C
B holds if and only if it holds in the reduct

(K, vi), for every i. This holds because each (K, vi) is already a model of
ACVF, and so we can take Ki = K in the statement of (4).

One can also express the axioms of T more concisely if exactly one of
the Ti isn’t ACVF. If T1 is RCF and T2, . . . , Tn are all ACVF, then we are
considering the model companion of the theory of ordered fields with (n− 1)
unrelated valuations. In this case, the model companion is axiomatized by
the statement that the field is real closed, the valuations are non-trivial, the
valuations induce different topologies from each other, and the valuations
induce different topologies from the order topology. Something similar holds
with pCF in place of RCF. See Theorem 4.1 for details.

As a concrete example, let K be one of the following fields: Fp(t)alg, Qalg,
Qalg ∩ R, or Qalg ∩ Qp for some p. Let R1, . . . , Rn be valuation rings on K.
Then K with the ring structure and with a unary predicate for each Ri is a
strong NTP2 theory, and every set of real elements is an extension base. The
same holds for

⋂n
i=1Ri as a pure ring.

The outline of this paper is as follows. In Section 2, we recall some ele-
mentary facts about ACVF, pCF, and RCF which will be needed later. In
Section 3, we quickly reprove the main facts needed from Chapters II and
III of van den Dries’s thesis, arriving at a slightly different way of expressing
the axioms of the model companion, and handling the case of positive char-
acteristic, which was not explicitly considered by van den Dries. Section 4
is a digression aimed at proving Theorem 4.1, which drastically simplifies
the axioms of the model companions in some cases. I don’t know whether
Theorem 4.1 is already known, so a proof is included here. In Section 5, we
construct some Keisler measures that will be used in the later sections. In
Section 6, we determine where the model companion lies in terms of various
classification theoretic boundaries, proving that it is NTP2 and strong, but
not NsOP and usually not NIP. In Section 7, we show that forking and di-
viding agree over sets in the home sort, and we characterize forking in terms
of forking in the Ti’s.
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2 Various facts about ACVF, pCF, and RCF

Let T be one of ACVF, RCF, or pCF (p-adically closed fields). Work in the
usual one-sorted languages with quantifier elimination—for pCF this would
be the Macintyre language.

The following fact follows easily from the various quantifier-elimination
results:

Fact 2.1. Let M be a model of T , and K be a subfield. Every K-definable set
is a positive boolean combination of topologically open sets and affine varieties
defined over K. In particular, any K-definable subset of Mn has non-empty
interior or is contained in a K-definable proper closed subvariety of An.

Let M be a monster model of T .

Definition 2.2. Let K be a subfield of M. Let D ⊂Mn be a definable set,
defined over K. Define the rank rkK D to be the supremum of tr.deg(α/K)
as α ranges over D.

Lemma 2.3. (a) If D ⊂ Mn, then rkK D = n if and only if D has non-
empty interior.

(b) If D ⊂Mn and 1 ≤ k ≤ n, then rkK D ≥ k if and only if rkK π(D) = k
for one of the (finitely many) coordinate projections π : Mn � Mk.

(c) The rank of D doesn’t depend on the choice of K, and rank is definable
in families.

(d) If D ⊂ V where V is absolutely irreducible, then rkD = dimV if and
only if D(M) is Zariski dense in V (Malg).

Proof. (a) If rkK D < n, then every tuple α from D lives inside an affine K-
variety of dimension less than n. By compactness, D is contained in the
union of finitely many affine K-varieties of dimension less than n. This
union contains the Zariski closure of D, so D is not Zariski dense. This
forces D to have no topological interior, because non-empty polydisks
in affine space are Zariski dense. Conversely, if D has no interior, then
by Fact 2.1, D ⊂ V for some proper subvariety V ( An with V defined
over K. Then rkK D ≤ dimV < n.

(b) Clear by properties of rank in pregeometries.
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(c) Combine (a) and (b).

(d) If rkD < dimV , then every point inD is contained in an affineK-variety
of dimension less than dimV . By compactness, D is contained in the
union of finitely many such varieties. This finite union contains the
Zariski closure of D, and is strictly smaller than V itself. Conversely,
suppose that D is not Zariski dense in V . Let V ′ ⊂ V be the Zariski
closure of D. As V is absolutely irreducible, dimV ′ < dimV . Also, V ′

is defined over M rather than Malg, because it is the Zariski closure of
a set of M-points. Let L be a small subfield of M over which V ′ and
D are defined. Then

rkK D = rkLD ≤ rkL V
′ ≤ dimV ′ < dimV.

Corollary 2.4. If K ≤ L is an inclusion of small subfields of M and α is a
finite tuple, we can find α′ ≡K α with tr.deg(α′/L) = tr.deg(α′/K).

Proof. Let n = tr.deg(α/K). Let Σ(x) be the partial type asserting that
x ≡K α and that x belongs to no L-variety of dimension less than n. I
claim that Σ(x) is consistent. Otherwise, there is some formula φ(x) from
tp(α/K) and some L-varieties V1, . . . , Vm of dimension less than n, such that
φ(M) ⊂

⋃m
i=1 Vi. But then

rkK φ(M) = rkL φ(M) ≤ max
1≤i≤m

dimVi < n,

contradicting the fact that α ∈ φ(M) and tr.deg(α/K) ≥ n.
Thus Σ(x) is consistent. If α′ is a realization, then α′ ≡K α and

tr.deg(α′/L) ≥ n = tr.deg(α/K) = tr.deg(α′/K) ≥ tr.deg(α′/L).

Corollary 2.5. Let L and L′ be two fields satisfying T∀, and suppose they
share a common subfield K. Then L and L′ can be amalgamated over K in
a way which makes L and L′ be algebraically independent over K.

Proof. By quantifier elimination, we may as well assume that L and L′ and
K live inside a monster model M |= T . By the previous Corollary and
compactness, we can extend tp(L/K) to L′ in such a way that any realization
is algebraically independent from L′ over K.
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Definition 2.6. Let K ≤ L be an inclusion of fields. Say that K is nearly
closed in L if every x ∈ L ∩Kalg is in the perfect closure of K.

This is a generalization of K being relatively algebraically closed in L; in
characteristic zero these two concepts are the same. Note that if we embed
L into a monster model M of ACF, then K is nearly closed in L if and only
if dcl(K) = acl(K) ∩ dcl(L) if and only if tp(L/K) is stationary. From this,
one gets

Fact 2.7. Let L ≥ K ≤ L′ be (pure) fields. Suppose that K is nearly closed
in L or L′. Then there is only one way to amalgamate L and L′ over K in
such a way that L and L′ are algebraically independent over K.

Fact 2.8. If K is nearly closed in L and α is a tuple from L, and V is
the variety over K of which α is the generic point, then V is absolutely
irreducible.

2.1 Dense formulas

In this section, T continues to be one of ACVF, RCF, or pCF.

Definition 2.9. Let K be a model of T∀. Let V be an absolutely irreducible
affine variety defined over K. Let φ(x) be a quantifier-free formula with
parameters from K, defining a subset of V in any/every model of T extending
K. Say that φ(x) is V -dense if rkφ(M) = dimV . Here M is a monster
model of T extending K.

The choice of M doesn’t matter by quantifier-elimination in T and by
Lemma 2.3(c).

Lemma 2.10. Let K be a model of T∀, L be a model of T extending K, and
V be an absolutely irreducible variety defined over K. For a quantifier-free
K-formula φ(x), the following are equivalent:

(a) φ(x) is V -dense.

(b) φ(L) is Zariski dense in V (Lalg).

(c) We can extend the T∀-structure on K to the function field K(V ) in such
a way that the generic point of V in K(V ) satisfies φ(x).
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Proof. (a) =⇒ (b) Suppose φ(x) is V -dense. Let W be the Zariski closure
of φ(L) in V (Lalg). Then W is defined over L rather than Lalg, because
W is the Zariski closure of some L-points. Therefore it makes sense to
think of W as a definable set. If M is a monster model of T extending
L, then dimV = rkφ(M) ≤ rkW ≤ dimW ≤ dimV . Therefore
dimW = dimV . As V is absolutely irreducible, W = V .

(b) =⇒ (a) Let M be a monster model of T extending L, and let n =
dimV . If φ(x) is not V -dense, then every element of φ(M) has tran-
scendence degree less than n over K. By compactness, φ(M) is con-
tained in a finite union of K-definable varieties of dimension less than
n. We may assume these varieties are closed subvarieties of V . Of
course φ(L) is also contained in this union, which is clearly a Zariski
closed proper subset of V . So φ(L) is not Zariski dense.

(a) =⇒ (c) Embed K into a monster model M. Let α be a point in
φ(M) ⊂ V (M) with tr.deg(α/K) = rkφ(M) = dimV . Then α is a
generic point on V , i.e., K(α) ∼= K(V ). And α satisfies φ(x).

(c) =⇒ (a) Embed K(V ) into a monster model M. Let α denote the
generic point of V , so that M |= φ(α) holds. Clearly tr.deg(α/K) =
dimV . Thus rkK φ(M) ≥ tr.deg(α/K) = dimV , implying V -density
of φ(x).

Lemma 2.11. Let L be a model of ACVF, and let V ⊂ An be an irreducible
affine variety over L. Suppose 0 ∈ V . Let OnL be the closed unit polydisk in
An. Then OnL ∩ V is Zariski dense in V .

This Lemma is essentially Lemma 1.1 in [6], but we’re going to give a
more elementary proof based on the proof of Proposition 4.2.1 in [7].

Proof. Let L(α) be the function field of V , obtained by adding a generic
point α of V to the field L. By the implication (c) =⇒ (b) of Lemma 2.10
applied in the case where φ(x) is the formula defining OnL ∩ V , it suffices to
extend the valuation on L to L(α) in such a way that every coordinate of α
has nonnegative valuation.

Now L[α] is the coordinate ring of V , so the fact that 0 ∈ V implies that
there is an L-algebra homomorphism L[α] → L sending every coordinate
of α to zero. This yields an OL-algebra homomorphism f : OL[α] → OL
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sending every coordinate of α to 0. Let m be the maximal ideal of OL, and
let p = f−1(m). Then p is a prime ideal, and p ∩ OL = m. Also, as f kills
the coordinates of α, the coordinates of α live in p.

Since OL[α] is a domain, there is a valuation v′ on L(α), the fraction field
of OL[α], with the following properties:

• Every element of p has positive valuation. In particular, the elements
of m and the coordinates of α have positive valuation.

• Every element of OL[α] \ p has valuation zero. In particular, the ele-
ments of O×L = OL \m have valuation zero.

(Indeed, it is a general fact that if S is a domain and p is a prime ideal,
then there is a valuation on the fraction field of S which assigns a positive
valuation to elements of p and a vanishing valuation to elements of S \ p. To
find such a valuation, take a valuation ring in Frac(S) dominating the local
ring Sp.)

The resulting valuation on L(α) extends the valuation on L, because it
assigns positive valuation to elements in m, and zero valuation to elements
in OL \ m. Also, the valuation of any coordinate of α is positive, hence
non-negative, so α lives in the closed unit polydisk.

Lemma 2.12. Let V be an absolutely irreducible affine variety over K |= T∀,
and let φ(x) be a quantifier-free K-formula. Let L be a model of T extending
K. Suppose φ(x) defines an open subset of V (L).

(a) If T is ACVF, then φ(x) is V -dense if and only if φ(L) is non-empty.

(b) In general, φ(x) is V -dense if φ(L) contains a smooth point of V .

Proof. (a) If φ(x) is V -dense, then certainly φ(L) is non-empty. Conversely,
suppose φ(L) is non-empty. Let p be a point in φ(L) and let U be an
open neighborhood of p, with U ∩V ⊂ φ(L). There is some L-definable
affine transformation f which sends p to the origin and moves U so as
to contain the closed unit polydisk. Then f(U ∩ V ) = f(U) ∩ f(V ) is
Zariski dense in f(V ), by Lemma 2.11. So φ(L) ⊇ U ∩ V is Zariski
dense in V . Thus φ(x) is V -dense, by Lemma 2.10.

(b) If φ(x) is V -dense, then φ(L) contains a smooth point of V , because the
smooth locus of V is a Zariski dense Zariski open. Conversely, suppose
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φ(L) contains a smooth point p. Note that L is perfect. The tangent
space TpV is L-definable. By Galois descent of vector spaces, there is
an L-definable basis of TpV . Therefore, after applying an L-definable
change of coordinates, we may assume TpV is horizontal. By the im-
plicit function theorem, V then looks locally around p like the graph of
a function. In particular, the coordinate projection maps a neighbor-
hood of p homeomorphically to an open subset of affine n-space, where
n = dimV . By Lemma 2.3, this ensures that any neighborhood of p,
such as φ(L), has rank at least n. So φ(x) is V -dense.

Lemma 2.13. Let V be an absolutely irreducible affine variety over K |= T∀,
and let φ(x) be a quantifier-free K-formula that is V -dense. Then there is a
quantifier-free K-formula ψ(x) that is also V -dense, such that in any/every
L |= T extending K, ψ(L) is a topologically open subset of V (L), and ψ(L) ⊂
φ(L).

Proof. Choose some monster model M |= T extending K and let ψ(M) pick
out the topological interior of φ(M) inside V (M). By quantifier-elimination,
we can take ψ(x) to be quantifier-free with parameters from K. It remains
to show that ψ(M) is V -dense. Let α ∈ φ(M) have transcendence degree
n over K, where n = dimV . By Fact 2.1, φ(M) can be written as a finite
union of finite intersections of K-definable opens and varieties. Let X be one
of these finite intersections, containing α. So X = W ∩U for some K-variety
W and some K-definable open U . As α ∈ W and α is a generic point on V ,
we must have V ⊆ W . Then

α ∈ V ∩ U ⊆ W ∩ U ⊆ φ(M).

But V ∩ U is a relative open in V (M), so it must be part of ψ(M). In
particular, α ∈ ψ(M). As tr.deg(α/K) = n, we conclude that ψ(x) is V -
dense.

2.2 Forking and Dividing

We continue to work in one of ACVF, RCF, or pCF. Recall that RCF and
pCF have definable Skolem functions in the home sort. Thus if S is a subset
of the home sort, then acl(S) = dcl(S) is a model. In ACVF, acl(S) is the
algebraic closure of S, which is a model unless acl(S) is trivially valued.
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We will always be working in the home sort, rather than working with
imaginaries.

Lemma 2.14. Let S be a set (in the home sort) and let φ(x; b) be a formula.
Then φ(x; b) forks over S if and only if it divides over S.

Proof. Indiscernibility over S is the same thing as indiscernibility over acl(S),
so φ(x; b) divides over S if and only if it divides over acl(S). Similarly, φ(x; b)
forks over S if and only if it forks over acl(S). So we may assme S = acl(S).
If T is RCF or pCF, then S is a model, and therefore forking and dividing
agree over S by Theorem 1.1 of [3]. If T is ACVF, then forking and dividing
agree over all sets, by Corollary 1.3 in [3].

We use |̂ to denote non-forking or non-dividing, and |̂ ACF to denote
algebraic independence.

Lemma 2.15. Let M be a monster model of T , and let B,C be small subsets
of M, with B finite. Then we can find a sequence B0, B1, B2, . . . in M that

is C-indiscernible, such that B0 = B and Bi |̂
ACF

C
B<i for every i.

Proof. We may assume that B is ordered as a tuple in such a way that the
first k elements of B are a transcendence basis of B over C. Construct
a sequence D0, D1, . . . of realizations of tp(B/C) such that Di |̂

ACF

C
D<i

for every i. This is possible by using Corollary 2.4 to extend tp(B/C)
to a type over CD<i having the same transcendence degree over CD<i as
over C. Let B0, B1, B2, . . . be a C-indiscernible sequence extracted from
D0, D1, . . .. Let π(X) pick out the first k elements of a tuple X. Then
π(D0)

_π(D1)
_π(D2)

_ · · · is an algebraically independent sequence of sin-
gletons over C. This is part of the EM-type of the Di over C, so it is also
true that π(B0)

_π(B1)
_π(B2)

_ · · · is an algebraically independent sequence
of singletons over C. Since Di ≡C B for every i, we also have Bi ≡C B for
every i. Thus π(Bi) is a transcendence basis for Bi over C, and we conclude

that Bi |̂
ACF

C
B<i for every i. Finally, moving the Bi by an automorphism

over C, we may assume that B0 = B.

Lemma 2.16. A |̂
C
B implies A |̂ ACF

C
B.

Proof. This feels like it should be obvious, but the best proof I could come
up with is the following one. By the finite character of forking, we may
assume A and B are finite tuples. By Lemma 2.15, produce a sequence
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B0 = B,B1, B2, . . . of realizations of tp(B/C), indiscernible over C, and

satisfying Bi |̂
ACF

C
B<i for every i. As tp(A/BC) doesn’t divide over C,

we may move the Bi’s by an automorphism over BC, making them be AC-
indiscernible. Now the Bi’s are an algebraically independent over C, and

AC-indiscernible. Since A 6 |̂ ACF
C

B, we also have A 6 |̂ ACF
C

Bi for every i.
This contradicts the fact that in ACF, finite tuples have finite preweight.

Lastly, we show that dividing is always witnessed by an algebraically
independent sequence.

Lemma 2.17. If a formula φ(x; a) divides over a set A, then the dividing is

witnessed by an A-indiscernible sequence a = a0, a1, a2, . . . such that ai |̂
ACF

A

a<i for every i.

Proof. Apply Claim 3.10 of [3] with the abstract independence relation taken
to be |̂ (non-forking). Forking satisfies (1)-(7) of [3] Definition 2.9 by Fact
2.12(5) of [3]. And A is an extension base for forking by Lemma 2.14 above
and Theorem 1.1 of [3] (or by Fact 2.14 of [3] in the cases other than pCF). So
Claim 3.10 of [3] is applicable. Consequently we get a model M containing
A, a global type p extending tp(a/M), |̂ -free over A, such that any/every
Morley sequence generated by p over M witnesses the dividing of φ(x; a).
Because |̂ is stronger than Lascar invariance, any such Morley sequence
will be M -indiscernible, hence A-indiscernible. Because |̂ is stronger than
algebraic independence (Lemma 2.16), and p is |̂ -free over A, any Morley
sequence a0, a1, . . . generated by p will be algebraically independent over A.
Specifically, ai |= p|Ma<i

, so as p is |̂ -free over A, ai |̂ A Ma<i, and hence

ai |̂
ACF

A
a<i.

3 The Model Companion

Now we turn our attention to fields with several valuations, several orderings,
and several p-valuations. For 1 ≤ i ≤ n, let Ti be one of ACVF, RCF, or pCF
(in the same languages as in the previous section). Let Li denote the language
of Ti; assume that Li∩Lj = Lrings for i 6= j. Let T 0 be

⋃n
i=1(Ti)∀, the theory

that would be denoted ((T1)∀, (T2)∀, . . . , (Tn)∀) in van den Dries’s notation.
Technically speaking, models of T 0 should be allowed to be domains, rather
than fields. However, we will assume that T 0 also includes the field axioms,
sweeping domains under the rug.
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One essentially knows that T 0 has a model companion T by Chapter III
of van den Dries’s thesis [11]. We’re going to quickly reprove the existence of
T in this section, expressing the axioms of the model companion in a more
geometric and less syntactic form, and also including the case of positive
characteristic explicitly.

3.1 The Axioms

Consider the following axioms that a model K of T 0 could satisfy:

A1: K is existentially closed with respect to finite extensions, i.e., if L/K is
a finite algebraic extension and L |= T 0, then L = K.

A1’: For every irreducible polynomial P (X) ∈ K[X] of degree greater than
1, there is some 1 ≤ i ≤ n such that P (x) = 0 has no solution in
any/every model of Ti extending K � Li.

A2(m): Let V be an m-dimensional absolutely irreducible variety over K.
For 1 ≤ i ≤ n, let φi(x) be a V -dense quantifier-free Li-formula with
parameters from K. Then

⋂n
i=1 φi(K) 6= ∅.

A2(≤ m): A2(m′) holds for all m′ ≤ m.

A2: A2(m) holds, for all m

Remark 3.1. For K |= T 0, A1 and A1’ are equivalent.

Proof. Suppose K satisfies A1, and P (X) ∈ K[X] is irreducible of degree
greater than 1. Suppose that for every 1 ≤ i ≤ n, there is a solution αi of
P (x) = 0 in a model Mi |= Ti extending K � Li. Then we can extend the
Li-structure from K to K(α) ∼= K[X]/P (X). Because this holds for every
i, we can endow K[X]/P (X) with the structure of a model of T 0. By A1,
K[X]/P (X) must be K, so P (X) has degree 1.

Conversely, suppose K satisfies A1’ but not A1. Let L/K be a coun-
terexample to A1, and take some α ∈ L \ K. Let P (X) be the irreducible
polynomial of α over K. This polynomial must have degree greater than
1. For each i let Mi be a model of Ti extending L � Li. Then P (x) = 0
has a solution in L, hence in Mi, which is a model of Ti extending K. This
contradicts A1’.
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Lemma 3.2. Let K be a model of T 0, and m ≥ 1. The following are equiv-
alent:

(a) For every model L of T 0 extending K, for every tuple α from L with
tr.deg(α/K) ≤ m, the quantifier-free type qftp(α/K) is finitely satisfi-
able in K.

(b) K satisfies A1 and A2(≤ m).

Proof. (a) =⇒ (b) For A1, suppose that L/K is a finite extension, and
L |= T . If α ∈ L, then α is algebraic over K, so tr.deg(α/K) = 0 ≤ m.
By (a), the quantifier-free type of α is realized in K. So the irreducible
polynomial of α over K has a zero in K, implying α ∈ K. As α ∈ L was
arbitrary, L = K.

For A2(m′), let V be an m′-dimensional absolutely irreducible variety over
K. For 1 ≤ i ≤ n, let φi(x) be a V -dense quantifier-free Li-formula with
parameters from K. By Lemma 2.10(c), we can extend the Li-structure to
K(V ) in such a way that the generic point satisfies φi(x). Doing this for all i,
we make K(V ) be a model of T 0 extending K, such that if α ∈ K(V ) denotes
the generic point, then

∧n
i=1 φi(α) holds. Now tr.deg(α/K) = dimV ≤ m,

so by (a), qftp(α/K) is finitely satisfiable in K. In particular, the formula∧n
i=1 φ(x) is satisfiable in K, which is the conclusion of A2(m′).

(b) =⇒ (a). Suppose L is a model of T 0 extending K and α is a tuple
from L, with tr.deg(α/K) ≤ m. By A1, K is relatively algebraically closed
in L. Let V be the K-variety of which α is a generic point. Then V is
absolutely irreducible, by Fact 2.8. Also, m′ := dimV = tr.deg(α/K) ≤ m.
Let ψ(x) be a statement in qftp(α/K). We want to show that ψ is satisfied
by an element of K. We may assume that ψ(x) includes the statement that
x ∈ V . By Fact 2.1, ψ(x) is a positive boolean combination of statements of
the form

• x ∈ W , for some K-definable affine variety W . Since we intersected
ψ(x) with V , we may assume W ⊆ V .

• θ(x), where θ(x) is a quantifier-free Li-formula for some i, such that
θ(L) is an open subset of the ambient affine space, for any/every L |= Ti
extending K � Li.

Writing ψ(x) as a disjunction of conjunction of such statements, and re-
placing ψ(x) by whichever disjunct α satisfies, we may assume that ψ(x) is a
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conjunction of such statements. An intersection of K-varieties is a K-variety,
and an intersection of open subsets of affine space is an open subset of affine
space, so we may assume

ψ(x) ≡ “x ∈ W” ∧
n∧
i=1

φi(x),

where W is some K-variety contained in V , and where φi(x) is a quantifier-
free Li-formula defining an open subset of the ambient affine space, when
interpreted in any/every model of Ti extending K � Li.

Because α satisfies ψ(x), and α is a generic point of V , W must be V .
Rewrite ψ as

∧n
i=1 φ

′
i(x), where each φ′i(x) asserts that x ∈ V and φi(x) holds.

Because K satisfies axiom A2(m′), ψ(x) will be satisfiable in K as long as
φ′i(x) is V -dense for each i. But note that L provides a way of extending the
Li-structure from K to K(α) ∼= K(V ) in such a way that φ′i(α) holds, so φ′i
is V -dense by Lemma 2.10(c).

Theorem 3.3. The theory T 0 has a model companion T , whose models are
exactly the K |= T 0 satisfying A1 and A2.

Proof. It is well known that a model K is existentially closed if and only if
for every model L extending K and for every tuple α from L, the quantifier-
free type qftp(α/K) is finitely satisfiable in K. So by Lemma 3.2, a model
of T 0 is existentially closed if and only if it satisfies A1 and A2. By basic
facts about model companions of ∀∃-theories, it remains to show that A1
and A2 are first order. For A1, this comes from Remark 3.1, because A1’
is first order by quantifier-elimination in the Ti. Axiom A2 is first order
by quantifier-elimination in the Ti, by Lemma 2.3(c), and by the fact that
absolute irreducibility is definable by a quantifier-free formula in the language
of fields (this is well-known and proven in Chapter IV of [11]).

Henceforth, we will use T to denote the model companion. Also, we will
use T∀ instead of T 0, sweeping the issue of domains that aren’t fields under
the rug.

We make several remarks about the axioms:

Remark 3.4. In the case where Ti is ACVF for i > 1, axiom A1 merely
says that K � L1 is a model of T1, i.e., is algebraically closed or real closed
or p-adically closed.
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Remark 3.5. In Axiom A2(m), it suffices to consider the case of smooth V .
If V is not smooth, one can find an open subvariety V ′ of V which is smooth,
and which is isomorphic to an affine variety. (Use the facts that the smooth
locus of an irreducible variety is a Zariski dense Zariski open, and that the
affine open subsets of a scheme form a basis for its topology.) If φi(x) is
V -dense, then φi(x) ∧ “x ∈ V ′” is V ′-dense, essentially by Lemma 2.10(b).
Then applying the smooth case of A2(m) to V ′ yields a point in V ′ satisfying∧n
i=1 φi(x).

Remark 3.6. In Axiom A2, it suffices to consider V -dense formulas φi(x)
such that φi(L) defines an open subset of V (L) for any/every L |= T extend-
ing K � Li. This follows by Lemma 2.13.

Remark 3.7. We can combine the previous two remarks. Then Lemma 2.12(b),
yields the following restatement of A2(m): if V is an absolutely irreducible m-
dimensional smooth affine variety defined over K, and if φi(x) is a quantifier-
free Li-formula over K for each 1 ≤ i ≤ n, and if φi(Ki) is a non-empty open
subset of V (Ki) for any/every Ki |= T extending K � Li, then

⋂n
i=1 φi(K) 6=

∅.

Remark 3.8. If every Ti is ACVF, then A1 merely says that K is alge-
braically closed. Consequently, in Remark 3.7 the Ki can be taken to be K
itself. Thus A2(m) ends up being equivalent to the statement that if V is a
smooth irreducible m-dimensional affine variety, and φi(x) is a quantifier-
free Li-formula defining a non-empty open subset of V for 1 ≤ i ≤ n, then⋂n
i=1 φi(K) is non-empty. Even more concisely, this means that for every

smooth m-dimensional variety V , the diagonal map V (K)→
∏n

i=1 V (K) has
dense image in the product topology, using the topology from the ith valuation
for the ith entry in the product.

In fact, in Section 4, we will see that it suffices to check the case of
V = A1, the affine line(!)

3.2 Quantifier-Elimination up to Algebraic Covers

As in the previous section, T∀ is the theory of fields with (Ti)∀ structure for
each 1 ≤ i ≤ n, and T is the model companion of T∀.

Lemma 3.9. Let K be a model of T∀. Let L and L′ be two models of T∀
extending K. Suppose that K is nearly closed in L or L′ (Definition 2.6).
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Then L and L′ can be amalgamated over K, and this can be done in such a
way that L and L′ are algebraically independent over K.

Proof. For each 1 ≤ i ≤ n, we can find some amalgam Mi |= (Ti)∀ of L � Li
and L′ � Li over K � Li, by Corollary 2.5. The resulting compositums LL′

must be isomorphic on the level of fields, by Fact 2.7. Consequently, we can
endow the canonical field LL′ with a (Ti)∀-structure extending those on L
and L′, for each i. This gives LL′ the structure of a T∀-model. And L and
L′ are algebraically independent inside LL′.

Corollary 3.10. Let K be a model of T∀ and let L be a model of T extending
K. Then K is relatively algebraically closed in L if and only if K satisfies
axiom A1. (In particular, this doesn’t depend on L.)

Proof. If K satisfies axiom A1, then obviously K is relatively algebraically
closed in L. Conversely, suppose that K is relatively algebraically closed
in L but doesn’t satisfy A1. Then there is some model L′ of T∀ extending
K, with L′/K finite and L′ 6= K. By Lemma 3.9, we can amalgamate L
and L′ over K. Embed the resulting compositum LL′ in a model M of T .
Because T is model-complete, L � M . Now choose some α ∈ L′ \ K. The
irreducible polynomial of α over K has a root in M , and hence has a root in
L, contradicting the fact that K is relatively algebraically closed in L.

Corollary 3.11. Let K be model of T∀, and suppose K satisfies A1. Then
the type of K is determined, i.e., if L and L′ are two models of T extending
K, then K has the same type in L and L′. Equivalently, the diagram of K
implies the elementary diagram of K, modulo the axioms of T .

Proof. By Corollary 3.10, K is relatively algebraically closed in L and L′. So
we can amalgamate L and L′ over K, by Lemma 3.9. If M is a model of T
extending LL′, then by model completeness L � M � L′, ensuring that K
has the same type in each.

Corollary 3.12. In models of T , field-theoretic algebraic closure agrees with
model-theoretic algebraic closure.

Proof. Let M be a model of T . Let S be a subset of M . Let K be the
field-theoretic algebraic closure of S, i.e., the relative algebraic closure of S
in M . By Lemma 3.9, we can amalgamate M and a copy M ′ of M over
K in a way that makes M and M ′ be algebraically independent over K.

16



Embedding MM ′ into a model N of T , and using model completeness, we get
M � N � M ′. Now acl(S) is the same when computed in M , N , or M ′. In
particular, acl(S) ⊂M ∩M ′. Since M and M ′ are algebraically independent
over K and K is relatively algebraically closed in each, M ∩M ′ = K. Thus
acl(S) ⊂ K. Obviously K ⊂ acl(S).

For K a field, let Abs(K) denote the algebraic closure of the prime field
in K.

Corollary 3.13. Two models M1,M2 |= T are elementarily equivalent if and
only if Abs(M1) and Abs(M2) are isomorphic as models of T∀.

Proof. If M1 and M2 are elementarily equivalent, we can embed them as
elementary substructures into a third model M3 |= T . Then Abs(M1) =
Abs(M3) = Abs(M2), so certainly Abs(M1) is isomorphic to Abs(M2).

Conversely, suppose Abs(M1) ∼= Abs(M2). Then, as Abs(M1) is relatively
algebraically closed in M1 and in M2, it follows by Corollaries 3.10 and 3.11
that we can amalgamate M1 and M2 over Abs(M1). Embedding the resulting
compositum into a model of T and using model completeness, we get M1 ≡
M2.

Corollary 3.14. Suppose T1 isn’t ACVF and Ti is ACVF for i > 1. Consider
the expanded theory where we add in symbols for every zero-definable T1-
definable function. (This makes sense because if M |= T , then M � L1 |= T1,
by Remark 3.4.) Then T has quantifier-elimination.

Proof. After adding in these new symbols, a substructure is the same as a
subfield K closed under all T1-definable functions. As RCF and pCF have
definable Skolem functions, this is equivalent to K � L1 being a model of T1,
which is equivalent to K satisfying axiom A1, as noted in Remark 3.4. Now
apply Corollary 3.11 to get substructure completeness, which is the same
thing as quantifier-elimination.

I suppose that this also works if more than one of the Ti’s isn’t ACVF,
though the extra functions would become partial functions.

Without adding in extra symbols, quantifier elimination doesn’t work.
But we still get quantifier-elimination up to algebraic covers, in a certain
sense. The following theorem and its proof won’t be used in an essential way
in the rest of the paper.
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Theorem 3.15. In T , every formula φ(x) is equivalent to one of the form

∃y : P (y, x) = 0 ∧ ψ(y, x), (1)

where y is a singleton, ψ(y, x) is quantifier-free, and P (y, x) is a polynomial
in y and the coordinates of x, with integer coefficients, monic as a poynomial
in y.

Proof. Let Σ(x) be the set of all formulas of the form (1). First we observe
that Σ(x) is closed under disjunction, because

(∃y : P (y, x) = 0 ∧ ψ(y, x)) ∨ (∃y : Q(y, x) = 0 ∧ ψ′(y, x))

is equivalent to
∃y : P (y, x)Q(y, x) = 0 ∧ ψ′′(y, x),

where ψ′′(y, x) is the quantifier-free formula

(P (y, x) = 0 ∧ ψ(y, x)) ∨ (Q(y, x) = 0 ∧ ψ′(y, x)) .

Now given a formula φ(x), not quantifier-free, let Σ0(x) be the set of
formulas in Σ(x) which imply φ(x), i.e.,

Σ0(x) = {σ(x) ∈ Σ(x) : T ` ∀x : σ(x)→ φ(x)}.

Of couse Σ0(x) is closed under disjunction. It suffices to show that φ(x)
implies a finite disjunction of formulas in Σ0(x), because then φ(x) implies
and is implied by a formula in Σ0(x).

Suppose for the sake of contradiction that φ(x) does not imply a finite
disjunction of formulas in Σ0(x). Then the partial type

{φ(x)} ∪ {¬σ(x) : σ(x) ∈ Σ0(x)}

is consistent with T . Let M be a model of T containing a tuple α realizing
this partial type. So φ(α) holds in M , but not because of any formula of the
form (1).

Let R be the ring Z[α] ⊂ M . Let K ⊂ M be the smallest perfect field
containing R; note that M itself is perfect so this makes sense. Indeed, if
every Ti is ACVF, then M is algebraically closed by Remark 3.4. Otherwise,
one of the Ti’s is RCF or pCF, making M be characteristic zero.
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Let K be the relative algebraic closure of K (or equivalently, α) inside
M . By Corollaries 3.10 and 3.11, the diagram of K implies the elementary
diagram of K. In particular, the diagram of K implies φ(α). By compactness,
the diagram of L implies φ(α), for some finite extension L of K. Because K
is perfect, L = K(β) for some singleton β. Multiplying β by an appropriate
element from R, we may assume that β is integral over R. Note that L is
perfect, because it is an algebraic extension of a perfect field, and in fact L
is the smallest perfect field containing α and β.

As the diagram of L implies φ(α), so does the diagram of Z[α, β], by
Lemma 3.16 below. By compactness, there is some true quantifier-free for-
mula ψ(β, α) such that

T ` ∀y, x : ψ(y, x)→ φ(x).

Let P (y, x) be the polynomial witnessing integrality of β over R. Then clearly

T ` ∀x : (∃y : P (y, x) = 0 ∧ ψ(y, x))→ φ(x),

so ∃y : P (y, x) = 0 ∧ ψ(y, x) is in Σ0(x), contradicting the fact that it holds
of α in M .

Lemma 3.16. Let M be a model of T and R be a subring of M . Let K ⊂M
be the smallest perfect field containing R. Let α be a tuple from R, and φ(x)
be a formula such that M |= φ(α). If T and the diagram of K imply φ(α),
then T and the diagram of R imply φ(α).

Proof. If not, then there is a model N of T extending R, in which φ(α) fails
to hold. This model N must not satisfy the diagram of K. Now N certainly
contains a copy of the pure field K, because the fraction field and perfect
closure of a domain are unique. Consequently, there must be at least two ways
to extend the T -structure from R to K, one coming from M and one coming
from N . But this is absurd, because each valuation/ordering/p-valuation on
R extends uniquely to K, by quantifier elimination in the Ti.

3.3 Simplifying the axioms down to curves

Lemma 3.17. Let K be an ℵ1-saturated and ℵ1-strongly homogeneous model
of T∀ satisfying axioms A1 and A2(1). Let M be a monster model of T
extending K. Let S be a countable subset of K and α be a countable tuple
from M. Then tp(α/S) is realized in K.
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Proof. Consider the following statements:

• Ak: if α is a finite tuple from M, with tr.deg(α/S) ≤ k, then qftp(α/S)
is realized in K.

• Bk: if α is a countable tuple from M, with tr.deg(α/S) ≤ k, then
qftp(α/S) is realized in K.

• Ck: if α is a countable tuple from M, with tr.deg(α/S) ≤ k, then
tp(α/S) is realized in K.

There are several implications between these statements:

• For each k, Ak implies Bk, by compactness.

• For each k, Bk implies Ck. Indeed, if α is as in Ck, apply Bk to
α′ := acl(αS) and use Corollary 3.11.

• Ck for all k implies the statement of the Lemma, by compactness.

Finally, observe that Ck and Cj imply Ck+j: if α has transcendence degree
k + j over S, let β be a subtuple of α with transcendence degree k. Then
tr.deg(β/S) ≤ k and tr.deg(α/βS) ≤ j. By Ck, we can apply an automor-
phism over S to move β inside K. By Cj applied to tp(α/βS), we can then
find a further automorphism moving α inside K.

Lemma 3.2 and ℵ1-saturation of K imply A1. By the above comments,
this implies C1, which in turn implies C1+1, C3, C4, . . .. By compactness, the
Lemma is true.

Theorem 3.18. A field K |= T∀ is existentially closed, i.e., a model of T , if
and only if it satisfies A1 and A2(1).

Proof. If K is existentially closed, then certainly K satisfies A1 and A2(1).
Conversely, suppose K satisfies A1 and A2(1). Let K ′ be an ℵ1-saturated
ℵ1-strongly homogeneous elementary extension of K. As K ≡ K ′, it suffices
to show that K ′ |= T . Let M be a monster model of T , extending K ′. It
suffices to show that K ′ � M. It suffices to show that if D is a non-empty
K ′-definable subset of M, then D intersects K ′. Let S be a finite subset
of K ′ that D is defined over, and let α be a point in D. By Lemma 3.17,
tp(α/S) is realized in K ′. Such a realization must live in D.

Consequently, in checking the axioms one only needs to consider curves.
In fact, one only needs to consider smooth curves, by Remark 3.5.
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4 A Special Case

In the case where almost every Ti is ACVF, the axioms can be drastically
simplified.

Theorem 4.1. Suppose T2, . . . Tn are all ACVF. A model K |= T∀ is existen-
tially closed (i.e., a model of T ) if and only if the following three conditions
hold:

• K � L1 |= T1

• Each valuation v2, . . . , vn is non-trivial.

• Ti and Tj do not induce the same topology on K, for i 6= j.

For example, if we are considering the theory of ordered valued fields, this
says that a model is existentially closed if and only if the field is real closed,
the valuation is non-trivial, and the ordering and valuation induce different
topologies on K. A field with n valuations is existentially closed if and only
if it is algebraically closed and the valuations induce distinct non-discrete
topologies on the field. Using this, we can easily see that Qalg with n distinct
valuations is an existentially closed field with n valuations. This surprised
me, since I expected the Rumely Local-Global principal to be necessary in
the proof.

I have no idea whether Theorem 4.1 is already known. I haven’t seen a
proof, at least. But I haven’t looked very hard either.

In the proof of Theorem 4.1, we will use the following fact:

Fact 4.2. Let K be a field. Let t1, . . . , tn be topologies on K arising from
orderings and non-trivial valuations. Suppose that ti 6= tj for i 6= j. Then the
{ti} are independent, i.e., if Ui is a non-empty ti-open subset of K for each
i, then

⋂n
i=1 Ui is non-empty. Equivalently, the diagonal map K →

∏n
i=1K

has dense image with respect to the product topology, using the topology ti for
the ith term in the product.

This is Theorem II.1.7 in [11] where it is attributed to A. S. Stone. Ap-
parently a “very short proof” appears in [10].

Also, we will need the following straightforward lemma.

Lemma 4.3. Let K be a model of T . Let C be an affine smooth curve over K,
absolutely irreducible. Let C be the canonical smooth projective model (as an
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abstract variety). For each i, let φi(x) be a C-dense quantifier-free Li-formula
with parameters from K. Then we can find a K-definable rational function
f : C → P1 which is non-constant, and has the property that the divisor
f−1(0) is a sum of distinct points in

⋂n
i=1 φi(K), with no multipliticities. (In

particular, the support of the divisor contains no points from C(Kalg)\C(K)
and no points from C \ C.)

Proof. Let g be the genus of C.

Claim 4.4. We can find g + 1 distinct points p1, . . . , pg+1 in
⋂n
i=1 φi(K) ⊂

C(K).

Proof. For each i, choose a model Ki of Ti extending K � Li. Then φi(Ki) is
Zariski dense in C(Kalg

i ). This (easily) implies that φi(Ki)
g+1 is Zariski dense

in Cg+1(Kalg
i ). If U denotes the subset of Cg+1 consisting of (x1, . . . , xg+1)

such that xi 6= xj for every i and j, then U is a Zariski dense Zariski open
subset of Cg+1, because its complement is a closed subvariety of lower di-
mension. The intersection of a Zariski dense set with a Zariski dense Zariski
open is still Zariski dense. So φi(Ki)

g+1 ∩ U is still Zariski dense in Cg+1.
Let ψi(x1, . . . , xg+1) be the following quantifier-free Li-formula over K:

g+1∧
j=1

φi(xj) ∧
∧
j 6=k

xj 6= xk.

Then ψi(Ki) = φi(Ki)
g+1 ∩ U is Zariski dense in Cg+1(Kalg

i ), so ψi(−) is
Cg+1-dense. By Axiom A2, it follows that some tuple (p1, . . . , pg+1) satisfies

n∧
i=1

ψi(x1, . . . , xg+1) ≡

(
n∧
i=1

g+1∧
j=1

φi(xj)

)
∧

(∧
j 6=k

xj 6= xk

)
.

Then (p1, . . . , pg+1) has the desired properties.

Now let D be the divisor
∑

j pj on the curve C. By Riemann-Roch,
l(D) ≥ degD + 1 − g = 2. The space of global sections of O(D) is a K-
definable vector space of dimension at least 2. Now K is either algebraically
closed or has characteristic zero, so K is perfect. Therefore, by Galois descent
of vector spaces we know that this vector space has a K-definable basis.
Thinking of the sections of O(D) as functions with poles no worse than D,
we can find a non-constant meromorphic function g, with (g)−D ≥ 0. Then
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the divisor of poles of g is a subset of D, so every pole of g has multiplicity
1 and is in

⋂n
i=1 ψi(K). Take f = 1/g.

Proof (of Theorem 4.1). If K |= T , then K satisfies Axioms A1 and A2.
Axiom A1 implies that K is algebraically closed or real closed or p-closed
(Remark 3.4). As K is existentially closed, it is also reasonably clear that
all the named valuations must be non-trivial. Consequently K � L1 |= T1
and v2, . . . , vn are non-trivial. Lastly, suppose Ti and Tj induce the same
topology on K for some i. For notational simplicity assume i = 1 and j = 2.
As the topologies are Hausdorff, we can find non-empty U1 and U2 with U1 a
T1-open, U2 a T2-open, and U1∩U2 = ∅. Since the topologies from T1 and T2
have a basis of open sets consisting of quantifier-free definable sets, we can
shrink U1 and U2 a little, and assume U1 is quantifier-free definable in L1 and
U2 is quantifier-free definable in L2. Now U1 and U2 are both Zariski dense
in the affine line, so the formulas defining U1 and U2 are A1-dense. Hence,
by Axiom A2, U1 must intersect U2, a contradiction.

The other direction of the theorem is harder. We proceed by induction
on n, the number of orderings and valuations. The base case where n = 1 is
easy/trivial, so suppose n > 1. Suppose K satisfies the assumptions of the
Theorem. By Fact 4.2, we know that the n different topologies on K1 are
independent. The first bullet point ensures that K satisfies axiom A1. By
Theorem 3.18, it suffices to prove axiom A2(1). By Remark 3.7, we merely
need to prove the following:

Let C be an absolutely irreducible smooth affine curve defined
over K. Let φ1(x) be a quantifier-free L1-formula with parame-
ters from K such that φ1(K) is a non-empty open subset of C.
For 2 ≤ i ≤ n, let φi(x) be a quantifier-free Li-formula with
parameters from K such that φi(x) defines a non-empty open
subset of C(Kalg) with respect to any/every extension of the ith
valuation vi from K to Kalg. THEN

⋂n
i=1 φi(K) is non-empty.

Here we are using the facts that K � L1 is already a model of T1, and that for
i > 1, the field Kalg with any extension of vi will be a model of Ti = ACV F .

For 1 < i ≤ n, choose some extension v′i of the valuation vi to Kalg.

Claim 4.5. K is dense in Kalg with respect to the v′i-adic topology on Kalg.

Proof. The claim is trivial if all the Ti are ACVF, in which case K = Kalg.
So we may assume characteristic zero. It suffices to show that K is dense in
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every finite Galois extension of K.2 Let L/K be a finite Galois extension.
We can write L as K(ζ) for some singleton ζ. Let P (X) ∈ K[X] be the
minimal polynomial of ζ over K. The function x 7→ P (x) from K to K is
finite-to-one, so it has infinite image. As K is a model of ACVF, pCF, or
RCF, we see by Fact 2.1 that the image P (K) of this map contains an open
subset of K with respect to the T1-topology. Because the vi-adic topology on
K is independent from the T1-topology on K, we can find elements of P (K)
of arbitrarily high v-valuation. By the cofinality of the value groups, for every
γ ∈ v′i(Kalg), we can find an x ∈ K with vi(P (x)) > γ. Let ζ1, . . . , ζm ∈ L be
the conjugates of ζ over K, counted with multiplicities. Then we have just
seen that for any γ ∈ v′i(Kalg), we can find an x ∈ K with

γ < v′i(P (x)) =
n∑

i=m

v′i(x− ζi).

This implies that at least one of the ζi’s is in the topological closure of K
with respect to v′i. Consequently, the v′i-topological closure of K in L must
contain K[ζi] for some i. But K[ζi] = L, so K is v′i-dense in L.

Now suppose we are given an absolutely irreducible smooth affine curve C
defined over K, and we have Li-formulas φi(x) with parameters from K, such
that φ1(K) is a non-empty open subset of C(K), and for 1 < i ≤ n, φi(K

alg)
is a non-empty v′i-open subset of C(Kalg). (Here we are interpreting φi(K

alg)
using v′i.) By the inductive hypothesis, K �

⋃
i<n Li is an existentially closed

model of
⋃
i<n(Ti)∀. Applying Lemma 4.3 to it, we can find a K-definable

rational function f : C → P1, whose divisor of zeros has no multiplicities
and consists entirely of points in

⋂
i<n φi(K) (and no points at infinity and

no points in C(Kalg) \ C(K)). Write this divisor as
∑m

j=1(Pj), where the Pj
are m distinct points in

⋂
i<n φi(K). Note that m is the degree of f .

Claim 4.6. There is a T1-open neighborhood U ⊂ K of zero such that for
every y ∈ U1, the divisor f−1(y) consists of j distinct points in φ1(K). In
particular, it contains no points in C(Kalg) \ C(K) and no points in C \ C.

Proof. Because the Pj are distinct, they have multiplicity one, so f does
not have a critical point at any of the Pj’s. Consequently, by the implicit

2Note that the value group v′i(K) is cofinal in v′i(K
alg), so e.g. the vi-adic topology on

K is the restriction of the v′i-adic topology on Kalg to K. Various pathologies are thus
avoided.
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function theorem there is a T1-open neighborhood Wj ⊂ C(K) of Pj such
that f induces a T1-homeomorphism from Wj to an open neighborhood of
0. By shrinking Wj if necessary, we may assume that Wj ⊂ φ1(K), and
that Wj ∩Wj′ = ∅ for j 6= j′. Now let U =

⋂m
j=1 f(Wj). This is an open

neighborhood of 0 in the affine line K1. And if y ∈ U , then f−1(y) contains
at least one point in each Wj. Since the Wj are distinct, these points are
distinct. Since f is a degree-m map, this exhausts the divisor f−1(y).

Claim 4.7. For 1 < i < n, there is a γi ∈ vi(K) such that if y ∈ Kalg and
v′i(y) > γi, then f−1(y) are all in φi(K

alg).

Proof. Use the same argument as Claim 4.6.

By Claim 4.5, K is dense in Kalg with respect to the v′n-adic topology.
Also, by assumption, φn(x) interpreted in (Kalg, v′n) yields a non-empty v′n-
open subset W ⊂ C(Kalg). Since f is finite-to-one, the image f(W ) is an
infinite subset of P1(Kalg), hence it has non-empty v′n-interior. Let V be
a v′n-open subset of P1(Kalg) contained in f(W ). Now, as K is v′n-adically
dense in Kalg, V must intersect K. In particular, V ∩ K is a non-empty
vn-adic open subset of K. By independence of the topologies, we can find a
y in A1(K) such that

• y is in U , the T1-open neighborhood of 0 from Claim 4.6.

• vi(y) > γi, for 1 < i < n, where the γi are from Claim 4.7

• y is in V ∩K.

Having chosen such a y, we know by Claim 4.6 that f−1(y) consists of j
distinct points in φ1(K). In particular, each point in f−1(y) is a point of
C(K). And by Claim 4.7, each of these points also belongs to φi(K

alg),
hence satisfies φi(−), for i < n. Finally, because y is in V ∩ K, y is in the
image of φn(Kalg) under f . So there is some x ∈ φn(Kalg) mapping to y. But
we just said that every point in C(Kalg) mapping to y is already in C(K)
and even in

⋂
i<n φi(K). Thus

x ∈ φn(Kalg) ∩
⋂
i<n

φi(K) =
n⋂
i=1

φi(K).

In particular some point in C(K) satisfies
∧n
i=1 φi(x), and the theorem is

proven.
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5 Keisler Measures

To establish NTP2 and analyze forking and dividing in T , we need the fol-
lowing tool.

Theorem 5.1. Let T be one of the model companions from §3. For each
K |= T∀ that is a perfect field, each formula φ(x) and each tuple a from K,
we can assign a number P (φ(a), K) ∈ [0, 1] such that the following conditions
hold:

• If K is held fixed, the function P (−, K) is a Keisler measure on the
space of completions of the quantifier-free type of K. Thus

P (φ(a), K) + P (ψ(b), K) = P (φ(a) ∧ ψ(b), K) + P (φ(a) ∨ ψ(b), K)

P (¬φ(a), K) = 1− P (φ(a), K)

for sentences φ(a) and ψ(b) over K. And if φ(a) holds in every model
of T extending K, then P (φ(a), K) = 1. For example, if φ(x) is
quantifier-free, then P (φ(a), K) is 1 or 0 according to whether or not
K |= φ(a). And if K is satisfies axiom A1 of §3.1, then P (φ(a), K) ∈
{0, 1} for every φ(a), by Corollary 3.11.

• Isomorphism invariance: if K,L are two perfect fields satisfying T∀,
and f : K → L is an isomorphism of structures, then P (φ(a), K) =
P (φ(f(a)), L) for every K-sentence φ(a).

• Irrelevance: if K0 ⊂ K are perfect fields satisfying T∀, and K0 is rela-
tively algebraically closed in K, and φ(a) is a formula with parameters
from K0, then P (φ(a), K0) = P (φ(a), K).

• Density: if K |= T∀ is a perfect field and φ(a) is a K-formula, and if
M |= φ(a) for at least one M |= T extending K, then P (φ(a), K) > 0.
In other words, the associated Keisler measure is spread out throughout
the entire Stone space of completions of qftp(K).

5.1 The Algebraically Closed Case

We first prove Theorem 5.1 in the case where every Ti is a model of ACVF,
i.e., the case of existentially closed fields with n valuations. Define P (φ(a), K)
as follows. Fix some algebraic closure Kalg of K. For each 1 ≤ i ≤ n, let
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v′i be an extension to Kalg of the ith valuation vi on K. Choose automor-
phisms σ1, . . . , σn ∈ Gal(Kalg/K) randomly with respect to Haar measure
on Gal(Kalg/K). Then

Kσ1,...,σn := (Kalg, v′1 ◦ σ1, v′2 ◦ σ2, . . . , v′n ◦ σn)

is a model of T∀ satisfying axiom A1 of §3.1. In particular, whether or not
φ(a) holds in a model of T extending Kσ1,...,σn does not depend on the choice
of the model, by Corollary 3.11. Define P (φ(a), K) to be the probability that
φ(a) holds in any/every model of T extending Kσ1,...,σn . This probability
exists, i.e., the relevant event is measurable, because whether or not φ(a)
holds is determined by the behavior of the valuations on some finite Galois
extension L/K, by virtue of Theorem 3.15.

Note that the choice of the v′i does not matter. If v is a valuation on K and
w1 and w2 are two extensions of v to Kalg, then there is a τ in Gal(Kalg/K)
such that w1 = w2 ◦ τ . I believe this is well-known, and at any rate it is
an easy consequence of quantifier-elimination in ACVF. From this, it follows
that if σ is a randomly chosen element of Gal(Kalg/K), then w1 ◦ σ and
w2 ◦σ have the same distribution. Consequently the choice of the valuations
v′i does not effect the resulting value of P (φ(a), K).

So we have a well-defined number P (φ(a), K), and it is defined canon-
ically. The first two bullet points of Theorem 5.1 are therefore clear. The
density part can be seen as follows: suppose M |= φ(a) for some M |= T
extending K. Let Kalg be the algebraic closure of K in M . For the v′i’s,
take the restrictions of the valuations on M to Kalg. By Theorem 3.15,
there is a field K ≤ L ≤ Kalg with L/K a finite Galois extension, such
that φ(a) is implied by T and the diagram of L. Specifically, write φ(a) as
∃y : P (y; a) = 0 ∧ ψ(y; a), and let L be the splitting field of the polynomial
P (X; a) ∈ K[X]. Now with probability 1/[L : K]n, every σi will restrict to
the identity on L. Consequently, Kσ1,...,σn will be a model of T∀ extending L,
so in any model M of T extending Kσ1,...,σn , φ(a) will hold. So φ(a) holds with
probability at least 1/[L : K]n, and consequently P (φ(a), K) ≥ 1/[L : K]n.

It remains to verify the irrelevance part of Theorem 5.1. Let K0 ≤ K
be an inclusion of perfect fields, with K0 relatively algebraically closed in
K. Let φ(a) be a formula with parameters a from K0. As in the previous
paragraph, write φ(a) as ∃y : P (y; a) ∧ ψ(y; a) and let L0 be the splitting
field of P (y; a) over K0. At present L0 is just a pure field. Write L0 = K0(β)
for some singleton β ∈ L0, and let Q(X) be the irreducible polynomial of
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β over K0. Let L = L0K = K(β); this is a Galois extension of K. There
are only finitely many ways of factoring Q(X) in Kalg, so in each way of
factoring Q(X), the coefficients come from Kalg

0 . In particular, if Q(X) can
be factored over K, the coefficients would belong to Kalg

0 ∩K = K0. So Q(X)
is still irreducible over K. Consequently [L : K] = degQ(X) = [L0 : K0].
Now there is a natural restriction map Gal(L/K) → Gal(L0/K0). It is in-
jective because an element of Gal(K(β)/K) is determined by what it does
to β. Since Gal(L/K) has the same size as Gal(L0/K0), the restriction
map must be an isomorphism. Consequently, if τ is chosen from Gal(L/K)
randomly, its restriction to L0 is a random element of Gal(L0/K0). Con-
sequently, if σ is a random element of Gal(Kalg/K) and σ0 is a random
element of Gal(Kalg

0 /K0), then σ � L0 and σ0 � L0 have the same distribu-
tion, namely, the uniform distribution on Gal(L0/K0). From this, it follows
easily that P (φ(a), K) = P (φ(a), K0).

This completes the proof of Theorem 5.1 when every Ti is ACVF. In the
other cases, things are more complicated, though as a consolation all fields
are characteristic zero, hence perfect.

A first attempt at defining P (φ(a), K) is as follows: fix some algebraic
closure Kalg of K. For each i such that Ti is RCF, let Ki be a real closure
of (K,<i) inside Kalg. For each i such that Ti is pCF, let Ki be a p-closure
of (K, vi) inside Kalg. For each i such that Ti is ACVF, let Ki be Kalg with
some valuation extending vi. In each case, there is a choice, but any two
choices are related by an element of Gal(Kalg/K). Now choose σ1, . . . , σn ∈
Gal(Kalg/K) randomly. For each i, consider σi(Ki), which is (usually) a
model of Ti extending K. Let K ′ be the field

K ′ =
n⋂
i=1

σi(Ki).

There is an obvious way to give K ′ the structure of a T∀-model. If we
knew that K ′ satisfies condition A1 of §3.1 with high probability, we could
define P (φ(a), K) to be the probability that φ(a) holds in any/every model
of T extending K ′. Unfortunately, K ′ usually satisfies condition A1 with
probability zero. Instead, we’ll proceed by repeating the above procedure
with K ′ in place of K, getting a third field K ′′. Iterating this, we get an
increasing sequence K ⊂ K ′ ⊂ K ′′ ⊂ · · · ⊂ K(n) ⊂ · · · of T∀-structures
on subfields of Kalg. The union K∞ =

⋃∞
n=1K

(n) does actually turn out to
satisfy axiom A1 with probability 1, and we let P (φ(a), K) be the probability
that φ(a) holds in any/every model of T extending K∞.
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The rest of this section will make this construction more precise, and
verify that it satisfies the requirements of Theorem 5.1.

5.2 The General Case

All fields will be perfect, unless stated otherwise. All models of T∀ and (Ti)∀
will be (perfect) fields, unless stated otherwise. Galois extensions needn’t be
finite Galois extensions.

We start off with some easy but confusing facts that will be needed later.

Lemma 5.2. Let L/K be a Galois extension of fields, and suppose K has
the structure of a (Ti)∀ model (but L does not). The following are equivalent

(a) For every F , if F is a model of (Ti)∀ extending K, and F is a subfield
of L, then F = K.

(b) There is a model M |= Ti extending K, such that M ∩ L = K.

(c) For every model M |= Ti extending K, M ∩ L = K.

Note that it makes sense to talk about whether M ∩ L = K, because L/K is
Galois.

Proof. The equivalence of (b) and (c) follows from quantifier elimination in
Ti. Indeed, the statement that M ∩ L = K is equivalent to the statement
that for each x ∈ L \K, the irreducible polynomial of x over K has no zeros
in M . This is a conjunction of first order statements about K, so it holds in
one choice of M if and only if it holds in another choice of M .

Suppose (a) holds. Let M be a model of Ti extending K. Taking F =
M ∩ L, (a) implies that M ∩ L = K. So (a) implies (c).

Conversely, suppose (a) does not hold. Let F witness a contradiction to
(a), so K ( F ⊆ L, and F is a model of (Ti)∀ extending K. Let M be a
model of Ti extending F and hence K. Then M∩L contains F , contradicting
(c).

Definition 5.3. Say that K is locally Ti-closed in L if it satisfies the equiv-
alent conditions of the previous lemma.

Definition 5.4. Let L/K be a Galois extension of fields, and suppose K has
the structure of a (Ti)∀-model (but L does not). Let Ci(L/K) denote the set
of models of (Ti)∀ which extend K, are subfields of L, and are locally Ti-closed
in L.
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The subscript on Ci is present so that Ci(L/K) will be unambiguous when
K is a model of T∀, not just a model of (Ti)∀.

There is a natural action of Gal(L/K) on Ci(L/K).

Lemma 5.5. Suppose L/K is a Galois extension of fields, and K |= (Ti)∀.

(a) The action of Gal(L/K) on Ci(L/K) has exactly one orbit.

(b) Suppose K ′ is a model of (Ti)∀ extending K, and L′ is a field extension
of L and K ′, with L′ Galois over K ′. If F ∈ Ci(L

′/K ′), then F ∩ L ∈
Ci(L/L ∩K ′).

Proof. (a) Note that Ci(L/K) is non-empty by a Zorn’s lemma argument
and condition (a) of Lemma 5.2. Now suppose F and F ′ are two ele-
ments of Ci(L/K). By quantifier elimination in Ti, we can amalgamate
F and F ′ over K. Thus, we can find a model M |= T extending F , and
an embedding ι : F ′ → M which is the identity on K. Choosing some
way of amalgamating M and L as fields, we get that ι(F ′) ⊂ L ⊃ F ,
because of L/K being Galois. The compositum ι(F ′)F is a subfield
of L with a (Ti)∀-structure extending that on F and ι(F ′), so by local
Ti-closedness of ι(F ′) and F in L, ι(F ′) = ι(F ′)F = F . It follows that
F ′ and F are isomorphic over K. This isomorphism must extend to an
automorphism of L, because L/K is Galois. So some automorphism
on L/K maps F ′ to F (as (Ti)∀-structures).

(b) Let M be a model of Ti extending F . Choose some way of amalgamating
M with L′. Then M ∩ L′ = F by (c) of Lemma 5.2. Therefore,
M ∩L = M ∩L′∩L = F ∩L. So by (b) of Lemma 5.2, F ∩L is locally
Ti-closed in L. Therefore it is in Ci(L/L ∩K ′).

Now we turn our attention from Ti to T .

Definition 5.6. Let K |= T∀ and let L be a pure field that is a Galois
extension of K. Let S(L/K) be the set of all K ′ |= T∀ extending K, with
K ′ a subfield of L. In other words, an element of S(L/K) is a subfield F
of L, endowed with a T∀-structure, such that F ⊇ K and the structure on F
extends the structure on K.
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There is a natural partial order on S(L/K) coming from inclusion of
substructures. There is also a natural action of Gal(L/K) on S(L/K). One
should think of S(L/K) as the set of states in a Markov chain, specifically
the random process described at the end of the previous section.

Definition 5.7. Suppose K |= T∀ and L/K is a Galois extension of K. For
1 ≤ i ≤ n, choose some Li ∈ Ci(L/K). Choose σ1, . . . , σn ∈ Gal(L/K)
independently and randomly, using Haar measure on Gal(L/K). Let F be⋂n
i=1 σi(Li), with the obvious choice of a T∀ structure. So F is a random

variable with values in S(L/K). Let µ1
L/K be the probability distribution on

S(L/K) obtained in this way. The choice of the Li’s doesn’t matter, by
Lemma 5.5(a).

The superscript 1 is to indicate that this is the first step of the Markov
chain.

Lemma 5.8. Suppose L/K is finite. Then every event (subset of S(L/K))
which has positive probability with respect to µ1

L/K has probability at least

1/mn, where m = [L : K].

Proof. The only randomness comes from the σi’s. Each element of Gal(L/K)
has an equal probability under Haar measure, and this probability is 1/m.
Since the σi’s are chosen independently, each choice of the σi’s has probability
1/mn of occurring.

Lemma 5.9. Suppose L/K is finite, and F is a maximal element of S(L/K).
Then µ1

L/K({F}) > 0.

Proof. For each i, let Mi be a model of Ti extending F � Li, and choose
some way of amalgamating Mi and L as fields over F . Let Fi = L ∩Mi. Of
course Fi ⊃ F . By Lemma 5.2(b), Fi ∈ Ci(L/K). Let F ′ =

⋂n
i=1 Fi. Then

F ′ ∈ S(L/K) and F ′ extends F , so F = F ′ by maximality of F . Now if
we choose σ1, . . . , σn ∈ Gal(L/K) randomly, then

⋂n
i=1 σi(Fi) is distributed

according to µ1
L/K . Since L/K is finite, there is a positive probability that

σi = 1 for every i, in which case
⋂n
i=1 σi(Fi) = F ′ = F .

Lemma 5.10. Let L/K be a Galois extension, and K be a model of T∀. Let
K ′ be a model of T∀ extending K. Let L′ be a field extending L and K ′, with
L′ Galois over K ′. If F ∈ S(LK ′/K ′) is distributed randomly according to
µ1
L′/K′, then F ∩ L is distributed randomly according to µ1

L/L∩K′.
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Proof. For 1 ≤ i ≤ n, choose some Fi ∈ Ci(L
′/K ′). By Lemma 5.5(b), Fi∩L

is in Ci(L/L ∩K ′).

Claim 5.11. If we choose σ from Gal(L′/K ′) randomly using Haar measure,
then σ � L is also randomly distributed in Gal(L/L∩K ′) with respect to Haar
measure.

Proof. It probably suffices to show that if x ∈ L, then the probability that σ �
L fixes x is the same as the probability that a random element of Gal(L/L∩
K ′) fixes x. This is equivalent to showing that x has the same number
of conjugates under the action of Gal(L/L ∩ K ′) as under the action of
Gal(L′/K ′). If x and y are conjugate over K ′, then clearly they are conjugate
over L ∩K ′. Conversely, if they are conjugate over K ′ ∩ L but not over K ′,
then let S ⊂ L be the orbit of x under Gal(L′/K ′). The code for the finite
set S is definable over K ′. It is also definable over L, as S ⊂ L. Thus the
code for S is in L ∩K ′. As x and y are conjugate over L ∩K ′, we conclude
that y ∈ S ⇐⇒ x ∈ S, a contradiction.

From the Claim, we conclude that if the σi are distributed randomly
from Gal(L′/K ′), then σi � L are distributed randomly from Gal(L/L∩K ′).
Taking F =

⋂n
i=1 σi(Fi), we get F distributed according to µ1

L′/K′ . But

F ∩ L =
n⋂
i=1

(σi � L)(Fi ∩ L)

is then distributed according to µ1
L/L∩K′ , because Fi ∩ L ∈ Ci(L/(K

′ ∩ L))

and σi � L is distributed according to Haar measure on Gal(L/L ∩K ′).

Definition 5.12. Let L/K be a Galois extension, and K be a model of T∀.
Define a series of distributions {µiL/K}i<ω on S(L/K) as follows:

• µ0
L/K assigns probability 1 to {K} ⊂ S(L/K).

• µ1
L/K is as above.

• For i > 0, if we choose F ∈ S(L/K) randomly according to µiL/K,

and then choose F ′ ∈ S(L/F ) ⊂ S(L/K) randomly according to µ1
L/F ,

then F ′ is distributed according to µi+1
L/K.
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In other words, we are running some kind of Markov chain whose states
are the elements of S(L/K). The transition probabilities out of the state
F are given by µ1

L/F , and µnL/K is the distribution of the Markov chain after
n steps. There could be some weird technical problem with Definition 5.12
when L/K is an infinite Galois extension, since the sample space from which
the σi’s are drawn depends on previous events in the chain. I don’t know
enough measure theory to verify that this is legitimate, so we’ll try to stick
to the case where L/K is finite and everything is valid.

Lemma 5.13. Let L/K be a finite Galois extension, and K be a model of
T∀. Then limi→∞ µ

i
L/K exists, and the corresponding distribution on S(L/K)

is concentrated on the maximal elements of S(L/K).

Proof. The fact that the limit distribution exists is a general fact about
Markov chains with finitely many states such that the graph of possible
transitions has no cycles other than self-loops.

It remains to check that in the limit, we land in a maximal element of
S(L/K) with probability one. Let m = [L : K]. If F ∈ S(L/K) is not
maximal, then the probability of moving from F to some bigger element is
positive by Lemma 5.9, and at least 1/mn, by Lemma 5.8. The probability
of getting stuck at F is therefore bounded above by limk→∞(1− 1/mn)k = 0.
As there are finitely many non-maximal F , we conclude that the probability
of getting stuck at any of them is zero.

We let µ∞L/K denote the limit distribution on S(L/K).

Lemma 5.14. Let L/K be a finite Galois extension, and K be a model of
T∀. Then every maximal element of S(L/K) has a positive probability with
respect to µ∞L/K.

Proof. This follows immediately from Lemma 5.9, and the fact that once
the Markov chain reaches a maximal element of S(L/K), it must remain
there.

Lemma 5.15. Let L/K be a Galois extension, with K a model of T∀. Let
K ′ be a model of T∀ extending K. Let L′ be a field extending K ′ and L,
Galois over K ′. If F is a random element of S(L′/K ′) distributed according
to µiLK′/K′, then F ∩ L is distributed according to µiL/L∩K′.
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Proof. We proceed by induction on i. For i = 0, F is guaranteed to be K ′,
and F ∩ L is guaranteed to be K ′ ∩ L, which agrees with µ0

L/L∩K′ .
For the inductive step, suppose we know the statement of the lemma for

µi, and prove it for µi+1. If we let F ∈ S(L′/K ′) be chosen according to
µiL′/K′ , and we then choose F ′ ∈ S(L′/F ) ⊂ S(L′/K ′) according to µ1

L′/F ,

then F ′ is randomly distributed according to µi+1
L′/K′ , by definition of µi+1.

Also, F ∩L is distributed according to µiL/L∩K′ , by the inductive hypothesis.

By Lemma 5.10 we know that F ′ ∩ L is distributed according to µ1
L/L∩F . In

particular, the distribution of F ′∩L only depends on F ∩L. So if we want to
sample F ′ ∩L, we can just choose F ∩L using µiL/L∩K′ , and can then choose

F ′∩L using µ1
L/F∩L. This is the recipe for sampling the distribution µi+1

L/K′∩L.

So F ′ ∩ L is indeed distributed according to µi+1
L/K′∩L.

Corollary 5.16. When L/K and L′/K ′ are finite Galois extension, Lemma 5.15
holds for i =∞.

Definition 5.17. Let K |= T∀ be a perfect field, φ(a) be a formula in the
language of T with parameters a from K. Say that a finite Galois extension
L/K determines the truth of φ(a) if the following holds: whenever M and
M ′ are two models of T extending K, if M∩L is isomorphic as a model of T∀
to M ′ ∩ L, then [M |= φ(a)] ⇐⇒ [M ′ |= φ(a)]. (Note that the isomorphism
class of M ∩ L doesn’t depend on how we choose to form the compositum
ML.)

For every formula φ(a), there is some finite Galois extension L/K which
determines the truth of φ(a). Namely, use Theorem 3.15 to write φ(a) in the
form ∃y : P (y; a) = 0 ∧ ψ(y; a), and take L to be the splitting field over K
of P (X; a) ∈ K[X].

Lemma 5.18. Let K be a model of T∀, M be a model of T extending K, and
let L/K be a Galois extension of K. Assume M and L are embedded over
K into some bigger field. Then M ∩ L is a maximal element of S(L/K).

Proof. Suppose not. Let F be an element of S(L/K), strictly bigger than
M ∩ L, and finitely generated over M ∩ L. Let x be a generator of F over
M ∩ L. If S denotes the set of algebraic conjugates of x over M , then the
code for the finite set S is in M , and also in L because S ⊂ L. So the code for
S is in M ∩L, implying that S is also the set of algebraic conjugates of x over
M ∩L. Since we’re assuming that all fields are perfect, this implies that the
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degree of x over M is the same as the degree of x over M ∩L. In particular,
the irreducible polynomial P (X) of x over M∩L remains irreducible over M .
For 1 ≤ i ≤ n, let Mi be a model of Ti extending M � Li. Let Ni be a model
of Ti extending F � Li. The polynomial P (X) has a zero in F , namely x.
Hence it has a zero in Ni ⊇ F . As Mi and Ni are two models of Ti extending
M ∩L and P (X) is defined over M ∩L, it follows from quantifier-elimination
in Ti that P (X) also has a zero in Mi.

Now we have a polynomial P (X) of degree > 1, irreducible over M , such
that P (X) has a root in Mi for every i. This contradicts condition A1’ of
§3.1.

Definition 5.19. Let L/K be a Galois extension, with K a model of T∀. Let
F(L/K) be the set of maximal elements of S(L/K).

By Zorn’s lemma, it is clear that every element of S(L/K) is bounded
above by an element of F(L/K), even if L/K is infinite. When L/K is a
finite extension, µ∞L/K induces a probability distribution on F(L/K). (This

probably also works if L/K is infinite, but I’m not sure.)

Remark 5.20. F(L/K) is exactly the set of F of the form L ∩M , where
M is a model of T extending K. One inclusion is Lemma 5.18. The other
inclusion is obvious: if F is a maximal element of S(L/K), then letting M
be a model of T extending F , and combining M and L into a bigger field in
any way we like, we have F ⊆M ∩ L ∈ S(L/K), so maximality of F forces
M ∩ L = F .

Suppose that L/K determines the truth of φ(a). Then by Remark 5.20,
there must be a uniquely determined map fφ(a),L from F(L/K) to {⊥,>}
such that for every M |= T extending K, and every way of forming the
compositum ML, the truth of M |= φ(a) is given by fφ(a),L(M ∩ L).

Another corollary of Remark 5.20 is that if K ≤ L ≤ L′, with L′ and L
Galois extensions of K |= T∀, and if F ∈ F(L′/K), then F = M ∩L′ for some
model M , and hence F ∩ L = M ∩ L′ ∩ L = M ∩ L is in F(L/K).

Finally, we define P (φ(a), K) to be µ∞L/K({F : fφ(a),L(F ) = >}).

Lemma 5.21. The choice of L does not matter.

Proof. If L and L′ are two finite Galois extensions of K which determine
the truth of φ(a), then so does their compositum LL′. So we may assume
L ⊂ L′. Let r : F(L′/K)→ F(L/K) be the restriction map, F 7→ F ∩ L.
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Claim 5.22. fφ(a),L′ = fφ(a),L ◦ r.

Proof. For F ∈ F(L′/K), we will show fφ(a),L′(F ) = fφ(a),L(r(F )). Write F as
M∩L′, with M a model of T extending F . Then fφ(a),L′(M∩L′) = fφ(a),L′(F )
is the truth value of M |= φ(a). But M ∩ L = F ∩ L, so by definition of
fφ(a),L, we also know that fφ(a),L(M ∩L) = fφ(a),L(r(F )) is the truth value of
M |= φ(a), which is the same thing. So fφ(a),L(r(F )) = fφ(a),L′(F ).

By Corollary 5.16 applied in the K = K ′ case, if F is a random element
of F(L′/K) chosen according to µ∞L′/K , then r(F ) = F ∩ L is distributed

according to µ∞L/K . In particular, the probability of fφ(a),L′(F ) or equivalently

of fφ(a),L(r(F )) is the same as the probability of fφ(a),L(F ′), with F ′ chosen
directly from µ∞L/K . But the former probability is P (φ(a), K) computed using

L′, while the latter is P (φ(a), K) computed using L.

So P (φ(a), K) is at least a well-defined number. The “isomorphism in-
variance” part of Theorem 5.1 is clear from the definitions. We need to prove
the other conditions of Theorem 5.1.

Lemma 5.23. For any fixed K, the function P (−, K) is a Keisler measure
on the space of completions of the quantifier-free type of K.

Proof. It suffices to prove the following:

• If φ(a) and ψ(b) are forced to be equivalent by T and the diagram of
K, then P (φ(a), K) = P (ψ(b), K). This is easy/trivial, because if we
choose a finite Galois extension L determining the truth of both φ(a)
and ψ(b), we see that fφ(a),L = fψ(b),L by unwinding the definitions.

• P (φ(a), K) = 1− P (¬φ(a), K), which follows similarly, though it uses
the fact that µ∞L/K is concentrated on F(L/K).

• If φ(a) ∧ ψ(b) contradicts T ∪ diag(K), then P (φ(a) ∨ ψ(b), K) =
P (φ(a), K) + P (ψ(b), K). Again, this is not difficult: if L is a field
determining the truth of both φ(a) and ψ(b), then it is clear that

fφ(a),L ∧ fψ(b),L = fφ(a)∧ψ(b),L = ⊥

fφ(a),L ∨ fψ(b),L = fφ(a)∨ψ(b),L.

Consequently, {F : fφ(a)∨ψ(b),L(F ) = >} is a disjoint union of {F :
fφ(a),L(F ) = >} and {F : fψ(b),L(F ) = >}, so we reduce to the fact
that µ∞ is a probability distribution.

36



• 0 ≤ P (φ(a), K) ≤ 1, which is clear from the definition.

Assuming I haven’t forgotten any of the axioms of a finitely additive proba-
bility distribution, this finishes the lemma.

Lemma 5.24. If K ⊂ K ′ are models of T∀ and K is relatively algebraically
closed in K ′, and φ(a) is a formula with parameters from K, then P (φ(a), K) =
P (φ(a), K ′).

(This is the “irrelevance” part of Theorem 5.1.)

Proof. Let L be a finite Galois extension of K determining the truth of φ(a).
Let L′ be a finite Galois extension of K ′ determining the truth of φ(a); we
may assume L′ ⊇ L. (In fact, we can take L′ = LK ′.) Because K is
relatively algebraically closed in K ′, L ∩ K ′ = K. So by Corollary 5.16, if
F ∈ F(L′/K ′) is distributed according to µ∞L′/K′ , then F ∩ L is distributed

according to µ∞L/K . Using Lemma 5.14, this implies that F ∩L ∈ F(L/K) for

any F ∈ F(L′/K ′). Let r : F(L′/K ′)→ F(L/K) be the map F 7→ F ∩L. By
unwinding the definitions (as in the claim in the proof of Lemma 5.21), one
sees that fφ(a),L′/K′ = fφ(a),L/K ◦ r. So just like in the proof of Lemma 5.21,
we see that for F ′ choosen randomly from F(L′/K ′) and F chosen randomly
from F(L/K), the distribution of F and r(F ′) is the same, and therefore so
too is the distribution of

fφ(a),L′/K′(F ′) = fφ(a),L/K(r(F ′))

and
fφ(a),L/K(F ).

This ensures that P (φ(a), K) = P (φ(a), K ′).

Lemma 5.25. If K |= T∀ and φ(a) is a K-formula which holds in some
model of T extending K, then P (φ(a), K) > 0.

(This is the “density” part of Theorem 5.1.)

Proof. Let M be the model where φ(a) holds. Let L be a Galois extension of
K determining the truth of φ(a). Then L∩M ∈ F(L/K) and fφ(a),L(L∩M) =
>. By Lemma 5.14, P (φ(a), K) > 0.

We have verified each condition of Theorem 5.1, which is now proven.
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6 NTP2 and the Independence Property

We show that the model companion T (usually) doesn’t have NIP, but always
has NTP2, the next best possibility. In many cases, perhaps all, these results
are already known, though they may not have been written down yet.

6.1 Failure of NIP

If n = 1, then T = Ti is one of ACVF, RCF, or pCF, which are all known to
be NIP. On the other hand,

Theorem 6.1. Suppose n > 1. Then T has the independence property.

Other people have already pointed this out, but here is a proof.

Proof. We give a proof which works in characteristic 6= 2. It is not hard to
modify it to work in characteristic 2.

Claim 6.2. For each i, we can produce quantifier-free Li-formulas φi(x, y)
and χi(y) without parameters such that x, y are singletons, and such that if
Ki |= Ti, then χi(Ki) is a non-empty open set and for every b ∈ χi(Ki), both
square roots of b are present in Ki, and exactly one of them satisfies φi(x, b).

Proof. If Ti is RCF, let χi(y) say that y > 0 and φi(x, y) say that x > 0.
If Ti is ACVF, let χi(y) say that v(y − 1/4) > 0, and φi(x, y) say that
v(x − 1/2) > 0. Note that if v(y − 1/4) > 0 and x2 = y, then t = x − 1/2
satisfies

t2 + t+ 1/4− y = (t+ 1/2)2 − y = 0.

By Newton polygons, one of the possibilities for t has valuation zero, and the
other has valuation v(y−1/4) > 0. If Ti is pCF, the same formulas work as in
the case of ACVF. The only thing to check is that if v(y− 1/4) > 0 for some
y ∈ K |= pCF , then the two roots of T 2 + T + (1/4− y) = 0 are present in
K. If not, then since the two roots have different valuations (in an ambient
model of ACVF), there are two different ways to extend the valuation from
K to K[T ]/(T 2 + T + (1/4− y)), contradicting Henselianity of K.

Given the φi and χi from the Claim, let χ(y) =
∧n
i=1 χi(y). Note that

χ(y) defines an infinite subset of any model of T , by condition A2 of §3.1.
(Each χi(−) is A1-dense.) If K |= T and b ∈ χ(K), then X2− b has roots in
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K by choice of χi(−) and condition A1’ of §3.1. So each element of χ(K) is
a square.

Let ψ(y) assert that χ(y) holds and there is a square root of y which
satisfies exactly one of φ1 and φ2. Note that if χ(b) holds, then both square
roots of b are present in K, exactly one of them satisfies φ1, and exactly one
of them satisfies φ2. If we let ⊕ denote exclusive-or, then we can write ψ(y)
as φ1(

√
y)⊕ φ2(

√
y), where the choice of

√
y doesn’t matter.

Let K be a model of T . We will show that ψ(x+y) has the independence
property in K. Let a1, . . . , am be any m elements in χ(K), which as we noted
above is an infinite set. We will show that for any subset S0 ⊂ {1, . . . ,m},
there is a b in K such that j ∈ S0 ⇐⇒ K |= ψ(b + aj). It suffices to find
such a b in an elementary extension of K, rather than K itself. Let K ′ � K
be an elementary extension containing an element ε which is infinitesimal
compared to K, with respect to every one of the valuations. That is, for
each i such that Ti is valuative, we want vi(ε) > vi(K), and for each i such
that Ti is RCF, we want −α <i ε <i α for every α >i 0 in K. The fact that
such an ε exists follows by our axiom A2, and isn’t hard to show directly.

Note that for 1 ≤ j ≤ m, aj+ε ∈ χ(K ′). (Indeed, for every i, K ′ |= χi(ai+
ε), because χi(−) defines an open set in a model of Ti, and ε is infinitesimal
with respect to the prime model of Ti over K � Li.) Consequently,

√
aj + ε ∈

K ′ for every 1 ≤ j ≤ m. Let L be K(
√
aj + ε : 1 ≤ j ≤ m) ⊂ K ′, as a

model of T∀. Since ε is transcendental over K, Gal(L/K(ε)) ∼= (Z/2Z)m.
In particular, for every S ⊂ {1, . . . ,m}, there is a field automorphism σS ∈
Gal(L/K(ε)) which swaps the square roots of aj + ε if and only if j ∈ S. Let
LS be the T∀-model with underlying field L, with the same Li-structure as L
for i > 1, and with the L1-structure obtained by pulling back the L1-structure
of L along σS. If ∆ denotes symmetric difference of sets, then

{j : LS |= φ2(
√
aj + ε)} = {j : L |= φ2(

√
aj + ε)}

{j : LS |= φ1(
√
aj + ε)} = {j : L |= φ1(σS(

√
aj + ε))}

= {j : L |= φ1(
√
aj + ε)} ∆ S,

where the last equality holds because L |= φ1(
√
aj + ε) ⇐⇒ ¬φ1(−

√
aj + ε).

Now letKS be a model of T extending LS. Since LS is a model of T∀ extending
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K, KS � K. Also,

{j : KS |= ψ(aj + ε)} = {j : LS |= φ1(
√
aj + ε)}∆{j : LS |= φ2(

√
aj + ε)}

= {j : L |= φ1(
√
aj + ε)}∆{j : L |= φ2(

√
aj + ε)}∆S

= {j : K ′ |= ψ(aj + ε)}∆S

Therefore, by choosing S = S0 ∆ {j : K ′ |= ψ(aj + ε)}, we can arrange that

{j : KS |= ψ(aj + ε)} = S0,

i.e., KS |= ψ(aj + ε) if and only if j ∈ S0. Taking b to be ε ∈ KS, this
completes the proof.

Because T has the independence property and clearly has the strict order
property, the best classification-theoretic property we could hope for T to
have is NTP2.

6.2 NTP2 holds

First we make some elementary remarks about relative algebraic closures.

Lemma 6.3. Let M be a pure field. Let K be a subfield of M which is nearly
closed in M (in the sense of Definition 2.6). Let a and b be two tuples from

M such that a |̂ ACF
K

b, i.e., a and b are algebraically independent from each
other over K. Then K(a) is nearly closed in K(a, b).

Proof. Embed M into a monster model M |= ACF . By the remarks after
Definition 2.6, tp(a/K) and tp(b/K) are stationary. Since a |̂

K
b, the

type of b over acl(K(a)) is K-definable. Now suppose that some singleton
c ∈ K(a, b) is algebraic over K(a). Write c as f(a, b), for some rational
function f(X, Y ) ∈ K(X, Y ). Note that stp(b/K(a)) includes the statement
f(a, x) = c. On the other hand, it does not include f(a, x) = c′ for any
conjugate c′ 6= c of c over K(a). As stp(b/K(a)) is definable over K, ac and
ac′ cannot have the same type over K. But if c and c′ are conjugate over
K(a), then ac and ac′ have the same type. So c′ does not exist, and c has
no other conjugates over K(a). Thus c ∈ dcl(K(a)). So cp

k ∈ K(a) for some
k. As c was an arbitrary element of K(a, b) ∩ K(a)alg, we see that K(a) is
nearly closed in K(a, b).
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Lemma 6.4. Let M be a pure field. Suppose K0 ⊂ K1 ⊂ K2 are three sub-
fields of M , each nearly closed in M . Let c be tuple from M , possibly infinite.

Suppose that c |̂ ACF
K0

K2, i.e., K2 and c are algebraically independent over
K0. Then K1(c) is nearly closed in K2(c).

Proof. As in the previous lemma, embed M into a monster model M of
ACF. Then c |̂

K0
K2, and by properties of forking, K1(c) |̂ K1

K2. By the
previous lemma, K1(c) is nearly closed in K2K1(c) = K2(c).

Now we return to existentially closed fields with valuations and orderings.
As always, T is the model companion.

Lemma 6.5. In a monster model of T , let B be a small set of parameters
and a1, a2, . . . be a B-indiscernible sequence. Suppose that B = acl(B) and

ai = acl(Bai) for any/every i. Suppose also that aj |̂
ACF

B
a<j for every

j, i.e., the sequence is algebraically independent over B. Let c be a finite
tuple and suppose that a1, a2, . . . is quantifier-free indiscernible over cB, i.e.,
if i1 < · · · < im and j1 < · · · < jm, then

qftp(ai1ai2 · · · aim/cB) = qftp(aj1aj2 · · · ajm/cB).

Let φ(x; y) be a formula over B such that φ(c; a1) holds. Then
∧∞
j=1 φ(x; aj)

is consistent.

Proof. Because a1, a2, . . . is B-indiscernible, it suffices to show for each k that∧∞
j=1 φ(x; aj) is not k-inconsistent.

First observe that whether or not c |̂ ACF
B

aj holds depends only on the
quantifier-free type of c and aj over B. In particular, it does not depend on j,

by quantifier-free indiscernibility of a1, a2, . . . over cB. If c 6 |̂ ACF
B

aj for one j,
then this holds for all j. As the aj are an algebraically independent sequence
over B, this contradicts the fact that finite tuples have finite preweight in

ACF. So c |̂ ACF
B

aj for each j. The same argument applied to the sequence

a1a2, a3a4, . . . shows that c |̂ ACF
B

a1a2. Similarly c |̂ ACF
B

a1a2a3, and so on,

and so c |̂ ACF
B

a1a2a3 . . ..
Let M be the monster model. Any subset of M closed under acl(−) is

relatively algebraically closed in M , hence nearly closed in M . In particular,
if we let K0 = B, K1 = B(aj) = aj, and K2 = acl(Ba1a2 . . .), then each
of K0, K1, K2 is nearly closed in M , and K0 ⊂ K1 ⊂ K2. By the previous

paragraph, c |̂ ACF
B

K2, so by Lemma 6.4, we conclude that K1(c) is nearly
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closed in K2(c), i.e., B(aj, c) is nearly closed in K2(c). Using bars to denote

perfect closures, this means that B(aj, c) is relatively algebraically closed in

K2(c).
Recall the function P (−,−) from Theorem 5.1. By the “irrelevance” part

of that theorem,

P (φ(c; aj);B(aj, c)) = P (φ(c; aj);K2(c)).

Now by quantifier-free indiscernibility of a1, a2, . . . over cB, we see that
B(aj, c) ∼= B(aj′ , c) for all j, j′. By the isomorphism-invariance part of The-
orem 5.1,

P (φ(c; aj);B(aj, c)) = P (φ(c; aj′);B(aj′ , c))

for all j, j′. Consequently, P (φ(c; aj);K2(c)) does not depend on j.

Now M is a model of T extending K2(c), and in M , φ(c; a1) holds. So
by the “density” part of Theorem 5.1, P (φ(c; a1);K2(c)) is some positive
number ε > 0. Consequently, P (φ(c; aj);K2(c)) = ε > 0 for every j.

Suppose for the sake of contradiction that
∧∞
j=1 φ(x; aj) is k-inconsistent

for some k. Let N be big enough that Nε > k. Let ψ(x) be the statement
over K2 asserting that at least k of φ(x; a1), . . . , φ(x; aN) hold. By the Keisler
measure part of Theorem 5.1, P (ψ(c);K2(c)) > 0, and there is a model M ′

of T extending K2(c) in which ψ holds. In particular, M ′ |= ∃x : ψ(x). But
K2 is relatively algebraically closed in M , hence satisfies axiom A1 of §3.1
by Corollary 3.10. By Corollary 3.11, the statement ∃x : ψ(x) holds in M
if and only if it holds in M ′. Consequently, it holds in M , and therefore∧n
j=1 φ(x; aj) is not k-inconsistent.

Recall from [1] or [2] that the burden of a partial type p(x) is the supre-
mum of κ such that there is an inp-pattern in p(x) of depth κ, that is, an
array of formula φi(x; aij) for i < κ and j < ω, and some ki < ω such that
the ith row

∧
j<ω φi(x; aij) is ki-inconsistent for each i, and such that for any

η : κ→ ω, the corresponding downwards path
∧
i<κ φi(x; ai,η(i)) is consistent

with p(x). A theory is NTP2 if every partial type has burden less than ∞.
A theory is strong if every partial type has burden less than ℵ0, roughly.
(See [1] for a more precise statement.) At any rate, if every partial type has
burden less than ℵ0, then the theory is strong. By the submultiplicativity of
burden (Theorem 11 in [2]), it suffices to check the burden of the home sort.

Fact 6.6. If D and E are definable sets, bdn(D × E) ≥ bdn(D) + bdn(E).
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In fact, if φi(x; ai) is an inp-pattern for D and ψj(y; bj) is an inp-pattern
for E, then {φi(x; ai)} ∪ {φj(y; bj)} is an inp-pattern for D × E.

In NIP theories, burden is the same thing as dp-rank, which is known
to be additive [9]. The theories ACVF, pCF, and RCF are all known to be
dp-minimal, i.e., to have dp-rank 1 [5]. One of the descriptions of dp-rank is
that a partial type Σ(x) over a set C has dp-rank ≥ κ if and only if there are
κ-many mutually indiscernible sequences over C and a realization a of Σ(x)
such that each sequence is not indiscernible over Ca.

Theorem 6.7. The model companion T is NTP2, and strong. In fact, the
burden of affine m-space is exactly mn, where n is the number of valuations
and orderings.

Proof. To show that the burden of Am is at least mn, it suffices by Fact 6.6
to show that bdn(A1) ≥ n. In the case where every Ti is ACVF, one can take
φi(x; y) to assert that vi(x) = y, for 1 ≤ i ≤ n, and take ai,0, ai,1, . . . to be
an increasing sequence in the ith valuation group. Variations on this handle
the remaining cases. We leave the details as an exercise to the reader.

For the upper bound, suppose for the sake of contradiction that there
is an inp-pattern {φi(x; aij)}i<mn+1; 0≤j<ω of depth mn + 1, with x a tuple
of length m. We may assume that the aij form a mutually ∅-indiscernible
array. Extend the array to the left, i.e., let j range over negative num-
bers. Let B be acl(aij : j < 0). From stability theory, one knows that

aij |̂
ACF

B
ai0ai1 · · · ai,j−1 for every j. By mutual indiscernibility, each se-

quence ai0, ai1, . . . is indiscernible over {aij : j < 0}, hence over B. In
particular, aij ≡B aij′ for j 6= j′. For each i < mn + 1, let bi0 be an enu-
meration of acl(Bai,0). For j > 0, choose bi,j such that ai,jbi,j ≡B ai,0bi,0.
Then bi,j is an enumeration of acl(Bai,j) for every i and every j ≥ 0. Let
ci,jdi,j be a mutually B-indiscernible array extracted from the array ai,jbi,j.
Then ci,jdi,j ≡B ai,0bi,0, so di,j is an enumeration of acl(Bci,j). Also, because
ai,0, ai,1, . . . was already B-indiscernible, we must have

ci,0ci,1 · · · ≡B ai,0ai,1 · · ·

for each i. Consequently, ci,j |̂
ACF

B
ci,0 · · · ci,j−1. And since di,j ⊂ acl(Bdi,j),

we also have
di,j |̂

ACF

B
di,0di,1 · · · di,j−1,

using Corollary 3.12. As bi,0 is an enumeration of acl(Bai,0), the elements
of ai,0 must actually appear somewhere in bi,0. Let πi be the coordinate
projection such that πi(bi,0) = ai,0. Hence ci,j = πi(di,j).

43



Because the aij formed a mutually ∅-indiscernible array, the collective
type of all the ci,j’s must agree with that of all the ai,j’s. Hence φi(x; ci,j) is
still an inp-pattern of depth mn + 1. Let ψi(x; y) be φi(x; πi(y)). Then
ψi(x; di,j) is an inp-pattern of depth mn + 1. Let c be a realization of∧
i<mn+1 ψi(x; di,0). Note that c is a tuple of length m.

Let M be the ambient monster. For each 1 ≤ k ≤ n, let Mk be a
model of Tk extending M � Lk. By quantifier-elimination, the array {di,j}
is still mutually B-indiscernible in Mi. By additivity of dp-rank and by dp-
minimality of the home sort in Mk, we know that the dp-rank of tp(c/B)
in Mk is at most m. In particular, for each 1 ≤ k ≤ n, at most m of
the rows in the array {di,j} can fail to be Bc-indiscernible in Mk. By the
pigeonhole principle, there must be some value of i such that the sequence
di,0, di,1, . . . is Bc-indiscernible in each of M1,M2, . . . ,Mn. Back in M, this
means that di,0, di,1, . . . is quantifier-free Bc-indiscernible. Since di,0, di,1, . . .
is also B-indiscernible and B-independent, Lemma 6.5 applies. Consequently,∧∞
j=0 ψi(x; di,j) is consistent, because ψi(c; di,0) holds. This contradicts the

fact that {ψi(x; di,j)} is an inp-pattern.

7 Forking and Dividing

We’ll make use of the following general fact:

Fact 7.1. Let M be a monster model of some theory, let S ⊂M be a small
set, and let φ(x) be a formula with parameters from M. Suppose there is
a global Keisler measure µ which is Lascar-invariant over S, and suppose
µ(φ(x)) > 0. Then φ(x) does not fork over S.

This is probably well-known and probably in [8] somewhere, but here is
a proof:

Proof. If φ(x) forks over S, then φ(x) implies a disjunction ψ1(x)∨· · ·∨ψ`(x)
of formulas which divide over S. For some i, we must have µ(ψi(x)) > 0. Fix
such an i, and let ε = µ(ψi(x)) > 0. Write ψi(x) as χ(x; a), where a is the tu-
ple of parameters over which ψi(x) is defined. By definition of dividing, there
is an S-indiscernible sequence a1, a2, . . . with a1 = a, and with

∧∞
j=1 χ(x; aj)

being k-inconsistent for some k. By Lascar-invariance, µ(χ(x; aj)) = ε for
every j. Choose N so large that Nε > k. Let π(x) assert that at least k of the
formulas χ(x; a1), . . . , χ(x; aN) hold. By definition of k-dividing, π(x) must
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be inconsistent, but by facts from basic probability, µ(π(x)) > 0, yielding a
contradiction. Specifically, if Xi is the random indicator variable that equals
1 if χ(x; ai) holds and 0 otherwise, then the expected value of the random
variable Xi is ε, and the expected value of the random variable

∑N
i=1Xi is

Nε > k. So there must be a non-zero probability that Xi > k, i.e., that π(x)
holds.

Now we specialize to the theory T under consideration.

Lemma 7.2. Let M be a monster model of T . Let S be a small subset of M,
and let p be a complete quantifier-free type over M which is Lascar-invariant
over S. Then there is a Keisler measure µ on S(M), Lascar-invariant over
S, whose support is exactly the set of completions of p.

This is really just a restatement or special case of Theorem 5.1.

Proof. Let a be a realization of p in some bigger model, and consider the
structure M[a] generated by M and a. The structure of M[a] is determined
by p. Also, if σ is any Lascar strong automorphism of M over S, then
p = σ(p). This implies that there is a uniquely determined automorphism σ′

of M[a] extending σ on M and fixing a.
Let M[a] denote the perfect closure of the field of fractions of M[a]. This

is uniquely determined (as a model of T∀) by M[a], and hence is determined
by p. Let µ be the Keisler measure on M which assigns to an M-formula
φ(x; b) the value

P (φ(a; b);M[a]),

where P is as in Theorem 5.1. By the Keisler measure part of Theorem 5.1,
this is a Keisler measure on the space of completions of qftp(M[a]). By model
completeness, any extension of qftp(M[a]) to a complete type must satisfy
tp(M), so we have a legitimate Keisler measure on the space of extensions
of p to complete types over M. And if σ is any Lascar strong automorphism
over S, then by the “isomorphism invariance” part of Theorem 5.1,

P (φ(a;σ(b));M[a]) = P (φ(σ′(a);σ′(b));M[a]) = P (φ(a, b);M[a])

where σ′ is the aforementioned automorphism of M[a] extending σ and fixing
a. Thus µ(φ(x; b)) = µ(φ(x;σ(b))). We conclude that µ(φ(x; b)) = µ(φ(x; b′))
for any formula φ(x; y) and any b, b′ ∈ M having the same Lascar strong
type over S. Finally, if b is a tuple from M and φ(a; b) is a formula which is
consistent with p, then φ(a; b) is also consistent with the diagram of M[a],
hence has positive probability by the “density” part of Theorem 5.1.
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Corollary 7.3. Let M be a monster model of T and S be a small subset
of M. Suppose q is a complete quantifier-free type on M which is Lascar
invariant over S. Then every complete type on M extending q does not fork
over S.

Proof. Let p(x) be a complete type extending q(x). Let φ(x) be any formula
from p(x). Let µ be the Keisler measure from Lemma 7.2. Then µ is Lascar
invariant over S, and µ(φ(x)) is positive because φ(x) is consistent with q(x).
By Fact 7.1, φ(x) does not fork over S.

If M is a model of T and A,B,C are subsets of M , let A |̂ Ti
C
B indicate

that A |̂
C
B holds in any/every model of Ti extending M � Li.

Lemma 7.4. Work in a monster model M of T . Let a be a finite tuple, and
B and C be sets (in the home sort, as always). Suppose C = acl(C). Suppose

a |̂ Ti
C
B holds for every 1 ≤ i ≤ n. Then qftp(a/BC) can be extended to a

quantifier-free type q(x) on M which is Lascar invariant over C.

Proof. Let V be the variety over C of which a is a generic point. By Fact 2.8,
V is absolutely irreducible.

Let Mi be a model of Ti extending M � Li. Within Mi, a |̂
Ti
C
B.

By Adler’s characterization of forking in NIP theories (Proposition 2.1 in
[8]), there is an Li-type pi(x) on Mi which extends the type of a over BC
and which is Lascar-invariant over C. The restriction of this Li-type to a
quantifier-free Lrings-type must say that x lives on V and on no Mi-definable
proper subvarieties of V . This follows from Lemma 2.16. Let qi(x) be the
set of quantifier-free Li-statements in pi(x) with parameters from M. Then
qi(x) is a complete quantifier-free Li-type on M. Let q(x) be

⋃n
i=1 qi(x). This

is a complete quantifier-free type on M; it is consistent because the qi(x) all
have the same restriction to the language of rings, namely, the generic type
of V . Also, q(x) extends qftp(a/BC), because the Li-part of qftp(a/BC) is
present in pi(x) and qi(x).

To show Lascar-invariance of q(x) over C, it suffices to show that if I is
a C-indiscernible sequence in M, a and a′ are two elements of I, and φ(x; y)
is a quantifier-free formula, then φ(x; a) ∈ q(x) if and only if φ(x; a′) ∈ q(x).
In fact, we only need to consider the case where φ(x) is a quantifier-free
Li-formula, for some i. But then

φ(x; a) ∈ q(x) ⇐⇒ φ(x; a) ∈ pi(x) ⇐⇒ φ(x; a′) ∈ pi(x) ⇐⇒ φ(x; a′) ∈ q(x)
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where the middle equivalence follows from the fact that pi(x) is Lascar-
invariant, and I is C-indiscernible within Mi (by quantifier-elimination in
Ti). Thus q(x) is Lascar-invariant over C, as claimed.

Theorem 7.5. Forking and dividing agree over every set (in the home sort).

Proof. First we show that if a is a finite tuple and B is a set, then qftp(a/B)
does not fork over B. By Lemma 7.4, there is a global quantifier-free type
q(x) which is Lascar-invariant over B. By Corollary 7.3, any extension of
q(x) to a complete global type does not fork over B. So qftp(a/B) has a
global non-forking extension. Now if a is any small tuple, and B is a set,
then qftp(a/B) does not fork over B, by compactness. Consequently, if a is a
small tuple andB is a (small) set, then qftp(a′/B) does not fork overB, where
a′ enumerates acl(aB). By Corollary 3.11, qftp(a′/B) implies tp(a′/B), so
tp(a′/B) does not fork over B. By monotonicity, tp(a/B) does not fork over
B. As a and B are arbitrary, every set in the home sort is an extension base
for forking in the sense of [3], so by Theorem 1.2 in [3], forking and dividing
agree over every set in the home sort.

Lemma 7.6. Let M be a monster model of T and C = acl(C) be a small
subset of M . Suppose p(x) is a complete type on C and q(x) is a complete
quantifier-free type on M , with q(x) extending the quantifier-free part of p(x).
Suppose q(x) is Lascar-invariant over C. Then q(x) ∪ p(x) is consistent.

Proof. Let M[a] be the structure obtained by adjoining a realization a of
q(x) to M. Let W be the variety over M of which a is the generic point. By
Fact 2.8, W is absolutely irreducible. Moreover, the ACF-theoretic code [W ]
for W must lie in M. By Lascar invariance of q(x), one sees that W is Lascar
invariant over C. Consequently, the finite tuple [W ] is fixed by every Lascar
strong automorphism over C. So [W ] ⊂ acl(C) = C. Consequently, in an

ambient model of ACF we have Cb(stp(a/M)) ⊂ C, and so a |̂ ACF
C

M. By
Lemma 6.3, C(a) is relatively algebraically closed in M(a).

Because the quantifier-free type of a over C is consistent with p(x), there
is a model N |= T extending C[a] such that within N , tp(a/C) = p(x).
By Lemma 3.9, we can amalgamate M(a) and N over C(a). So there is a
model N ′ of T extending N and M(a). In N , tp(a/C) = p(x). As N � N ′,
tp(a/C) = p(x) holds in N ′ as well. And as N ′ �M(a), qftp(a/M) = q(x).
So q(x) ∪ p(x) is consistent.
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Lemma 7.7. Work in a monster model M of T . Let a be a finite tuple, and

B and C be sets (in the home sort, as always). Suppose a |̂ Ti
C
B holds for

every 1 ≤ i ≤ n. Then a |̂
C
B.

Proof. A type forks/divides over C if and only if it forks/divides over acl(C),
so it suffices to show that tp(a/BC) does not fork over acl(C). By mono-
tonicity, it suffices to show that tp(a/ acl(BC)) does not fork over acl(C).

By Claim 3.6 in [3] and Lemma 2.14 above, a |̂ Ti
acl(C)

acl(CB) for every i.

So we may assume that C = acl(C) ⊂ B = acl(B).
Now by Lemma 7.4, there is a global quantifier-free type q(x) extending

qftp(a/BC) = qftp(a/B), with q(x) Lascar-invariant over C. Clearly q(x)
is also Lascar-invariant over B, so by Lemma 7.6, q(x) is consistent with
tp(a/B). Let p(x) be a global complete type extending q(x) ∪ tp(a/B).
Then p(x) doesn’t fork over C by Corollary 7.3.

Let qftpi(a/B) denote the quantifier-free Li-type of a over B, and let
qftpACF (a/B) denote the field-theoretic quantifier-free type of a over B.

Lemma 7.8. Let M be a monster model of T , and let C = acl(C) be a small
subset. For each i, let Mi be a model of Ti extending M � Li. For each i, let
ai be a tuple in Mi. Suppose that qftpACF (ai/C) doesn’t depend on i. Then
we can find a tuple a in M such that qftpi(a/C) = qftpi(ai/C) for every i.

Proof. Let C[ai] denote the subring or subfield of Mi generated by C and ai.
By assumption, C[ai] is isomorphic to C[ai′ ] as a ring, for every i and i′. Use
these isomorphisms to identify all the C[ai] with each other, getting a single
ring C[a] which is isomorphic to C[ai] for every i. Use these isomorphisms
to move the (Ti)∀ structure from C[ai] to C[a]. Now C[a] is a model of T∀,
and qftpi(a/C) = qftpi(ai/C), for every i. As C = acl(C), C is nearly closed
in M, so by Lemma 3.9, one can embed C[a] and M into a bigger model
of T . By model completeness and saturation, tp(a/C) is already realized in
M.

Lemma 7.9. Let a,B,C be small subsets of a monster model M |= T .

Suppose a 6 |̂ T1
C
b. Then a 6 |̂

C
b.

Proof. By Claim 3.6 in [3] applied to both T1 and T , we may assume C =
acl(C) and B = acl(BC). By finite character of forking, we may assume a is
finite. For every i, let Mi be an even more monstrous model of Ti extending
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M � Li. As a 6 |̂ T1
C
B, within M1 we have a 6 |̂

C
B. By Lemma 2.14, some L1-

formula φ(x;B) in tp(a/BC) divides over C. By quantifier-elimination in Ti,
we may assume that φ(x; y) is a quantifier-free L1-formula. By Lemma 2.17,
there is a sequence B = B1

0 , B
1
1 , B

1
2 , . . . in M1 which is indiscernible over

C and algebraically independent over C, and such that
∧∞
j=0 φ(x;B1

j ) is k-

inconsistent in M1, for some k. Thus qftp1(B1
j /C) = qftp1(B/C), and in a

certain sense

qftpACF (B1
0B

1
1B

1
2 · · · /C) = qftpACF (B/C)⊗ qftpACF (B/C)⊗ · · · .

The right hand side makes sense because C is nearly closed in B (Defini-
tion 2.6), so qftpACF (B/C) is stationary.

Meanwhile, for i > 1, we can apply Lemma 2.15 to Mi and tp(B/C),
getting a sequence B = Bi

0, B
i
1, B

i
2, . . . which is indiscernible over C and al-

gebraically independent over C. (Note that Lemma 2.15 is true even without
the restriction that B be finite.) So again, we get qftpi(Bi

j/C) = qftpi(B/C),
and

qftpACF (Bi
0B

i
1B

i
2 · · · /C) = qftpACF (B/C)⊗ qftpACF (B/C)⊗ · · · .

In particular, qftpACF (Bi
0B

i
1B

i
2 · · · /C) doesn’t depend on i, as i ranges from

1 to n. By Lemma 7.8, we can therefore find a sequence B0, B1, . . . in M
such that

qftpi(B0B1 . . . /C) = qftpi(Bi
0B

i
1B

i
2 . . . /C)

for every i. In particular, qftpi(Bj/C) = qftpi(Bi
j/C) = qftpi(B/C). Be-

cause this holds for all i, qftp(Bj/C) = qftp(B/C). Because B = acl(B),
qftp(B/C) ` tp(B/C) by Corollary 3.11. So tp(Bj/C) = tp(B/C) for every
j. Also,

qftp1(B0B1 . . . /C) = qftp1(B1
0B

1
1 . . . /C)

implies that there is an automorphism σ of M1 sending B1
0B

1
1 . . . to B0B1 . . ..

Consequently,
∧∞
j=0 φ(x;Bj) is k-inconsistent in M1. Clearly it is also k-

inconsistent in M, because M is smaller than M1. Since B0, B1 is a sequence
of realizations of tp(B/C), we conclude that φ(x;B) divides over C, in M.

Theorem 7.10. Let M be a model of T , and let A,B,C be subsets of M (in
the home sort). The following are equivalent:

• A |̂
C
B, i.e., the type of A over BC doesn’t fork over C.
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• The type of A over BC doesn’t divide over C.

• A |̂ Ti
C
B for every 1 ≤ i ≤ n.

Proof. The first two bullet points are equivalent by Theorem 7.5. If A |̂
C
B,

then by Lemma 7.9 A |̂ T1
C
B. Similarly, A |̂ Ti

C
B for every 1 ≤ i ≤ n.

Conversely, if A |̂ Ti
C
B for every 1 ≤ i ≤ n, then by Lemma 7.7, a |̂

C
B for

every finite subset a ⊂ A. By finite character of forking, A |̂
C
B.

References

[1] Hans Adler. Strong theories, burden, and weight. 2007.

[2] Artem Chernikov. Theories without the tree property of the second
kind. 2012.

[3] Artem Chernikov and Itay Kaplan. Forking and dividing in ntp2 theo-
ries.

[4] Artem Chernikov, Itay Kaplan, and Pierre Simon. Groups and fields
with ntp2. 2013.

[5] Alfred Dolich, John Goodrick, and David Lippel. Dp-minimality: Basic
facts and examples. 2009.

[6] Antoine Ducros. Espaces de berkovich, polytopes, squelettes et théorie
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