
December 2-4 Review

DIS 313/315

December 5, 2014

1. What is
∫ b

a
r dx? (Note: r and a and b are supposed to be constants, not depending on

x.)

2. What is
∫ 0

a
(x+ a)dx?

3. Differentiate
√

1 + (cos x)sinx.

4. Differentiate x2
x
.

5. Evaluate the indefinite integral∫
ecos 2x+sin2 x sinx cosx dx

6. Evaluate ∫ 5

0

e
∫ x
0 t dtx dx

7. If f(x) is continuous, what is

lim
x→5

∫ x

5
f(t)dt

x− 5
?

8. Evaluate

lim
x→0

∫ 2x

x

dt

t

9. The sine integral function is defined as follows

Si(x) =

∫ x

0

sin t

t
dt.

(a) What is the derivative of the sine integral function?

(b) Evaluate the following indefinite integrals in terms of Si∫
sinx dx

x

∫
sin ex dx

(Hint: for the second, do a u-substitution u = ex.)
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10. Show, using ε− δ, that

lim
x→5

1

x− 4
= 1

11. True or False?

(a) If f is integrable, then f is bounded.

(b) If f is integrable, then f is continuous.

(c) If limx→a g(x) = L, then limx→a cos g(x) = cosL.

(d) If limx→5 f(x) exists, then

lim
x→5

f(x) = lim
x→0

f(5− x).

(e) If limx→5+ f(x) exists, then

lim
x→5+

f(x) = lim
x→0+

f(5− x).

12. Show that
∫ a

e
lnx dx = a ln a− a for a > 0.

13. What is ∫ 5

−5
sin(x3) dx?

14. What is
d

dx

∫ x2

x

et
2

dt?

15. Let f(x) be a continuous function with range and domain [0, 1]. Prove that f(x) = x
for some x ∈ [0, 1]. (Hint: apply the intermediate value theorem to the function
f(x)− x.)

1 Solutions

1. What is
∫ b

a
r dx?

Solution. The antiderivative of the constant function r is rx, so∫ b

a

r dx = [rx]ba = rb− ra.

2. What is
∫ 0

a
(x+ a)dx?
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Solution. The antiderivative of x+ a is x2/2 + ax, so∫ 0

a

(x+ a) dx =

[
x2

2
+ ax

]0
a

= 0− a2

2
− a · a =

−3a2

2
.

3. Differentiate
√

1 + (cos x)sinx.

Solution. By the chain rule,

d

dx

√
1 + (cos x)sinx =

1

2
√

1 + (cos x)sinx
· d
dx

(
(cosx)sinx

)
.

It remains to find the derivative of (cos x)sinx. The general way to differentiate some-
thing like f(x)g(x) is to rewrite it as follows:

f(x)g(x) =
(
eln f(x)

)g(x)
= e(ln f(x))g(x)

and then use the chain rule and product rule. Here, we see that

(cosx)sinx = e(ln cosx)·(sinx),

so

d

dx

(
(cosx)sinx

)
=

d

dx
e(ln cosx)·(sinx) = e(ln cosx)·(sinx) · d

dx
[(ln cosx) · (sinx)]

= (cosx)sinx · d
dx

[(ln cosx) · (sinx)]

= (cosx)sinx ·
[

1

cosx
(− sinx)(sinx) + (ln cosx) cosx

]
= (cosx)sinx

[
cosx ln cosx− sin2 x

cosx

]
.

So putting everything together,

d

dx

√
1 + (cos x)sinx =

(cosx)sinx
[
cosx ln cosx− sin2 x

cosx

]
2
√

1 + (cos x)sinx

4. Differentiate x2
x
.

3



Solution. Similar to the previous problem, we rewrite x2
x

as e2
x·lnx. Then

d

dx
x2

x

=
d

dx
e2

x·lnx = e2
x·lnx d

dx
[2x · lnx]

= x2
x

[
(ln 2) · 2x · lnx+

2x

x

]
.

5. Evaluate the indefinite integral∫
ecos 2x+sin2 x sinx cosx dx

Solution. Note that cos 2x = cos2 x − sin2 x, so that the exponent cos 2x + sin2 x is
actually just cos2 x. Thus∫

ecos 2x+sin2 x sinx cosx dx =

∫
ecos

2 x sinx cosx dx

Now we do a u-substitution: let u = cos2 x. Then du = −2 cosx sinx dx, so∫
ecos

2 x sinx cosx dx =

∫
eu
du

−2
=
−1

2

∫
eu du =

−1

2
eu =

−ecos2 x

2
,

+C if you like.

6. Evaluate ∫ 5

0

e
∫ x
0 t dtx dx

Solution. First of all, the antiderivative of t is t2/2, so∫ x

0

t dt =

[
t2

2

]x
0

=
x2

2
.

Therefore ∫ 5

0

e
∫ x
0 t dtx dx =

∫ 5

0

ex
2/2x dx.

To evaluate this, we do a u-substitution, and let u = x2/2. Then du = x dx, so∫
ex

2/2x dx =

∫
eu du = eu = ex

2/2,

and therefore ∫ 5

0

ex
2/2x dx =

[
ex

2/2
]5
0

= e25/2 − e0 = e25/2 − 1.
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7. If f(x) is continuous, what is

lim
x→5

∫ x

5
f(t)dt

x− 5
?

Solution. Let F (x) be some antiderivative of f(x). By the fundamental theorem of
calculus,

∫ x

5
f(t) dt = F (x)− F (5), so

lim
x→5

∫ x

5
f(t) dt

x− 5
= lim

x→5

F (x)− F (5)

x− 5
= F ′(5) = f(5),

so the limit is exactly f(5).

Alternatively, if you didn’t think of writing the integral in terms of some antiderivative
of f , you could use the more brute-force approach of L’Hospital’s rule. Note that the
function F (x) =

∫ x

5
f(t) dt is differentiable (by the fundamental theorem of calculus),

so it’s continuous, and therefore

lim
x→5

F (x) = F (5) =

∫ 5

5

f(t) dt = 0.

So by L’Hospital’s rule,

lim
x→5

F (x)

x− 5
= lim

x→5

F ′(x)

1
.

But we know what F ′(x) is; it’s f(x). So

lim
x→5

F ′(x) = lim
x→5

f(x) = f(5),

because we assumed f is continuous.

(Technical aside: Ole Hald would probably find both these proofs fishy, be-
cause the statement we’re trying to prove is really a necessary step along
the way to proving the Fundamental Theorem of Calculus. All the proofs of
FTC, such as the one on page 388-389 of the textbook, go through the fact
that

lim
x→a

∫ x

a
f(t) dt

x− a
= f(a).

So the preferred proof that limx→5

∫ x
5 f(t) dt

x−5 = f(5) might go a little more like
so: for any ε > 0, continuity of f implies there’s some δ > 0 such that when
t is within δ of 5, f(t) is within ε of f(5). That is, f only takes values in
the range (f(5) − ε, f(5) + ε) when you restrict it to (5 − δ, 5 + δ). Now if
|x− 5| < δ, then the interval [5, x] or [x, 5] is contained in (5− δ, 5 + δ), so
f is stuck between f(5) − ε and f(5) + ε on the interval between x and 5.
Then by basic properties of integrals,

(f(5)− ε)(x− 5) ≤
∫ x

5

f(t) dt ≤ (f(5) + ε)(x− 5) if x > 5
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(f(5)− ε)(5− x) ≤
∫ 5

x

f(t) dt ≤ (f(5) + ε)(5− x) if x < 5

Either way,

f(5)− ε ≤
∫ x

5
f(t) dt

x− 5
≤ f(5) + ε.

So, for any positive ε, we can make
∫ x
5 f(t) dt

x−5 be within ε of f(5), by making
|x − 5| be less than some δ (namely, the one coming from continuity of f .)
This establishes that

lim
x→5

∫ x

5
f(t) dt

x− 5
= f(5).

On the other hand, if you believe the FTC, or take it for granted, and just
want to know what the value of the limit I gave is, rather than proving it
from first principles, it’s logically okay to apply FTC and L’Hospital.)

8. Evaluate

lim
x→0

∫ 2x

x

dt

t

Solution. For any x 6= 0, we have∫ 2x

x

dt

t
= [ln |t|]2xx = ln |2x| − ln |x|.

Now |2x| = 2|x|, so ln |2x| = ln(2|x|) = ln 2 + ln |x|, so∫ 2x

x

dt

t
= ln |2x| − ln |x| = ln 2 + ln |x| − ln |x| = ln 2.

Thus the expression we’re taking the limit of doesn’t even depend on x, and

lim
x→0

∫ 2x

x

dt

t
= lim

x→0
ln 2 = ln 2.

9. The sine integral function is defined as follows

Si(x) =

∫ x

0

sin t

t
dt.

(a) What is the derivative of the sine integral function?

Solution. The derivative of Si(x) is sinx
x

.
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(b) Evaluate the following indefinite integrals in terms of Si∫
sinx dx

x

∫
sin ex dx

Solution. The first is Si(x) (or Si(x) + C, if you like).

For the second, we do a u-substitution, u = ex. Then du = ex dx, so dx = du
ex

, and∫
sin ex dx =

∫
sinu

du

ex
=

∫
sinu

u
du = Si(u) = Si(ex).

10. Show, using ε− δ, that

lim
x→5

1

x− 4
= 1

Preliminary work. We’ll want to make the following expression be less than ε:∣∣∣∣ 1

x− 4
− 1

∣∣∣∣ =

∣∣∣∣1− (x− 4)

x− 4

∣∣∣∣ =

∣∣∣∣5− xx− 4

∣∣∣∣ =
|5− x|
|x− 4|

=
|x− 5|
|x− 4|

.

We can directly control |x−5|, making it as small as we like (because we get to choose
δ). The problem is that this is getting multiplied by the junk term 1

|x−4| . We want
to put some absolute bound on this junk term. Usually one does this by deciding
to always take δ ≤ 1, though that doesn’t work in this case, because this would still
allow x to be something like 4.000001, for which 1

|x−4| is enormous. So, because we’re
dividing by x − 4, we really need to keep x a good distance away from 4. We need
to keep x− 4 away from zero. So let’s instead agree that δ will be at most 1/2. This
keeps x in the range from 4.5 to 5.5. The smallest that |x− 4| can be is 4.5− 4 = 0.5,
so the biggest that 1/|x− 4| can be is 1/0.5 = 2.

So, if we agree that we’ll always make δ be less than 1/2, then 1
|x−4| will be at most 2.

Then
|x− 5|
|x− 4|

<
δ

|x− 4|
≤ 2δ.

So, if we arrange that 2δ ≤ ε, then the quantity we want to be small will be small.

So, in summary, we need to make δ ≤ 1/2 and 2δ ≤ ε. This imposes two upper bounds
on δ, namely 1/2 and ε/2, and we just take whichever is smaller. With this in mind,
we get the following proof...

Proof. Given ε > 0, let δ be the minimum of {1/2, ε/2}, so that δ ≤ 1/2 and δ ≤ ε/2.
Now suppose that 0 < |x− 5| < δ. Then first of all,

|x− 5| < δ ≤ 1/2,
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so
5− 1/2 < x < 5 + 1/2,

and in particular x > 4.5. Therefore |x− 4| > 0.5, so

1

|x− 4|
< 2.

Multiplying both sides by |x− 5|, we see that

|x− 5|
|x− 4|

< 2|x− 5|.

Thus ∣∣∣∣ 1

x− 4
− 1

∣∣∣∣ =

∣∣∣∣x− 5

x− 4

∣∣∣∣ =
|x− 5|
|x− 4|

< 2|x− 5| < 2δ ≤ 2ε/2 = ε.

So we’ve shown that

0 < |x− 5| < δ =⇒
∣∣∣∣ 1

x− 4
− 1

∣∣∣∣ < ε.

11. True or False?

(a) If f is integrable, then f is bounded.

Solution. This is true. (Here’s the rough explanation why, which you don’t need
to know: if f is unbounded, then there’s no way to control the Riemann sums.
Integrability would imply that there’s some L such that, by making n big enough,∑n

i=0 f(x∗i )∆x is guaranteed to be within, say, 1 of L. If f isn’t bounded, then
it won’t be bounded on one of the intervals [xi, xi+1], and since x∗i can be any
number in that interval, there’s no way to keep f(x∗i ) from being really enormous
or really negative, since we don’t get to choose x∗i . So in fact if f isn’t bounded,
there isn’t a way to ensure that the Riemann sum is in the range [L − 1, L + 1],
and integrability fails.)

(b) If f is integrable, then f is continuous.

Solution. This is false. Functions with jump discontinuities, like the step function,
are still integrable. (For a wilder example, look up Thomae’s function.)

(c) If limx→a g(x) = L, then limx→a cos g(x) = cosL.

Solution. True, because cosx is continuous. See Theorem 8 in Section 2.5 of
Stewart.
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(d) If limx→5 f(x) exists, then

lim
x→5

f(x) = lim
x→0

f(5− x).

Solution. It is indeed true that

lim
y→5

f(y) = lim
x→0

f(5− x).

We can think of y as being 5− x. As x approaches 0, 5− x approaches 5.

(e) If limx→5+ f(x) exists, then

lim
x→5+

f(x) = lim
x→0+

f(5− x).

Solution. It is not true that

lim
y→5+

f(y)
no!
= lim

x→0+
f(5− x).

If we think of y as 5− x, then as x approaches 0 from above, 5− x approaches 5
from below. For example, when x is a tiny positive number like 0.001, the quantity
5− x is like 4.999. So instead, the true statement is that

lim
y→5−

f(y) = lim
x→0+

f(5− x).

If f has a jump discontinuity at 5, the one-sided limits won’t agree, so

lim
y→5+

f(y) 6= lim
y→5−

f(y) = lim
x→0+

f(5− x).

12. Show that
∫ a

e
lnx dx = a ln a− a for a > 0.

Proof. Both sides are differentiable functions of a, so it suffices1 to show that they have
the same derivative, and agree at at least one point. Differentiating the left hand side,
we get ln a, by the fundamental theorem of calculus. Differentiating the right hand
side, we get

d

da
(a ln a− a) = a

1

a
+ ln a− 1 = ln a.

So the two sides have the same derivative. Finally, when we plug in a = e, the left
hand side is ∫ e

e

lnx dx = 0,

and the right hand side is
e ln e− e = e · 1− e = 0.

1by the MVT or one of its corollaries
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Alternatively, you could merely observe that x lnx − x is an antiderivative of lnx, so
that ∫ a

e

lnx dx = [x lnx− x]ae = (a ln a− a)− (e ln e− e) = a ln a− a.

13. What is ∫ 5

−5
sin(x3) dx?

Solution. Zero, because sin(x3) is an odd function. See statement 7 in Section 5.5.

14. What is
d

dx

∫ x2

x

et
2

dt?

Solution. Let F (x) be an antiderivative of et
2
. Then∫ x2

x

et
2

dt = F (x2)− F (x).

So by the chain rule,

d

dx

∫ x2

x

et
2

dt =
d

dx
(F (x2)− F (x)) = F ′(x2)2x− F ′(x) = 2xex

4 − ex2

.

15. Let f(x) be a continuous function with range and domain [0, 1]. Prove that f(x) = x
for some x ∈ [0, 1].

Proof. Let g(x) = f(x) − x. We want to show that g(x) has some zero, because
g(x) = 0 ⇐⇒ f(x) = x. Note that g(x) is a continuous function on [0, 1], because
differences of continuous functions are continuous.

For every x ∈ [0, 1], we know that f(x) is in [0, 1] as well, because we assumed [0, 1]
was the range of f(x). So 0 ≤ f(x) ≤ 1 for 0 ≤ x ≤ 1. In particular,

g(0) = f(0)− 0 ≥ 0

and
g(1) = f(1)− 1 ≤ 1− 1 = 0.

If g(0) = 0 or g(1) = 0, then we’ve found a zero of g(x), so we’re done. Otherwise,
g(0) > 0 and g(1) < 0. Then, by the intermediate value theorem, g(x) = 0 for some x
between 0 and 1. So either way, g(x) has a zero somewhere in the interval [0, 1].
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