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1 Preliminaries

Recall some facts. . .

Lemma 1.1 (Nakayama). Let (A,m) be a local ring and M be a finitely-generated A-module
such that A = mA. Then A = 0.

Proof. Let g1, . . . , gn be a minimal set of generators of M . If n > 0, then by assumption we
can write

g1 =
n∑

i=1

migi

with mi ∈ m. Then

(1−mi)g1 =
n∑

i=2

migi.

But 1−mi is invertible by locality, so g1 is generated by the other generators, contradicting
minimality..

Lemma 1.2. Let R be a valuation ring. Then any finitely generated torsion-free R-module
M is free.

Proof. Let g1, . . . , gn be a minimal set of generators. Then g1, . . . , gn freely generate M . If
not, then there are some mi, not all zero, such that

n∑
i=1

migi = 0.

Let j be such that val(mj) is minimal. Then mi/mj ∈ R for each i, and

mj ·
n∑

i=1

mi

mj

gi =
n∑

i=1

migi = 0.
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As M is torsion-free,
n∑

i=1

mi

mj

gi = 0, so that gj = −
∑
i 6=j

mi

mj

gi,

contradicting minimality.

Lemma 1.3. Let R be a valuation ring. Then any torsion-free R-module M is flat.

Proof. M can be written as a direct limit of its finitely-generated submodules, which are
torsion-free, hence flat. A direct limit of flat modules is flat (Because ⊗ preserves direct
limits, and direct limits of exact sequences are exact.)

Lemma 1.4. Let f : A→ R be an injective ring homomorphism. Then every minimal prime
of A is a pullback f−1(q) of some prime q in R.

Proof. Let p be any minimal prime of A. The complement of p is closed under multiplication,
so its image S = f(A \ p) is closed as well. By injectivity of f , 0 /∈ S. So the localization
S−1R is nonzero, and has at least one prime ideal, whose pullback to R is a prime ideal q
not intersecting S = f(A \ p). Then

x ∈ f−1(q) =⇒ f(x) ∈ q =⇒ f(x) /∈ f(A \ p) =⇒ x /∈ A \ p =⇒ x ∈ p.

for x ∈ R. Thus
f−1(q) ⊆ p.

By minimality of p, equality holds.

2 Extending valuation rings

If K is a field, we can look at the set of pairs (R, p), where R is a subring of K and p is a
prime ideal of R. We make this a poset by setting

(R, p) ≤ (S, q)

if
R ⊆ S and p = R ∩ q, or equivalently, p ⊆ q and (R \ p) ⊆ (S \ q).

Zorn’s lemma applies to this poset, so each pair lies below some maximal pair.

Lemma 2.1. The maximal pairs are exactly the valuation rings (O,m) in K.

Proof. First suppose (A,m) is maximal. If Am denotes the localization of A at m, then

(A,m) ≤ (Am,mAm).

As (A,m) is maximal, we see that A = Am is a local ring and m is its maximal ideal.

Claim 2.2. For any x ∈ K \ A, we have mA[x] = A[x].
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Proof. If not, let n ⊇ mA[x] be a maximal ideal of A[x]. Then we have a contradiction:

(A,m) < (A[x], n)

because ker(A→ A[x]/n) contains, hence equals, the maximal ideal m of A.

Finally, we show that A is a valuation ring. If not, there is x ∈ K× such that neither
x nor x−1 is in A. By the claim, mA[x] = A[x] and mA[x−1] = A[x−1]. The first of these
means that

1 =
n∑

i=0

mix
−i

for some mi ∈ m. Rearranging, we see that

xi = m0x
i + m1x

i−1 + · · ·+ mn−1x + mn,

(1−m0)x
i = m1x

i−1 + · · ·+ mn.

Since (1−m0) is a unit in A, it follows that x is integral over A, so A[x] is finitely generated
as an A-module. Now mA[x] = A[x], so by Nakayama’s lemma A[x] = 0, which is absurd.

Conversely, if (O,m) is a valuation ring, and (O,m) < (A, p), then taking x ∈ A \ O, we
have x−1 ∈ m ⊆ p. Then x−1 ∈ A× ∩ p = ∅, a contradiction.

Observation 2.3. If K/F is an extension of fields, then valuation data (OK ,mK) on K
extends valuation data (OF ,mF ) on F if and only if

(OF ,mF ) ≤ (OK ,mK). (1)

Proof. If (O′F ,m′F ) is the restriction of (OK ,mK) to F , then (1) is equivalent to

(OF ,mF ) ≤ (F ∩ OK , F ∩mK) = (O′F ,m′F ) (2)

Since (OF ,mF ) is maximal, “≤” in (2) can equivalently be replaced with “=”.

3 Amalgamating valued fields

Theorem 3.1. Let (K0,OK0) be a valued field, and (Ki,OKi
) be two valued field extensions

for i = 1, 2. Then there is a valued field (L,OL) and a diagram of valued fields

K0
//

��

K1

��
K2

// L
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Proof. For simplicity, we denote OKi
by Oi and similarly mi and ki. The ring k1 ⊗k0 k2 is

nonzero, so it has a prime ideal p0. Let p ∈ SpecR be the pullback of p0 along the map

R := O1 ⊗O0 O2 → k1 ⊗k0 k2.

For i = 1, 2, we have a commuting square of sets

SpecOi Spec ki = {∗}oo

SpecR = SpecO1 ⊗O0 O2

OO

Spec k1 ⊗k0 k2

OO

oo

The pullback of p to Oi is in the image of Spec ki → SpecOi, so it must be mi.
Let q be any minimal prime of R below p. Now O1 and K2 are flat O0-modules by

Lemma 1.3, so the natural map

O1 ⊗O0 O2 ↪→ O1 ⊗O0 K2 ↪→ K1 ⊗O0 K2

is an injection. By Lemma 1.4, there is some prime q0 in K1 ⊗O0 K2 which pulls back to q.
Now for i = 1, 2, we have a commuting square of sets

SpecOi SpecKi = {∗}oo

SpecR = SpecO1 ⊗O0 O2

OO

SpecK1 ⊗O0 K2

OO

oo

The pullback of q to Oi is in the image of SpecKi → SpecOi, so it must be (0).
Therefore each of the maps Oi → R/q is injective, so the commuting square of domains

O0
� � //
� _

��

O1� _

��
O2
� � // R/q

yields a commuting square of fields

K0
//

��

K1

��
K2

// Frac(R/q) =: L

Then for i = 1, 2,
(Oi,mi) ≤ (R/q, p/q)

because mi is the pullback of p to Oi. By Zorn’s lemma and Lemma 2.1, we can find a
valuation ring OL on L such that

(Oi,mi) ≤ (R/q, p/q) ≤ (OL,mL).

Then by Observation 2.3, the valuation structure on L extends those on K1 and K2.
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4 Getting quantifier-elimination

Recall the following fact:

Fact 4.1. Suppose T is a universal theory with the amalgamation property, T ′ is a theory
extending T , and every model of T can be embedded into a model of T ′. Suppose also that
every model of T ′ is 1-existentially closed: for every inclusion of models M ≤ N of T ′, every
non-empty quantifier-free M-definable subset of N1 intersects M . Then T ′ has quantifier
elimination and is the model completion of T .

We would like to apply this in the case where T ′ is ACVF, and T is the theory of
domains with a divisibility predicate arising from a valuation on their fraction field. Given
the previous sections, it is not hard to see that T has the amalgamation property, and models
of T embed into models of T ′. So, to obtain quantifier elimination in T ′, one merely needs
to prove 1-existential closedness. This can be proved by analyzing quantifier-free definable
subsets of the home sort, and showing that they are all boolean combinations of balls.
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