Quiz

DIS 203 and 210

March 12th

1. Write down $e^{0.001}$ correct to seven places after the decimal. Hints. ${ }^{1}$
2. Write down the general solution of

$$
\left(1+2 x^{2}+x^{4}\right) f^{\prime}(x)+\left(2 x+2 x^{3}\right) f(x)=1 .
$$

Hints. ${ }^{2}$
3. Write down a power series

$$
f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}
$$

that solves the differential equation $f^{\prime \prime \prime}(x)=f(x), f(0)=1, f^{\prime}(0)=0, f^{\prime \prime}(0)=0$, and convince me that your solution is correct. Hints. ${ }_{-}^{3}$

Write your name and your answers below, or on the back of this page.

[^0]
[^0]: ${ }^{1}$ Use the first three terms of the Maclaurin series for $\exp (x)$.
 ${ }^{2}$ Convert to a linear equation. It might help to factor $\left(1+2 x^{2}+x^{4}\right)$ and $\left(2 x+2 x^{3}\right)$.
 ${ }^{3}$ If you look at successive derivatives of f, they repeat. You can figure out from the given information what $f^{(n)}(0)$ is for any n, and therefore write down the Maclaurin series. This tells you what the answer is, but logically speaking it doesn't tell you why the answer is correct, so be careful!

