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1 Irreducibility in Projective Space

Let C be a monster model of ACF . For ~x ∈ Pn(C), let P~x be the n−1-dimensional projective
space of lines through ~x, and let π~x : Pn \ {~x} → P~x be the projection.

Lemma 1.1. Let A be a small set of parameters, and suppose ~x ∈ Pn(C) is generic over A.
Suppose V is an A-definable Zariski closed subset of Pn, of codimension greater than 1. Then
π~x(V ) ⊂ P~x is well-defined, Zariski closed, of codimension one less than the codimension of
V . Moreover, π~x(V ) is irreducible if and only if V is irreducible.

Proof. Replacing A with acl(A), we may assume A is algebraically closed, implying that the
irreducible components of V are also A-definable.

Since ~x is generic, and V has codimension at least 1, ~x /∈ V so π~x(V ) is well-defined. It is
Zariski closed because Pn is a complete variety, so V is complete and the image of V under
any morphism of varieties is closed.

Claim 1.2. Let C be any irreducible component of V , and let ~c ∈ V realize the generic type
of C, over A~x. Then ~c is the sole preimage in V of π~x(~c).

Proof. The generic type of C isA-definable, so ~c |̂
A
~x, and thereforeRM(~x/A~c) = RM(~x/A) =

n. Suppose for the sake of contradiction that there was a second point ~d ∈ V , ~d 6= ~c, satis-
fying

π~x(~d) = π~x(~c).

This means exactly that the three points ~c, ~d, and ~x are collinear. Then ~x is on the 1-
dimensional line determined by ~c and ~d, so

RM(~x/A~c~d) ≤ 1.

But then

n = RM(~x/A~c) ≤ RM(~x~d/A~c) = RM(~x/A~c~d) +RM(~d/A~c) ≤ 1 +RM(V ) < n,

by the codimension assumption.
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Using the claim, we see that π~x(V ) and V have the same dimension (= Morley rank).
Indeed, let ~v ∈ V have Morley rank RM(V ) over A~x. Then ~v realizes the generic type of
some irreducible component C, so by the claim, ~v is interdefinable over A~x with π~x(~v). But
then

RM(π~x(V )) ≥ RM(π~x(~v)/A~x) = RM(~v/A~x) = RM(V ),

and the reverse inequality is obvious. So the codimension of π~x(V ) is indeed one less.
Let C1, . . . , Cm enumerate the irreducible components of V . (Possibly m = 1.) Each of

the images π~x(Ci) is a Zariski closed subset of P~x, for the same reason that π~x(V ) is, and
each image is irreducible, on general grounds. If π~x(Ci) ⊆ π~x(Cj) for some i 6= j, then the
generic type of Ci would have the same image under π~x as some point in Cj, contradicting
the Claim. So π~x(Ci) 6⊆ π~x(Cj) for i 6= j. It follows that the images π~x(Ci) are the irreducible
components of

π~x(V ) =
m⋃
i=1

π~x(Ci).

Therefore, π~x(V ) and V have the same number of irreducible components, proving the last
point of the lemma.

Theorem 1.3. Let X~a ⊆ Pn be a definable family of Zariski closed subsets of Pn. Then the
set of ~a for which X~a is irreducible, is definable.

Proof. Dimension is definable in families, because ACF is strongly minimal. So we may
assume that all (non-empty) X~a have the same (co)dimension. We proceed by induction on
codimension, allowing n to vary.

For the base case of codimension 1, note that

1. The family of Zariski closed subsets of Pn is ind-definable, i.e., a small union of definable
families, because the Zariski closed subsets are exactly the zero sets of finitely-generated
ideals.

2. Using 1, the family of reducible Zariski closed subsets of Pn is also ind-definable, because
a definable set is a reducible Zariski closed set if and only if it is the union of two
incomparable Zariski closed sets.

3. Whether or not a polynomial in C[x1, . . . , xn+1] is irreducible, is definable in terms of
the coefficients, because we only need to quantify over lower-degree polynomials.

4. A hypersurface in Pn is irreducible if and only if it is the zero-set of an irreducible
homogeneous polynomial. It follows by 3 that the family of irreducible codimension 1
closed subsets of Pn is ind-definable.

5. By 2 (resp. 4), the set of ~a such that X~a is reducible (resp. irreducible) is ind-definable.
Since these two sets are complementary, both are definable, proving the base case.
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For the inductive step, suppose that irreducibility is definable in families of codimension
one less than X~a. By choosing an isomorphism between P~x and Pn−1, one easily verifies the
definability of the set of (~x,~a) such that π~x(X~a) is irreducible and has codimension one less.

By Lemma 1.1, X~a is irreducible if and only if (~x,~a) lies in this set, for generic ~x.
Definability of types in stable theories then implies definability of the set of ~a such that X~a

is irreducible.

Corollary 1.4. The family of irreducible closed subsets of Pn is ind-definable.

Proof. The family of closed subsets is ind-definable, and by Theorem 1.3 we can select the
irreducible ones within any definable family.

Corollary 1.5. The family of pairs (X,X) with X definable and X its Zarisk-closure, is
ind-definable.

Proof. By quantifier elimination in ACF , any definable set X can be written as a union of
sets of the form C ∩U with C closed and U open. Replacing V with a union of irreducibles,
and distributing, we can write X as a union

⋃m
i=1Ci ∩ Ui, with Ci Zariski closed and Ui

Zariski open. We may assume that Ci ∩Ui 6= ∅ for each i, or equivalently, that Ci \Ui 6= Ci.
In any topological space, closure commutes with unions, so

X =
n⋃

i=1

Ci ∩ Ui.

Now Ci ∩ Ui ⊆ Ci = Ci, and
Ci = Ci ∩ Ui ∪ (Ci \ Ui),

so by irreducibility of Ci, Ci ∩ Ui = Ci. Therefore,

X =
n⋃

i=1

Ci.

Corollary 1.4 implies the ind-definability of the family of pairs(
n⋃

i=1

Ci ∩ Ui,

n⋃
i=1

Ci

)

with Ci irreducible closed, Ui open, and Ci ∩ Ui 6= ∅. We have seen that this is the desired
family of pairs.

The following corollary is an easy consequence:

Corollary 1.6. Let X~a be a definable family of subsets of Pn. Then the Zariski closures X~a

are also a definable family.
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2 Irreducibility in Affine Space

Theorem 2.1. Let X~a be a definable family of subsets of affine n-space.

1. The family of Zariski closures X~a is also definable.

2. The set of ~a such that X~a is irreducible is definable. More generally, the number of
irreducible components of X~a is definable in families (and bounded in families).

3. Dimension and Morley degree of X~a are definable in ~a.

4. If each X~a is a hypersurface given by the irreducible polynomial F~a(x1, . . . , xn), then
the degree of F~a in each xi is definable in ~a. In fact, the polynomials F~a have bounded
total degree and the family of F~a (up to scalar multiples) is definable.

Proof. 1. Embed An into Pn. Then the Zariski closure of X~a within An is the intersection
of An with the closure within Pn. Use Corollary 1.6.

2. The number of irreducible components of the Zariski closure is the same whether we
take the closure in An or Pn. This proves the first sentence. The first sentence yields
the ind-definability of the family of irreducible Zariski closed subsets of An, from which
the second statement is an exercise in compactness.

3. We may assume X~a is closed, since taking the closure changes neither Morley rank nor
Morley degree. The family of d-dimensional Zariski irreducible closed subsets of An is
ind-definable, making this an exercise in compactness.

4. Whether or not an n-variable polynomial is irreducible is definable in the coefficients,
because to check reducibility one only needs to quantify over the (definable) set of lower-
degree polynomials. This makes the family of irreducible polynomials ind-definable.
Therefore, the set of pairs (~a, F~a) where F~a cuts out X~a, is ind-definable. For any given
~a, all the possibilities for F~a are essentially the same, differing only by scalar multiples.
So the total degree of F~a only depends on ~a, and compactness yields a bound on the
total degree. This in turn makes the set of pairs (~a, F~a) definable.
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