
Some review problems for Midterm 1

February 16, 2015

1 Problems

Here are some review problems to practice what we’ve learned so far. Problems a,b,c,d and
p,q,r,s aren’t from the book, and are a little tricky. You should maybe think of them more
as general facts you should know rather than as practice problems. The remaining problems
are from the book, and are practice problems from the reviews at the ends of chapters 11
and 7.

1.1 Series problems

(a) If
∑

n an converges, and |bn| ≤ an for all n, then
∑

n bn converges. Why?

(b) Suppose n is really big. Sort the following from least to greatest. Don’t justify your
answer unless you want to.

2n, en, n2, n−1, n log n, n, log n,
√
n, tan−1 n, en

2

,
n

log n

If you only know how to sort some of these expressions, that’s okay too. (Some of them
are tricky to deal with).

(c) Suppose
∑

n an converges and the an are all nonnegative. Show that
∑

(sinn)an con-
verges.

(d) Suppose that limn→∞
|an+1|
|an| exists and is less than 1. Then

∞∑
n=1

n4an

converges. Why?

(11.R.13) Determine whether the series is convergent or divergent

∞∑
n=1

n3

5n
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(11.R.15) Determine whether the series is convergent or divergent
∞∑
n=2

1

n
√

lnn

(11.R.17) Determine whether the series is convergent or divergent
∞∑
n=1

cos 3n

1 + (1.2)n

(11.R.18) Determine whether the series is convergent or divergent
∞∑
n=1

n2n

(1 + 2n2)n

(11.R.21) Determine whether the series is convergent or divergent
∞∑
n=1

(−1)n−1
√
n

n+ 1

(11.R.34) For what values of x does the series
∑∞

n=1(lnx)n converge?

1.2 Integration problems

(p) Integrate ∫
secx dx

(q) Integrate ∫
sec3 x dx

(r) Recall that cos 2x = cos2 x − sin2 x. Derive the other two formulas for cos 2x. Then
derive the formulas for sin2 x and cos2 x. Then evaluate the indefinite integrals∫

cos2 x dx and

∫
sin2 x dx

(7.R.13) Evaluate the integral ∫
e

3√x dx

(7.R.15) Evaluate the integral ∫
x− 1

x2 + 2x
dx

(7.R.17) Evaluate the integral ∫
x secx tanx dx
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1.3 Challenge Integration Problems

These ones are only intended for people who found the previous sections too easy. I don’t
expect problems like this to appear on the exam.

(*) Find the area of a circle, as follows: Write out the corresponding integral. Do the
indefinite integral by a trig substitution and double angle formulas. Use this to evaluate
the definite integral.

(7.4.59) “The German mathematician Karl Weierstrass (1815-1897) noticed that the sub-
stitution t = tan(x/2) will convert any rational function of sinx and cosx into an
ordinary rational function of t.”

1. If t = tan(x/2), −π < x < π, sketch a right triangle or use trigonometric identities
to show that

cos
(x

2

)
=

1√
1 + t2

and sin
(x

2

)
=

t√
1 + t2

.

2. Show that

cosx =
1− t2

1 + t2
and sinx =

2t

1 + t2

3. Show that

dx =
2

1 + t2
dt

(7.4.60) Use the substitution in Exercise 59 to transform the integrand into a rational
function of t and then evaluate the integral.∫

dx

1− cosx

2 Hints

2.1 Series problems

(a) Combine the comparison test (page 722) with absolute convergence (Theorem 3 on page
733). See example 3 on page 733 for an example.

(b) Generally speaking, exponential functions are bigger than polynomials which are bigger
than logarithms. Also note that a couple expressions on the list aren’t going to ∞
as n → ∞. These will be the smallest. Incidentally, the way to prove any of these
comparisons is to use L’Hospital’s rule.

(c) This is an instance of (a).

(d) Use the ratio test.
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(11.R.13) Try to bound n3 in terms of an exponential, perhaps? Or, even better, use (d)
above.

(11.R.15) The integral test applies!

(11.R.17) Somehow the 1.2n is all that matters. Use something like (d) or (a) above to
forget about the cosine, and limit comparison to forget about the “1+”.

(11.R.18) Use the root test.

(11.R.21) Use the alternating series test. The bulk of the work goes into showing that
some sequence is decreasing.

(11.R.34) The answer here is a couple lines long, and doesn’t require any clever tricks–the
problem can just be done “directly” because the series is geometric, and we know when
geometric series converge.

2.2 Integration problems

(p) There’s no strategy for doing this; you just have to memorize it. See formula 1 on page
475.

(q) This too requires a trick, namely, integration by parts with u = secx and v = tanx.
See example 8 on page 475.

(r) The other two formulas for cos 2x are

cos 2x = 2 cos2 x− 1 (1)

cos 2x = 1− 2 sin2 x (2)

Both of these are derived from the given formula, using the pythagorean identitiy
cos2 x+ sin2 x = 1. The formulas for cos2 x and sin2 x are the ones on the top of page
472, which are gotten by solving (1) and (2) for cos2 x and sin2 x, respectively.

(7.R.13) Make the subsitution x = u3 or equivalently, u = 3
√
x, to turn this into something

to which integration by parts can be applied.

(7.R.15) Use partial fractions! (The rational function here is proper so we don’t have to do
the preliminary long division step. See page 485). The denominator factors as (x+ 2)
times x, so we are going to write the integrand as something divided by x + 2, plus
something divided by x.

(7.R.17) Use integration by parts: one thing here is especially easy to integrate.
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2.3 Challenge Integration Problems

(*) The corresponding integral is

2

∫ 1

−1

√
1− x2 dx. (3)

So the problem boils down to evaluating

2

∫ √
1− x2 dx.

Since we see a
√

1− x2, we make the substitution x = sin θ, in accordance with the
table on page 478. You end up with a cos2 θ, to which you must apply the double
angle formulas. Ultimately you end up with a peculiar formula for the antiderivative
of
√

1− x2, which you can use to evaluate the definite integral (3).

(7.4.59) 1. Use the identity sec2 = 1+tan2 to turn the expression
√

1 + t2 into something
simpler.

2. We have double angle formulas which express cosine and sine of twice x/2 in terms
of cosine and sine of x/2.

3. Take differentials of both sides of t = tan(x/2) and fiddle around with things, I
guess. Or, just solve for x in terms of t and take the derivative of the resulting
function.

(7.4.60) After making the substitutions, you should have this:∫
2/(1 + t2)

1− 1−t2
1+t2

dt

Then simplify the integrand.

3 Solutions

3.1 Series problems

(a) If
∑

n an converges, and |bn| ≤ an for all n, then
∑

n bn converges. Why?

Solution. Note that 0 ≤ |bn| ≤ an for every n, so by the comparison test,
∑

n |bn|
converges. Therefore,

∑
n bn absolutely converges, hence converges.

(b) Suppose n is really big. Sort the following from least to greatest. Don’t justify your
answer unless you want to.

2n, en, n2, n−1, n log n, n, log n,
√
n, tan−1 n, en

2

,
n

log n

If you only know how to sort some of these expressions, that’s okay too. (Some of them
are tricky to deal with).
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Solution. For n really big,

n−1 < tan−1 n < log n <
√
n <

n

log n
< n < n log n < n2 < 2n < en < en

2

For example,
√
n < n

logn
because

lim
x→∞

x/ log x√
x

= lim
x→∞

x√
x
· 1

log x
= lim

x→∞

x1/2

log x
,

which, by L’Hospital’s, is

lim
x→∞

1/2x−1/2

x−1
=

1

2
lim
x→∞

x1−1/2 =∞.

Since x/ log x divided by
√
x approaches +∞, eventually x/ log x must exceed

√
x.

(c) Suppose
∑

n an converges and the an are all nonnegative. Show that
∑

(sinn)an con-
verges.

Solution. The sine function always takes values between −1 and 1, so | sinn| ≤ 1. As
the an are nonnegative,

0 ≤ | sinn|an ≤ an.

So by the comparison test, ∑
n

| sinn|an =
∑
n

|(sinn)an|

converges. This means that ∑
n

(sinn)an

converges absolutely, so it also converges.

(d) Suppose that limn→∞
|an+1|
|an| exists and is less than 1. Then

∞∑
n=1

n4an

converges. Why?

Solution. By the ratio test, it suffices to show that

lim
n→∞

∣∣∣∣(n+ 1)4an+1

n4an

∣∣∣∣
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exists and is less than 1. Now, this is the same thing as

lim
n→∞

(n+ 1)4

n4

|an+1|
|an|

= lim
n→∞

(n+ 1)4

n4
· lim
n→∞

|an+1|
|an|

by the product law for limits. And

lim
n→∞

(n+ 1)4

n4
= lim

n→∞

(
n+ 1

n

)4

= lim
n→∞

(
1 +

1

n

)4

= 1.

Therefore

lim
n→∞

∣∣∣∣(n+ 1)4an+1

n4an

∣∣∣∣ = lim
n→∞

(n+ 1)4

n4
· lim
n→∞

|an+1|
|an|

= lim
n→∞

|an+1|
|an|

which is less than 1, by assumption.

(11.R.13) Determine whether the series is convergent or divergent

∞∑
n=1

n3

5n

Solution. The series is convergent, by the ratio test:

lim
n→∞

(n+ 1)3/5n+1

n3/5n
= lim

n→∞

(
n+ 1

n

)3
5n

5n+1
= lim

n→∞

(
1 +

1

n

)3
1

5
=

1

5

which is less than 1.

(11.R.15) Determine whether the series is convergent or divergent

∞∑
n=2

1

n
√

lnn

Solution. We claim that the integral test applies, using the function f(x) = 1
x
√
lnx

. If

x > 1, then lnx is positive, so f(x) > 0. We also need to check that f(x) is eventually
decreasing, so we calculate:

f ′(x) =
−1(

x
√

lnx
)2 (x 1

2
√

lnx

1

x
+
√

lnx

)

As long as x > 1, everything there will be positive except for the −1, so f ′(x) itself
is negative. Therefore f is decreasing. (Alternatively, we could argue that lnx is
increasing, so

√
lnx is increasing. And x is increasing, so x

√
lnx is increasing since

both are positive. Thus the reciprocal 1
x
√
lnx

is decreasing.)
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At any rate, the integral test applies, and we calculate the limit

lim
N→∞

∫ N

2

dx

x
√

lnx
= · · · =?

Well, the indefinite integral is not so hard, if we make the u-substitution u = lnx∫
dx

x
√

lnx
=

∫
1√
lnx
· dx
x

=

∫
1√
u
du =

∫
u−1/2 du = 2u1/2 + C = 2

√
lnx+ C.

So ∫ N

2

dx

x
√

lnx
= 2
√

lnx− 2
√

ln 2,

which goes to ∞ in the limit as x→∞. So, since

lim
N→∞

∫ N

2

f(x) dx = lim
N→∞

∫ N

2

dx

x
√

lnx
=∞,

it follows by the integral test that

∞∑
n=2

f(n) =
∞∑
n=2

1

n
√

lnn
diverges.

(11.R.17) Determine whether the series is convergent or divergent

∞∑
n=1

cos 3n

1 + (1.2)n

Solution. The series converges. First of all, note that for any n,

1 + (1.2)n > 1.2n,

so
1

1 + (1.2)n
<

1

1.2n
.

And both sides are positive. Since
∑∞

n=1
1

1.2n
converges (it’s a geometric series), the

comparison test tells us that

∞∑
n=1

1

1 + (1.2)n
also converges.

Meanwhile, cos 3n is always between −1 and 1, so for any n,

0 ≤ | cos 3n|
1 + (1.2)n

≤ 1

1 + (1.2)n
.
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By the comparison test again, it follows that

∞∑
n=1

| cos 3n|
1 + (1.2)n

also converges.

Now ∣∣∣∣ cos 3n

1 + (1.2)n

∣∣∣∣ =
| cos 3n|

1 + (1.2)n

so
∞∑
n=1

cos 3n

1 + (1.2)n

absolutely converges. Therefore it converges.

(11.R.18) Determine whether the series is convergent or divergent

∞∑
n=1

n2n

(1 + 2n2)n

Solution. There are nth powers floating around, so we use the root test.

lim
n→∞

n
√
an = lim

n→∞
n

√
n2n

(1 + 2n2)n
= lim

n→∞

n
√

(n2)n

n
√

(1 + 2n2)n
= lim

n→∞

n2

1 + 2n2
=

1

2
,

which is less than 1, so the series converges.

(11.R.21) Determine whether the series is convergent or divergent

∞∑
n=1

(−1)n−1
√
n

n+ 1

Solution. This series converges, by the alternating series test. To apply the alternating
series test, it suffices to show that the sequence

bn =

√
n

n+ 1

is eventually decreasing, and goes to 0 in the limit. The latter is not that hard, since

lim
n→∞

√
n

n+ 1
= lim

n→∞

1

n1/2 + n−1/2
= “

1

∞
” = 0,

using the fact that limn→∞ n
1/2 + n−1/2 =∞. Alternatively, one could write

lim
n→∞

√
n

n+ 1
=

(
lim
n→∞

√
n

n

)
·
(

lim
n→∞

n

n+ 1

)
=
(

lim
n→∞

n−1/2
)
· lim
n→∞

1

1 + 1/n
= 0 · 1 = 0.
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Next, we check that the function f(x) =
√
xx+ 1 is eventually decreasing, by taking

its derivative:

f ′(x) =
(x+ 1) 1

2
√
x
−
√
x

(x+ 1)2
.

The denominator is always positive (for big enough x), so what about the numerator?
Well,

(x+ 1)

2
√
x
−
√
x =

(x+ 1)/2√
x

− x√
x

=
(x+ 1)/2− x√

x
=

1/2− x/2√
x

.

This is negative when x is sufficiently large, because 1/2 − x/2 will be negative, and√
x will be positive. Thus, f ′(x) < 0 for x � 0, and therefore f(x) is eventually

decreasing. It follows that eventually, the sequence bn is decreasing, so the alternating
series test applies, and

∞∑
n=1

(−1)n−1bn =
∞∑
n=1

(−1)n−1
√
n

n+ 1
does converge.

(11.R.34) For what values of x does the series
∑∞

n=1(lnx)n converge?

Solution. This is a geometric series with common ratio lnx, so it converges exactly
when

−1 < lnx < 1,

or equivalently, when
e−1 < x < e1.

3.2 Integration problems

(p) Integrate ∫
secx dx

Solution. Rewrite it as∫
secx

secx+ tanx

secx+ tanx
dx =

∫
sec2 x+ secx tanx

tanx+ secx
dx.

Now we make the u substitution

u = secx+ tanx

du = (sec2 x+ secx tanx) dx
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So ∫
sec2 x+ secx tanx

tanx+ secx
dx =

∫
du

u
= ln |u|+ C = ln | secx+ tanx|+ C.

So the final answer is ∫
secx dx = ln | secx+ tanx|+ C.

(q) Integrate ∫
sec3 x dx

Proof. For some reason the trick here is to do integration by parts, with

u = secx

du = secx tanx dxdv = sec2 x dx

v = tanx

Thus ∫
sec3 x dx =

∫
(secx)(sec2 x dx) =

∫
u dv = uv −

∫
v du

= (secx)(tanx)−
∫

tanx(secx tanx) dx.

So∫
sec3 x dx = secx tanx−

∫
secx tan2 x dx = secx tanx−

∫
secx(sec2 x− 1) dx

= secx tanx−
∫

sec3 x dx+

∫
secx dx.

Adding
∫

sec3 x dx to both sides, we get

2

∫
sec3 x dx = secx tanx+

∫
secx dx = secx tanx+ ln | secx+ tanx|.

Then, dividing both sides by 2 and adding the constant of integration, we get the
bizarre answer ∫

sec3 x dx =
1

2
(secx tanx+ ln | secx+ tanx|) + C.
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(r) Recall that cos 2x = cos2 x − sin2 x. Derive the other two formulas for cos 2x. Then
derive the formulas for sin2 x and cos2 x. Then evaluate the indefinite integrals∫

cos2 x dx and

∫
sin2 x dx

Solution. If we add the equations

1 = cos2 x+ sin2 x (4)

cos 2x = cos2 x− sin2 x (5)

we get
1 + cos 2x = 2 cos2 x. (6)

If we instead subtract Equation (5) from Equation (4), we instead get

1− cos 2x = 2 sin2 x. (7)

Solving these for cos 2x, we get

cos 2x = 2 cos2 x− 1

and
cos 2x = 1− 2 sin2 x.

If we instead divide (6) and (7) by 2, we get the formulas for cos2 x and sin2 x:

cos2 x =
1

2
(1 + cos 2x)

sin2 x =
1

2
(1− cos 2x)

Using these, we can do the integrals∫
cos2 x dx =

1

2

∫
(1 + cos 2x) dx =

1

2

(
x+

sin 2x

2

)
+ C

∫
sin2 x dx =

1

2

∫
(1− cos 2x) dx =

1

2

(
x− sin 2x

2

)
+ C

(7.R.13) Evaluate the integral ∫
e

3√x dx
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Solution. We do a u-substitution setting u = 3
√
x. Thus x = u3, and dx = 3u2 du, so

that ∫
e

3√x dx =

∫
eu3u2 du = 3

∫
u2eu du

To evaluate this integral, we do integration by parts:∫
3u2eu du = (3u2eu)−

∫
6ueu du,

where “u” was 3u2 and “dv” was eu du so that “v” was eu. Next, we use integration
by parts again: ∫

6ueu du = (6ueu)−
∫

6eu du = 6ueu − 6eu + C.

So∫
3u2eu du = 3u2eu −

∫
6ueu du = 3u2eu − 6ueu + 6eu + C = eu(3u2 − 6u+ 6) + C.

Replacing u with the original expression, we get∫
e

3√x dx = e
3√x(3x2/3 − 6x1/3 + 6) + C.

Let’s double check our answer:

d

dx
e

3√x(3x2/3 − 6x1/3 + 6) = e
3√x1

3
x−2/3(3x2/3 − 6x1/3 + 6) + e

3√x(2x−1/3 − 2x−2/3)

= e
3√x(1− 2x−1/3 + 2x−2/3 + 2x−1/3 − 2x−2/3) = e

3√x.

(7.R.15) Evaluate the integral ∫
x− 1

x2 + 2x
dx

Solution. We use the strategy of partial fractions, so we need to write

x− 1

x2 + 2x
=

x− 1

(x+ 2)x

as
A

x+ 2
+
B

x

for some constants A,B ∈ R. We want the following identity to hold

x− 1

(x+ 2)x
=

A

x+ 2
+
B

x
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for all x. Clearing denominators, this turns in to

x− 1 = A · x+B · (x+ 2) = (A+B)x+ 2B.

This will work if A + B = 1 and 2B = −1. So B must be −1/2 and A = 3/2. Thus,
we hope that

x− 1

x(x+ 2)
?
=

3/2

x+ 2
− 1/2

x
=

3x− 1(x+ 2)

2(x+ 2)x
=

2x− 2

2(x+ 2)x
=

x− 1

x(x+ 2)
.

Great!

Now we can integrate∫
x− 1

x2 + 2x
dx =

∫ (
3/2

x+ 2
− 1/2

x

)
dx =

3

2

∫
dx

x+ 2
− 1

2

∫
dx

x

=
3

2
ln(x+ 2)− 1

2
lnx.

(7.R.17) Evaluate the integral ∫
x secx tanx dx

Proof. We use integration by parts, with

u = x

du = dx

dv = secx tanx dx

v = secx

So ∫
x secx tanx dx =

∫
u dv = uv −

∫
v du

= x secx−
∫

secx dx = x secx− ln | secx+ tanx|+ C

3.3 Challenge Integration Problems

(*) Find the area of a circle, as follows: Write out the corresponding integral. Do the
indefinite integral by a trig substitution and double angle formulas. Use this to evaluate
the definite integral.
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Solution. If we have a circle of radius r, the corresponding integral is∫ r

−r
2
√
r2 − x2 dx

Let’s focus on the indefinite integral, for simplicity:∫
2
√
r2 − x2 dx

This looks like we should do a trig substitution, so we do:

x = r sin θ

dx = r cos θ dθ
√
r2 − x2 =

√
r2 − r2 sin2 θ =

√
r2 cos2 θ ≈ r cos θ.

(Let’s ignore issues like cos θ vs | cos θ|, and just check at the end that whatever an-
tiderivative we got is correct.)

So, the integral can be rewritten as∫
2
√
r2 − x2 dx =

∫
2r cos θr cos θ dθ = r2

∫
2 cos2 θ dθ.

Now we use the double angle formula

2 cos2 θ = 1 + cos 2θ

to rewrite this as

r2
∫

(1 + cos 2θ) dθ = r2(θ +
1

2
sin 2θ).

Using the double angle formula for sine, we note

1

2
sin 2θ = sin θ cos θ,

so that ultimately

r2
∫

2 cos2 θ dθ = r2
∫

(1 + cos 2θ) dθ = r2(θ + sin θ cos θ).

Now, we need to convert this back into a formula involving x. Since x was r sin θ, we
see that

sin θ =
x

r

θ = sin−1
x

r
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Also, we decided that
√
r2 − x2 = r cos θ, so

cos θ =

√
r2 − x2
r

.

So, putting everything together, we hope that∫
2
√
r2 − x2 dx = r2

(
sin−1

x

r
+
x

r

√
r2 − x2
r

)
= r2 sin−1

x

r
+ x
√
r2 − x2.

To check this, let’s take the derivative:

d

dx

(
r2 sin−1

x

r
+ x
√
r2 − x2

)
=

r2
1√

1− x2/r2
1

r
+
√
r2 − x2 + x

1

2
√
r2 − x2

(−2x) =

r2

r
√

1− x2/r2
+

r2 − x2√
r2 − x2

+
−x2√
r2 − x2

=

r2√
r2 − x2

+
r2 − 2x2√
r2 − x2

=
2r2 − 2x2√
r2 − x2

= 2
√
r2 − x2.

Whew.

Now, we can evalute the definite integral:∫ r

−r
2
√
r2 − x2 dx =

[
r2 sin−1

x

r
+ x
√
r2 − x2

]x=r

x=−r

=
(
r2 sin−1

r

r
+ r
√
r2 − r2

)
−
(
r2 sin−1

−r
r

+ r
√
r2 − (−r)2

)
= r2 sin−1 1 + 0− r2 sin−1(−1)− 0 = r2

π

2
− r2−π

2
= πr2.

(7.4.59) 1. If t = tan(x/2), −π < x < π, sketch a right triangle or use trigonometric
identities to show that

cos
(x

2

)
=

1√
1 + t2

and sin
(x

2

)
=

t√
1 + t2

.

Proof. Note
1 + t2 = 1 + tan2(x/2) = sec2(x/2).
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Since −π < x < π, the value x/2 is between −π/2 and π/2, so the corresponding
angle is in the first or fourth quadrant. Therefore cos(x/2) and sec(x/2) are
positive. So √

1 + t2 =
√

sec2(x/2) = | sec(x/2)| = sec(x/2).

And then
1√

1 + t2
=

1

sec(x/2)
= cos(x/2).

Meanwhile,

sin(x/2) = tan(x/2) cos(x/2) = t
1

1 + t2
=

t

1 + t2

as claimed.

2. Show that

cosx =
1− t2

1 + t2
and sinx =

2t

1 + t2

Proof. Well, by the double angle formulas, applied to the angle x/2,

cosx = cos(x/2)2 − sin(x/2)2 =

(
1√

1 + t2

)2

−
(

t√
1 + t2

)2

=
1

1 + t2
− t2

1 + t2
=

1− t2

1 + t2
.

And

sinx = 2 sin(x/2) cos(x/2) = 2
1√

1 + t2
t√

1 + t2
=

2t

1 + t2

3. Show that

dx =
2

1 + t2
dt

Proof. Well, we know that
t = tan(x/2)

so
x = 2 tan−1 t

and then
dx

dt
=

2

1 + t2

so that

dx =
2 dt

1 + t2
.
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(7.4.60) Use the substitution in Exercise 59 to transform the integrand into a rational
function of t and then evaluate the integral.∫

dx

1− cosx

Solution. Replacing dx with 2 dt
1+t2

and cos x with 1−t2
1+t2

, we get∫
dx

1− cosx
=

∫ 2
1+t2

dt

1− 1−t2
1+t2

The integrand is now
2/(1 + t2)

1− 1−t2
1+t2

.

Multiplying numerator and denominator by 1 + t2, this becomes

2

(1 + t2)− (1− t2)
=

2

2t2
= t−2.

So ∫
dx

1− cosx
=

∫ 2
1+t2

dt

1− 1−t2
1+t2

=

∫
t−2 dt =

= −t−1 + C =
−1

tan(x/2)
+ C.
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