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1. (a) Let an be a sequence of real numbers and let L be a real number. Carefully define
what it means to say that limn→∞ an = L.

Solution. For every ε > 0, there is a natural number N such that for all n > N ,
we have |an − L| < ε.

(b) Now let an be a decreasing sequence of real numbers, and suppose an is bounded
below. Prove carefully. . . that an converges.

Proof. By assumption the set S = {an : n ∈ N} is bounded below. By the
completeness axiom, S has a greatest lower bound L. We claim that

lim
n→∞

an = L (1)

so the sequence converges.

We must show that for every ε > 0, there is an N ∈ N such that if n > N , then
|an − L| < ε. Let ε > 0. Then L + ε > L so L + ε is not a lower bound of S.
Therefore, some element of S is less than L + ε. So there is some N such that
aN < L+ ε. We claim that if n > N , then |an − L| < ε. Suppose n > N . As the
sequence is decreasing,

an < aN < L+ ε.

Also, as L is a lower bound of S and an ∈ S,

L ≤ an.

But ε > 0, so L− ε < L, and thus

L− ε < an.

So
L− ε < an < L+ ε, or equivalently |an − L| < ε.

So we showed that whenever n > N , we have |an − L| < ε.

So, we showed that there is some N such that if n > N , then |an − L| < ε.
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As ε was an arbitrary positive number, we showed that for every ε > 0, there was
an N such that if n > N , then |an − L| < ε.

So, we showed that limn→∞ an = L. It follows that limn→∞ an exists, or equiva-
lently, an is a convergent sequence.

(c) Now let an be defined by a1 = 2 and an+1 = an
2

. Show that limn→∞ an = 0.

Proof. We prove by induction on n that an > an+1 > 0. For the base case, n = 1,
and so an = a1 = 2 and an+1 = a2 = 1, and indeed 2 > 1 > 0.

For the inductive step, suppose n > 1 and

an−1 > an > 0.

Dividing by two, we get
an−1

2
>
an
2
>

0

2
.

But this is the same as
an > an+1 > 0,

completing the inductive step.

Therefore, by induction we know that for all n, an > an+1 (so the sequence is
decreasing), and an > 0 (so the sequence is bounded below by 0). Therefore, the
previous problem applies, and

lim
n→∞

an = L (2)

for some L.

By some limit laws
L

2
=

limn→∞ an
2

= lim
n→∞

an
2
.

But an
2

= an+1, so
L

2
= lim

n→∞
an+1.

By one of the secret limit laws,

lim
n→∞

an+1 = lim
n→∞

an,

so
L

2
= lim

n→∞
an+1 = lim

n→∞
an = L.

So
L

2
= L.

Multiplying both sides by 2 and subtracting L from both sides, we get that

0 = L.
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Combining this with (2), we conclude that

lim
n→∞

an = 0.

2. State the alternating series test.

Solution. If b1, b2, . . . is a sequence such that

(a) bn > 0 for all n

(b) bn+1 ≤ bn for all n

(c) limn→∞ bn = 0

then the alternating series

∞∑
n=1

(−1)n−1bn = b1 − b2 + b3 − b4 + b5 − b6 + · · ·

converges.

3. Show that the following series converge or diverge.

(a)
∑∞

n=1
1

10n+5n
converges.

Proof. For any n,
0 < 5n < 10n+ 5n,

so for any n,

0 <
1

10n+ 5n
<

1

5n
.

By the comparison test,
∞∑
n=1

1

10n+ 5n

converges if
∞∑
n=1

1

5n

converges, which is true, because it’s a geometric series with common ration 1/5,
and |1/5| < 1.

(b)
∑∞

n=1
2nn!

(n+2)!
diverges
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Proof. Note that

2nn!

(n+ 2)!
=

2nn!

(n+ 2)(n+ 1)n!
=

2n

(n+ 2)(n+ 1)
=

2n

n2 + 3n+ 2
.

By a couple applications of L’Hopital’s rule,

lim
x→∞

2x

x2 + 3x+ 2
= lim

x→∞

(ln 2)2x

2x+ 3
= lim

x→∞

(ln 2)(ln 2)2x

2
=∞.

So limn→∞
2nn!

(n+2)!
=∞, and the series diverges by the Test for Divergence.

(c) The series
∑∞

n=2
1

(lnn)lnn converges.

Proof. Note that

(lnn)lnn =
(
eln lnn

)lnn
= e(ln lnn)(lnn).

If n is sufficiently big, then ln lnn > 2, and lnn is positive, so

(ln lnn)(lnn) > 2 lnn

As the exponential function is increasing,

(lnn)lnn = e(ln lnn)(lnn) > e2 lnn =
(
elnn

)2
= n2.

So, for n sufficiently big,

0 <
1

(lnn)lnn
<

1

n2
.

Now
∑∞

n=2
1
n2 converges because it’s a p-series. So by the comparison test,

∞∑
n=2

1

(lnn)lnn

converges as well.

4. Give an example of a series that is conditionally convergent.

Solution.
∞∑
n=1

(−1)n−1

n

5. Calculate the integrals

(a)
∫ π/2
0

sin(x) (1 + cos2(x)) dx

4



Solution. If u = cosx, then du = − sin(x) dx, so∫
sin(x)

(
1 + cos2(x)

)
dx = −

∫
(1+u2) du = −u−u

3

3
+C = − cos(x)−cos3(x)

3
+C.

So∫ π/2

0

sin(x)
(
1 + cos2(x)

)
dx =

[
− cos(x)− cos3 x

3

]x=π/2
x=0

=

(
− cos(π/2)− (cos π/2)3

3

)
−
(
− cos 0− (cos 0)3

3

)
= (0− 0) +

(
1 +

13

3

)
=

4

3
.

(b)
∫ ln(tanx)

sinx cosx
dx

Solution. Let u = ln(tanx). Then

du =
1

tanx
sec2 x dx =

cosx

sinx

1

cos2 x
dx =

dx

sinx cosx
.

So ∫
ln(tanx)

sinx cosx
dx =

∫
u du =

u2

2
+ C =

1

2
(ln(tanx))2 + C.

(c)
∫

6
x2+2x−8 dx

Solution. We use partial fractions to write

6

x2 + 2x− 8
=

6

(x+ 4)(x− 2)
=

A

x+ 4
+

B

x− 2
.

So, we want

A

x+ 4
+

B

x− 2
=
A(x− 2) +B(x+ 4)

(x+ 4)(x− 2)
?
=

6

(x+ 4)(x− 2)
.

So, we need
A(x− 2) +B(x+ 4) = 6.

Setting x = 2, we see that B = 1, and setting x = −4, we see that A = −1. So

6

x2 + 2x− 8
=
−1

x+ 4
+

1

x− 2
.

Thus∫
6

x2 + 2x− 8
dx = (−1)

∫
dx

x+ 4
+

∫
dx

x− 2
= − ln |x+ 4|+ ln |x− 2|+ C.
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6. Consider a real-valued function f(x).

(a) Write down a formula approximating
∫ 5

3
f(x) dx obtained by using

i. The midpoint rule with n = 4.

Solution.
1

2
(f(3.25) + f(3.75) + f(4.25) + f(4.75))

ii. The trapezoidal rule with n = 4.

Solution.
1

4
(f(3) + 2f(3.5) + 2f(4) + 2f(4.5) + f(5))

iii. Simpson’s rule with n = 4.

Solution.
1

6
(f(3) + 4f(3.5) + 2f(4) + 4f(4.5) + f(5))

(b) State which of these three is typically most accurate, and which is typically least
accurate.

Solution. Typically, Simpson’s rule is the most accurate, and the trapezoidal rule
is the least accurate.
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