
Solution to 4.4.89

November 5, 2014

Let

f(x) =

{
e−1/x

2
if x 6= 0

0 if x = 0

(a) Use the definition of derivative to compute f ′(0).

Solution. By definition

f ′(0) = lim
x→0

f(x)− f(0)

x− 0
.

The expression inside the limit is only evaluated values of x which don’t equal zero, so
we can replace f(x) with e−1/x

2
. And f(0) is just 0, so

f ′(0) = lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

e−1/x
2

x
.

For mysterious reasons, we rewrite this as

f ′(0) = lim
x→0

e−1/x
2

x
= lim

x→0

x−1

e1/x2 .

We claim that

lim
x→0+

x−1

e1/x2

?
= lim

x→0−

x−1

e1/x2 = 0. (1)

We will calculate both these limits using the ∞∞ -version of l’Hôpital’s rule. First we
check that l’Hôpital’s rule applies:

• Both x−1 and e1/x
2

are differentiable on (−∞, 0) ∪ (0,∞), and the derivative of
e1/x

2
is

−2e1/x
2

x3
,

which does not equal zero anywhere.

• As x → 0+, the quantity x−1 goes to +∞, and 1/x2 goes to +∞, and e1/x
2

goes
to +∞. So as x→ 0+, both the numerator and denominator approach ±∞.
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• As x → 0−, the quantity x−1 goes to −∞, and 1/x2 goes to +∞, and e1/x
2

goes
to +∞. So as x→ 00, both the numerator and denominator approach ±∞.

So l’Hôpital’s rule applies, and we can make the calculations:

lim
x→0+

x−1

e1/x2 = lim
x→0+

−1/x2

−2e1/x2/x3
= lim

x→0+

1

2
xe−1/x

2

=
1

2

(
lim
x→0+

x

)(
lim
x→0+

e−1/x
2

)
=

1

2
·0·0 = 0.

lim
x→0−

x−1

e1/x2 = lim
x→0−

−1/x2

−2e1/x2/x3
= lim

x→0−

1

2
xe−1/x

2

=
1

2

(
lim
x→0−

x

)(
lim
x→0−

e−1/x
2

)
=

1

2
·0·0 = 0.

So (1) is true. Then because the one-sided limits agree,

f ′(0) = lim
x→0

x−1

e1/x2 = 0.

(b) The function f has derivatives of all orders that are defined on R.

Proof. We will need the following variant of the limit that came up in the previous
problem:

Lemma 0.1. For any integer N ,

lim
x→0

e−1/x
2

xN
= 0.

Proof. There’s probably a way to do this inductively. Instead, we do the following.

First suppose that N = 2. Then we need to show that

lim
x→0

e−1/x
2

xN
= lim

x→0

e−1/x
2

x2

?
= 0.

We can rewrite the left hand side as

lim
x→0

e−1/x
2

x2
= lim

x→0

x−2

e1/x2 .

Rewritten in this way, the ∞∞ -form of l’Hôpital’s rule applies. Indeed, x−2 and e1/x
2

both go to +∞ as x → 0, and both are differentiable for nonzero numbers, and the
derivative of e1/x

2
never vanishes, as we saw in part (a).

So we can apply l’Hôpital:

lim
x→0

x−2

e1/x2 = lim
x→0

−2/x3

−2e1/x2/x3
= lim

x→0
e−1/x

2

= 0.
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So we have handled the case where N = 2.

Now let N be arbitrary. Let k be a positive integer greater than N/2, so that 2k > N .
By the N = 2 case just proven, we know

lim
y→0

e−1/y
2

y2/k
= lim

y→0
k
e−1/y

2

y2
= k lim

y→0

e−1/y
2

y2
= k · 0 = 0.

Making the change of variables x = y/
√
k, so that y2 = kx2, we get

lim
x→0

e−1/(kx
2)

x2
= lim

y→0

e−1/y
2

y2/k
= 0.

Then

lim
x→0

(
e−1/(kx

2)

x2

)k

=

(
lim
x→0

e−1/(kx
2)

x2

)k

= 0k = 0.

But (
e−1/(kx

2)

x2

)k

=

(
e−1/(kx

2)
)k

(x2)k
=

e−1/x
2

x2k
.

So

lim
x→0

e−1/x
2

x2k
= lim

x→0

(
e−1/(kx

2)

x2

)k

= 0.

Finally,

lim
x→0

e−1/x
2

xN
= lim

x→0
x2k−N e−1/x

2

x2k
=
(

lim
x→0

x2k−N
)(

lim
x→0

e−1/x
2

x2k

)
= 02k−N · 0 = 0.

This completes the proof of the Lemma.

Next, we prove by induction on n the following statement: the nth derivative f (n) of
f exists on all of R, and has the following form

f (n)(x) =

{
p(x)x−ke−1/x

2
if x 6= 0

0 if x = 0

for p(x) some polynomial and k some integer, depending on n but not on x.

For the base case, we take n = 0. Then the zeroth derivative f (0) is just f , which has
the prescribed form. (Take p(x) = 1 and k = 0.)

Now suppose that n > 0 and f (n−1) exists and has the prescribed form. So

f (n−1)(x) =

{
p(x)x−ke−1/x

2
if x 6= 0

0 if x = 0
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We need to show that the derivative f (n) of f (n−1) exists and has this form as well.
When x 6= 0, the derivative of f (n−1)(x) is the same as the derivative of p(x)x−ke−1/x

2
,

which by the product rule is

d

dx
p(x)x−ke−1/x

2

= p′(x)x−ke−1/x
2 − p(x) · kx−k−1e−1/x2 − p(x)x−k2x−3e−1/x

2

=
(
p′(x)x3 − kp(x)x2 − 2p(x)

)
x−(k+3)e−1/x

2

.

The expression p′(x)x3 − kp(x)x2 − 2p(x) is a polynomial, and k + 3 is a nonnegative
integer, so we’ve established that f(n) = (f (n−1))′ has the desired form when x 6= 0.

It remains to check the value and existence of f (n)(x) at x = 0, i.e., to show that
f (n)(0) = 0. We need to show that

f (n)(0) = lim
x→0

f (n−1)(x)− f (n−1)(0)

x− 0
?
= 0.

By the inductive hypothesis, f (n−1)(0) = 0, and f (n−1)(x) = p(x)x−ke−1/x
2
. So we can

rewrite the limit as

lim
x→0

f (n−1)(x)− f (n−1)(0)

x− 0
= lim

x→0

p(x)x−ke−1/x
2 − 0

x
= lim

x→0
p(x)x−k−1e−1/x

2

Now we can apply the product rule for limits, to see

f (n)(0) = lim
x→0

p(x)x−k−1e−1/x
2

=
(

lim
x→0

p(x)
)(

lim
x→0

e−1/x
2

xk+1

)
.

Polynomials are continuous, so limx→0 p(x) = p(0), which is some number. And by the
Lemma,

lim
x→0

e−1/x
2

xk+1
= 0.

Thus

f (n)(0) =
(

lim
x→0

p(x)
)(

lim
x→0

e−1/x
2

xk+1

)
= p(0) · 0 = 0.

So we see that f (n) exists everywhere, and has the following form

f (n)(x) =

{
q(x)x−je−1/x

2
if x 6= 0

0 if x = 0

where q(x) is a polynomial1, and j is an integer2. So we’ve completed the inductive
step.

Now we have successfully proven by induction on n that f (n)(x) exists and has a certain
form. In particular, we’ve shown that it exists, so we’re done.

1Namely p′(x)x3 − kp(x)x2 − 2p(x).
2Namely k + 3.
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