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1 The objective

Work in the setting of a group of finite Morley rank (but perhaps consider other groups
interpretable within this structure). In particular, NFCP holds, Morley rank equals Lascar
rank, and rank is definable in families.

Work in a monster model. “Definable” will mean “definable with parameters” by default.
Let G be a definable group and A be a finite abelian group. Let H2

def (G,A) denote the
set of definable central extensions of G by A up to definable isomorphism. That is, it is the
set of exact sequences 1 → A → H → G → 1 with H definable, all the maps definable,
and with A ∈ Z(H), where we consider two such sequences to be equivalent if there is a
homomorphism H → H ′ (necessarily an isomorphism) such that

1 // A // H //

��

G // 1

1 // A // H ′ // G // 1

commutes. There is a natural group structure onH2
def (G,A), where the sum of two extensions

H and H ′ is H ×G H ′/A, where A maps into H ×G H ′ by a 7→ (a,−a). The negative of
1→ A→ H → G→ 1 is the same sequence but with the map from A→ H negated.

TODO: check that this still works in the definable setting.
IfG′ → G is a definable homomorphism of groups, there is a homomorphismH2

def (G,A)→
H2
def (G

′, A) which sends a definable central extension 1→ A→ H → G→ 1 to the top row
of the pullback diagram

1 // A // H ×G G′ //

��

G′ //

��

1

1 // A // H // G // 1

This is functorial.
Here is the main goal:

Theorem 1.1. Let G be a connected group of finite Morley rank. Then there is a finite set
of primes S such that if A is a finite abelian group with |A| prime to S, and if H → G is a
finite central extension with H connected, then H2

def (H,A) is finite.
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2 Short exact sequences

Theorem 2.1. Suppose G is a (definable) group and N is a connected normal subgroup.
Suppose that A is finite. Then the natural sequence

H2
def (G/N,A)→ H2

def (G,A)→ H2
def (N,A)

is exact.

Proof. The fact that the composition vanishes is easy (the map N → G/N is the trivial map,
which also factors through 1, and H2

def (1, A) = 0). Now suppose that 1→ A→ H
π→ G→ 1

is a central extension of G that splits when pulled back to N . Then there is a definable
section of H ×G N → N . Let N ′ be the image of this definable section. Then N ′ is exactly
the connected component of H ×G N . Since H ×G N is a normal subgroup of H (being the
kernel of H → G → G/N), N ′ is a normal subgroup of H. Since N ′ < H ×G N , we get a
surjection

H/N ′ � H/(H ×G N) ∼= G/N.

This map’s kernel is (H ×G N)/N ′ which is canonically A, so we get a short exact sequence
1→ A→ H/N ′ → G/N → 1. This is a central extension. After checking all the details, one
finds that this central extension, when pulled back to G, yields the original central extension.
Indeed, one gets H/N ′×G/N G. This is the group of pairs (x, g) where x is a coset of N ′, and
where gN equals the image of the coset x in G. But since N ′ → G is injective, there is a
unique element y in the coset x which lies directly above g. The map (x, g)→ y is definable
and is the desired isomorphism from H/N ′ ×G/N G to H.

TODO: check the details.

3 The abelian case

Let A be a (definable) abelian group. For each `, let A[`] denote the `-torsion of A. If A[`]
is finite, then the multiplication-by-` map A → A has finite fibers, so its iterates also have
finite fibers. Therefore A[`n] is also finite.

Lemma 3.1. Let A be a (definable) abelian group. Then there are only finitely many primes
` such that A[`] is infinite.

Proof. If `1, . . . , `n are distinct primes with A[`i] infinite, then

A ≥ ⊕ni=1A[`i].

The Morley rank of the right hand side is at least n, so n is bounded by RM(A).

Lemma 3.2. If A is connected and H → A is a definable central extension by a finite group,
then H is abelian.
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Proof. The commutator of any two elements of H must be in K = ker(H → A). Since K
is finite, every element of H has a finite conjugacy class. So every element’s centralizer has
finite index in H. As H is connected, every element of H is central, so H is abelian.

Lemma 3.3. Let ` be a prime such that A[`] is finite. Suppose that A is connected. Then
every definable central extension of A by Z/` is either split or connected. In the connected
case, it is definably isomorphic to A/V , where V is a codimension 1 subspace in the F`-vector
space A[`], and where the map A/V → A is the one induced by multiplication by `.

Proof. Suppose that 1→ Z/`→ H → A→ 1 is a central extension. Let H0 be the connected
component of H. Then Z/` and H0 are both normal subgroups of H. As RM(H0) =
RM(H) = RM(A) and H0 → H → A has finite fibers, the image of H0 in A must have
finite index, hence must be all of A. So H0 and Z/` generate H. If H0 ∩Z/` is trivial, then
H is canonically H0 × Z/`, i.e., the sequence splits (definably).

Otherwise, H0 ∩ Z/` = Z/`, so H0 contains Z/`. Since the two groups generate H, it
follows that H = H0, i.e., H is connected. Then H is itself an abelian group. The kernel of
H → A is Z/`, which must be contained in H[`]. This gives a commutative diagram

H // //

����

H

����
A // //

>> >>

A

where the horizontal arrows are multiplication by ` and the vertical arrows are both the given
map H → A. All the maps are surjective because we assumed that A has finite `-torsion
(which implies the same for H). We can fill in the dashed diagonal arrow, because the kernel
of multiplication by ` from H → H contains K = ker(H → A). From the diagram, we see
that H is a quotient of A by some subgroup of A[`].

Consequently, if A is a connected abelian group with finite `-torsion, and if A′ is a
connected central extension of A, then A′ is also abelian, also has finite `-torsion, and
H2
def (A

′,Z/`) is finite.

4 The nearly simple case

Suppose G is a definable group which has no infinite normal (definable) subgroup. In partic-
ular, G is connected. Let A be a minimal subgroup of G. Then A is connected and abelian
(Reineke’s theorem). Let S1 be a strongly minimal subset of A. Write S1 as a disjoint union
of G-indecomposable sets. Let S2 be the unique one of these which is still infinite. So S2 is
also strongly minimal. Let S = S3 be obtained from S by (left) translation by the inverse
of an element of S2. Then S is still contained in A, is still G-indecomposable, and contains
1. By Zilber’s indecomposability, S generates A. Also, the conjugates of S generate G. Let
g1, . . . , gn be such that Sg1 , . . . , Sgn generate A.
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Lemma 4.1. There is an m such that if 1→M → H → G→ 1 is a definable finite central
extension whose class lies in the kernel of

H2
def (G,M)→

n⊕
i=1

H2
def (A

gi ,M)

and such that H is connected, then |M | ≤ m.

Proof. Let r = RM(G). By the proof of Zilber’s indecomposability theorem, we can find
i1, . . . , ir ∈ {1, . . . , n} such that the natural map

µ : S :=
r∏
j=1

Sgij → G

(s1, . . . , sr) 7→
r∏
j=1

sj

has image that is generic in G.
Let g be generic in G. Then µ−1(g) is finite, since RM(S) ≤ RM(G). It is non-empty

by assumption. Let m be the cardinality of µ−1(g). This does not depend on g.
Now suppose that 1 → M → H

π→ G → 1 is a definable finite central extension, which
splits when pulled back to Agi for any i. For each j, let λj : Agij → π−1(Agij ) be the given
definable section. Consider the map

ν : S → H

sending

(s1, . . . , sr) 7→
r∏
j=1

λj(sj)

Note that π ◦ ν = µ. Since H is connected, the image of the generic type of S under ν must
be the generic type of H. In particular, any generic in H is in the image of ν. Now let g be
generic in G. Then π−1(g) has cardinality |M |. Each element of π−1(g) is generic in H, so
the set

µ−1(g) = ν−1(π−1(g))

has at least |M | elements. But it also has at most m elements, so |M | ≤ m.

Lemma 4.2. Let ` be a prime such that A has no `-torsion. Then H2
def (G,Z/`) is finite.

Proof. Since
⊕n

i=1H
2
def (A

gi ,Z/`) is finite, it suffices to show that

H2
def (G,Z/`)→

n⊕
i=1

H2
def (A

gi ,Z/`)

has finite kernel.
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It is an F`-vector space. Suppose it had dimension at least the constant m from the
previous lemma. Then we could find v1, . . . , vm ∈ H2

def (G,Z/`) linearly independent, each
becoming trivial when pulled back to Agi . The linear independence implies that the sum

v1 ⊕ · · · ⊕ vm ∈ H2
def (G,Fm` )

is not in H2
def (G, V ) for any linear subspace V ⊂ Fm` .

Now let 1 → Fm` → H → G → 1 be the corresponding central extension. Then H is
not connected, by choice of m (as `m > m). Let H0 be the connected component of H. For
the usual reasons, H0 surjects onto G (as both groups are connected, have the same rank,
and the map from H0 to G has finite fibers). So H0 and Fm` generate H. Both are normal
subgroups, so H/H0 is identified with Fm` /V , where V = Fm` ∩H0.

Let λ : Fm` → Fm` /V be the canonical surjection. Then H2
def (G, λ) sends our given central

extension to one that splits, I think. This contradicts linear independence.

Now we can prove

Theorem 4.3. Let G be a connected group of finite Morley rank. Then there is a finite set
of primes S such that for N prime to S, H2

def (G,A) is finite for |A| = N .

Proof. First of all H2
def (G,−) should be half-exact, allowing us to restrict to the case where

A is Z/` for ` a prime not in S.
We prove by induction on the rank of G that there is some finite set SG of primes such

that for ` outside SG, H2
def (G,Z/`) is finite.

The 0-dimensional case is easy.
Suppose G has an infinite normal subgroup. Let N be its connected component. Then

H2
def (G,Z/`) sits in an exact sequence between H2

def (N,Z/`) and H2
def (G/N,Z/`), so we can

take SG = SG/N ∪ SN .
Now suppose that G has no infinite definable normal subgroup. Then by the above

comments, we can find an abelian subgroup A such that if A[`] is finite, then H2
def (G,Z/`)

is finite. As there are only finitely many ` such that A[`] is infinite, we are done.

Suppose G′ is a connected finite central extension of G. And N is a connected normal
subgroup of G. Then the connected component of the preimage of N in G′ is a finite cover
of N , and the quotient of G′ by that group is a finite cover of G/N , so everything checks
out.

Really, we could have just been talking about “finite covers” the whole time.
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