
Practice with Proofs

November 2, 2014

For a good introduction to mathematical proofs, see the first thirteen pages of this doc-
ument http://math.berkeley.edu/~hutching/teach/proofs.pdf by Michael Hutchings.

1. Prove ∀x∃y : y2 > x.

2. Disprove ∀x∃y : y2 < x.

3. Consider the piecewise function

f(x) =

{
ex if x ≤ 0

1 + x if x > 0

(a) Prove that −1 is not in the range of f . That is, show that there does not exist
an x such that f(x) = −1.

(b) Prove that f is continuous.

(c) Prove that f is differentiable.

4. Prove that the composition of any two decreasing functions is increasing.

5. Prove that the sum of any two decreasing functions is decreasing.

6. Suppose f is a differentiable function on R = (∞,∞), and that f ′(x) < 0 for all x.
Prove that f is decreasing.

7. Suppose f(x) = ax2 + bx+ c, where a 6= 0. Prove that f is not one-to-one.

8. Let g(x) = 2x + 3x for |x| ≤ 1. (So the domain of g is [−1, 1].) Prove that the range
of g is exactly [5/6, 5].

9. Suppose that h(x) is a continuous function on all of R, that h(0) = 0, and that h(x) is
one-to-one. Show that h(−1)h(1) < 0.
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1 Hints

1. Given x, you need to find y such that y2 > x. It might help to break into cases
according to whether x ≤ 1 or x > 1. A lot of the time you can take y = x.

2. The problem is asking you to prove that ∃x∀y : y2 ≥ x. What number is less than or
equal to all squares?

3. (a) Break into cases according to whether x ≤ 0 or x > 0.

(b) This is basically automatic everywhere except x = 0. There, compare the two-
sided limits.

(c) This is basically automatic everywhere except x = 0. There, use the definition
of the derivative as a limit. To check the limit, calculate the two-sided limits
(perhaps by rewriting them as derivatives of other functions).

4. Given decreasing functions f and g, and numbers x1 < x2, you need to show that
f(g(x1)) < f(g(x2)).

5. Given decreasing functions f and g, and numbers x1 < x2, you need to show that
f(x1) + g(x1) > f(x2) + g(x2).

6. Prove this by contradiction, and use the mean value theorem. (What is the logical
negation of the statement that f is a decreasing function? It should give you data to
plug into the mean value theorem.) Also this is in the book.

7. Find the vertex of the parabola and go to the left and the right by, say, 1.

8. You need to show two things: that the range of g is contained in [5/6, 5], and that it
contains [5/6, 5]. For the first of these, use the fact that g is increasing. For the second,
use the intermediate value theorem.

9. You need to show that f(1) and f(−1) don’t have the same sign. Do a proof by con-
tradiction: assume they have the same sign. Break into cases according to whether
they’re both positive, or both negative. Ultimately, you’ll need to apply the interme-
diate value theorem to the intervals [−1, 0] and [0, 1], and contradict the fact that f is
one-to-one.
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2 Solutions

1. Prove ∀x∃y : y2 > x.
Fix x. We need to show that there is some y whose square is greater than x. That is,
we need to show that the set

{y : y2 > x}

is non-empty. For example, if x = 7, we need to prove that

{y : y2 > 7}

is non-empty. Solving the inequality y2 > 7, one sees that

{y : y2 > 7} = (−∞,−
√

7) ∪ (
√

7,∞)

so we just need to specify a number bigger than
√

7 or less than −
√

7. We could take
y = 1000, for example.

Likewise
{y : y2 > 5} = (−∞,−

√
5) ∪ (

√
5,∞).

More generally, whenever x ≥ 0, one can check that

{y : y2 > x} = (−∞,−
√
x) ∪ (

√
x,∞).

To prove that this set is non-empty, it suffices to specify a number bigger than
√
x.

For example, 1 +
√
x works.

On the other hand, when x < 0, all squares are bigger than x, so

{y : y2 > x} = (−∞,∞) = R.

So any value of y works. We could take y = 0, for example.

From all this preliminary analysis, one can extract the following proof.

Proof. Given x, we need to produce y such that y2 > x. We break into cases according
to whether x ≥ 0 or x < 0. If x ≥ 0, let y = 1 +

√
x. Then

y2 = (1 +
√
x)2 = 1 + 2

√
x+ x ≥ 1 + x > x,

so there is a y such that y2 > x. On the other hand, if x < 0, let y = 0. Then
y2 = 0 > x, so again there’s a number y whose square is greater than x. Either way,
∃y : y2 > x is true. As x was arbitrary, it follows that ∀x∃y : y2 > x.

The same proof could be written more compactly as follows:
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(of ∀x∃y : y2 > x). If x ≥ 0, let y = 1 +
√
x. Then

y2 = 1 + 2
√
x+ x ≥ 1 + x > x.

Otherwise, 02 = 0 > x, so take y = 0.

Here’s another proof, which I was thinking of when I wrote the hint.

Proof. Given x, we need to find y such that y2 > x. If x ≤ 1, then

x ≤ 1 < 232,

so we can take y = 23. Otherwise x > 1. Multiplying both sides of x > 1 by the
positive number x, we see that

x2 > x,

so we can take y = x.

Alternatively, one could maybe make a case that the statement of Problem 1 is obvious.

2. Disprove ∀x∃y : y2 < x.

Proof. Suppose for the sake of contradiction that for every x, there is a y such that
y2 < x. Then we can take x = 0, and so there must be some y such that y2 < 0. But
every number’s square is nonnegative, so y2 ≥ 0, a contradiction.

Equivalently, we could just prove the logical negation of the given statement, which is
the statement ∃x∀y : y2 ≥ x. (There is an x such that for every y, y2 ≥ x.)

Proof. Take x = 0. Then for every y, y2 ≥ 0 = x.

3. Consider the piecewise function

f(x) =

{
ex if x ≤ 0

1 + x if x > 0

(a) Prove that −1 is not in the range of f . That is, show that there does not exist
an x such that f(x) = −1.

Proof. Suppose f(x) = −1. Then x ≤ 0 or x > 0. In the first case, ex = f(x) =
−1, which is impossible since ex is always positive. In the second case (x > 0),
1 + x = f(x) = −1. But x > 0, so 1 + x > 1 and in particular 1 + x can’t be −1.
Either way, we get a contradiction.

(b) Prove that f is continuous.
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Proof. Given a, we need to show that

lim
x→a

f(x) = f(a).

We break into cases.

Case 1: a < 0. Then every value of x close enough to a will be negative, and so
f(x) = e−x for x close enough to a. Therefore

lim
x→a

f(x) = lim
x→a

e−x = e−a = f(a).

(Technical note1)

Case 2: a > 0. Then [do the same thing as in Case 1, mutatis mutandis. These
two cases are the easy cases that you could almost just ignore or take for
granted, if you were trying to prove this on the exam.]

Case 3: a = 0. We need to show that limx→0 f(x) = f(0) = 1. It suffices to
show that the two one-sided limits both take the value 1. Indeed,

lim
x→0+

f(x) = lim
x→0+

1 + x = 1 + 0 = 1

lim
x→0−

f(x) = lim
x→0−

ex = e0 = 1

(Technical note.2)

(c) Prove that f is differentiable.

Proof. Wow, this is more of a hassle than I realized! Let a be given, and let’s
show that f(x) is differentiable at a. Again, the cases where a > 0 or a < 0
“obviously” work, so let’s just focus on the case where a = 0. Then we need to
prove that

lim
h→0

f(h)− f(0)

h

1We are using the secret limit law that says that if two functions/expressions g(x) and h(x) take the same
values for all x in a neighborhood of a, then

lim
x→a

g(x) = lim
x→a

h(x).

That is, the limit of g(x) at a only depends on what g does at x-values really close to a. If another function
does the same thing as g(x) around a, then it has the same limit as g. This sort of fact has been used
implicitly in many of the proofs in class, and you should feel free to use it without explanation on the exam.

2We’re using the secret limit law that says that if two functions agree just to the right of a, then they
have the same right-handed limit at a. Repeat everything in the previous footnote.
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exists. In fact, it’s going to equal 1, so it suffices to show that the one-sided limits
are both 1. This can be checked as follows:

lim
h→0+

f(h)− f(0)

h
= lim

h→0+

(1 + h)− 1

h
= lim

h→0+
1 = 1

lim
h→0−

f(h)− f(0)

h
= lim

h→0−

eh − 1

h
= lim

h→0

eh − 1

h
= 1

4. Prove that the composition of any two decreasing functions is increasing.

Proof. Let f and g be given decreasing functions. We claim that f ◦ g is increasing.
Given numbers x < y, we need to show that (f ◦ g)(x) < (f ◦ g)(y). First note that
because g is decreasing,

g(x) > g(y)

or equivalently g(y) < g(x). Meanwhile, f is decreasing. Applying the definition of
“decreasing” to f and the numbers g(y) and g(x), we see that

f(g(y)) > f(g(x))

or equivalently
(f ◦ g)(x) < (f ◦ g)(y).

As x, y were arbitrary numbers satisfying x < y, we’ve shown that f ◦ g is increasing.
(And as f and g were arbitrary decreasing functions, we’ve shown that the composition
of any two decreasing functions is increasing.)

5. Prove that the sum of any two decreasing functions is decreasing.

(writing things a little more compactly than in the previous problem). Let f and g be
decreasing functions, and x < y. As f is decreasing,

f(x) > f(y)

Likewise
g(x) > g(y)

Adding these two inequalities together, we see that

(f + g)(x) = f(x) + g(x) > f(y) + g(y) = (f + g)(y),

so f + g is decreasing.

6. Suppose f is a differentiable function on R = (∞,∞), and that f ′(x) < 0 for all x.
Prove that f is decreasing.
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Proof. Suppose x < y. (We need to prove that f(x) > f(y).) By the mean value
theorem, there is some z (between x and y, though we won’t use this), so that

f(y)− f(x)

y − x
= f ′(z).

As f ′(z) < 0 by assumption, we see that

f(y)− f(x)

y − x
< 0.

Multiplying both sides by the positive number y − x, we see that

f(y)− f(x) < 0.

After rearranging, we conclude that f(x) > f(y). So f is decreasing [because x < y
was arbitrary].

7. Suppose f(x) = ax2 + bx+ c, where a 6= 0. Prove that f is not one-to-one.

Proof. Let

x1 =
−b
2a

+ 1 and x2 =
−b
2a
− 1.

We claim that f(x1) = f(x2). This can probably be proven by just expanding things
out. Let’s do it by completing the square instead. Note that for any x,

f(x) = ax2 + bx+ c = a

(
x2 + 2

b

2a
x+

b2

4a2

)
− b2

4a
+ c.

Letting v = b/(2a) and d = c− b2/(4a), we see that for any x,

f(x) = a(x2 + 2vx+ v2) + d = a(x+ v)2 + d.

Now x1 = −v + 1 and x2 = −v − 1, so

f(x1) = f(−v+1) = a(−v+1+v)2+d = a·1+d = a(−v−1+v)2+d = f(−v−1) = f(x2).

As x2 and x1 are not the same (they differ by the non-zero number 2), it follows that
f is not one-to-one.

There may be better proofs, this was what I thought of off the top of my head.

8. Let g(x) = 2x + 3x for |x| ≤ 1. (So the domain of g is [−1, 1].) Prove that the range
of g is exactly [5/6, 5].
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Proof. Let y be given. We need to show that y is in the range of g if and only if
5/6 ≤ y ≤ 5.

First suppose that y is in the range of g. Then y = g(x) for some x ∈ [−1, 1]. Note
that 2x and 3x are increasing functions, so so is their sum g. Therefore,

5/6 = g(−1) ≤ g(x) ≤ g(1) = 5,

so 5/6 ≤ y ≤ 5.

Conversely, suppose that 5/6 ≤ y ≤ 5. If y equals 5/6 or 5, then y = g(−1) or g(1), so
y is in the range. Otherwise, y is strictly between g(−1) and g(1). As g is continuous,
the intermediate value theorem applies, and there is some x between −1 and 1, such
that g(x) = y. So y is in the range.

9. Suppose that h(x) is a continuous function on all of R, that h(0) = 0, and that h(x) is
one-to-one. Show that h(−1)h(1) < 0.

Proof. Since h is one-to-one, h(−1) and h(1) can’t be the same as h(0) = 0. So both
are non-zero, and therefore their product h(−1)h(1) is also non-zero. So the only way
h(−1)h(1) < 0 can fail to hold is if h(−1)h(1) > 0. Assume this (for the sake of
contradiction). Then h(−1) and h(1) have the same sign. This gives two cases:

Case 1: Both h(1) and h(−1) are positive. Let ε be some positive number smaller
than both h(1) and h(−1). (For example, we could take ε to be half the minimum
of h(1) and h(−1).) Now ε is between 0 = h(0) and h(1), so by the intermediate
value theorem there is some c between 0 and 1 such that h(c) = ε. Also ε is
between 0 = h(0) and h(−1), so there is some d between 0 and −1 such that
h(d) = ε. Now

h(c) = ε = h(d),

so by one-to-oneness, c should equal d. But this is false, since c is strictly between
0 and 1, and d is strictly between 0 and −1, so they can’t be equal.3

Case 2: Both h(1) and h(−1) are negative. [Then do the same argument, but with ε
a negative number bigger than both h(1) and h(−1).]

A more complicated version of this argument can be used to prove the following piece
of trivia: any continuous one-to-one function on an interval is decreasing or increasing.

3If this argument seems weird, drawing a picture may help. The point is that in going from h(0) = 0 to
the positive numbers h(1) and h(−1), the continuous function h has to run over the same numbers on both
sides of 0, and this violates one-to-one-ness.
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