
1. True/False quiz. If it is true, explain why. If it is false, give a counterexample that
disproves the statement.

(a) If limx→a f(x) and limx→a g(x) don’t exist, then limx→a[f(x)+g(x)] does not exist.

(b) d2y
dx2 =

(
dx
dy

)2
(c) If f(x) = (x6 − x4)5, then f (31)(x) = 0.

(d) If f and g are increasing on an interval I, then fg is increasing on I.

(e) The tangent line to the parabola y = x2 at (−2, 4) is y − 4 = 2x(x + 2).

2. Differentiate

• x lnx− x

• (x2 + 1)2x

3. Find the point on the line y = 2x + 5 closest to the origin (0,0).

4. Evaluate by realizing as a derivative

lim
x→e

ln(x) · ln(x)− 1

x− e
=

5. Write down an antiderivative of the absolute value function f(x) = |x|, using integrals.

F (x) =

∫
6. Among rectangles having perimeter 4, which has the greatest area?



7. Use L’Hôpital’s rule to evaluate

lim
x→0+

x lnx = lim
x→0+

lnx

x−1
= lim

x→0+
=

8. Graph y = x lnx, finding intercepts, critical points, inflection points, and asymptotes,
if they exist.

9. Evaluate the limit

lim
n→∞

n∑
i=1

2i/n

n
=

10. Apply Newton’s method to solve ex = 0. If x0 = 0, what are. . .

x1 =

x2 =

xn =

11. (a) Show that 2 = x + ex has a unique solution.

(b) Use Newton’s method to solve for x. Start with x0 = 2. What is x1?

12. Evaluate the limit without FTC. What definite integral have we just calculated?

lim
n→∞

n∑
i=1

i

n2
= lim

n→∞

1

n2

n∑
i=1

i =



13. Draw the region bounded by the curves y = e−x
2

and y = 1/e. Rotate around the
y-axis and find the volume.

14. Draw the region bounded by y = |x| and y = 1. Rotate around y = −1, and find the
volume. Use cylindrical shells if born in January through June, and washers if born in
July through December.



1 Solutions

1. (a) False. For example, if

f(x) =

{
1 x < a

0 x ≥ a
,

and g(x) = 1− f(x), then

lim
x→a+

f(x) = 0 6= 1 = lim
x→a−

f(x),

so limx→a f(x) does not exist. Also, limx→a g(x) does not exist, because if it did
exist, then by the limit laws,

lim
x→a

f(x) = lim
x→a

(1− g(x)) = 1− lim
x→a

g(x) would exist.

On the other hand, f(x) + g(x) = 1, so

lim
x→a

[f(x) + g(x)] = lim
x→a

1 = 1,

and in particular, the limit of f(x) + g(x) does exist.

(b) False. d2y
dx2 denotes the second derivative of y with respect to x, while

(
dy
dx

)2
denotes

the square of the derivative. If y = x3, for example, then the first derivative is
3x2, and the second derivative is 6x. And

d2y

dx2
= 6x 6= 9x4 = (3x2)2 =

(
dy

dx

)2

.

(c) True. Note that f(x) = (x6 − x4)5 is a degree 30 polynomial, because it is
the fifth power of a degree 6 polynomial. Taking the derivative of a polynomial
always decreases the degree, so the thirtieth derivative of f will be a degree
zero polynomial, i.e., a constant. Therefore the 31st derivative of f will be the
derivative of a constant, hence will vanish.

(d) False. For example, f(x) = x and g(x) = x are both increasing on the interval
[−1, 1], but their product fg = x2 is not increasing on this interval, as −1 < 1
but (−1)2 6< 12.

(e) False, since y − 4 = 2x(x + 2) is not a line, so it can’t be the tangent line.

2.

d

dx
[x lnx− x] =

(
d

dx
x

)
lnx + x

(
d

dx
lnx

)
− d

dx
x = 1 · lnx + x · 1

x
− 1 = ln x.

For the second one, let y = (x2 + 1)2x. Then taking logarithms of both sides and
differentiating. . .

ln y = ln
(
(x2 + 1)2x

)
= 2x ln(x2 + 1).



y′

y
= 2 ln(x2 + 1) + 2x

1

x2 + 1
2x = 2 ln(x2 + 1) +

4x2

x2 + 1
.

So

y′ = y

(
2 ln(x2 + 1) +

4x2

x2 + 1

)
= (x2 + 1)2x

(
2 ln(x2 + 1) +

4x2

x2 + 1

)
.

3. A point on this line has the form (x, 2x+5), for x ∈ R, and its distance from the origin
is
√
x2 + (2x + 5)2, by the distance formula. We can call this expression d(x). So

d(x) =
√
x2 + (2x + 5)2,

and we want to find the value of x which minimizes d(x). From geometry, we know
that there is a unique point on the line which is closest to the origin.1 By Fermat’s
theorem, this minimum must be a critical point of d(x), so let’s find all the critical
points:

d′(x) =
1

2
√

x2 + (2x + 5)2
(2x + 2(2x + 5)2) =

10x + 20

2
√

x2 + (2x + 5)2
.

This will vanish exactly when 10x+20 vanishes. Solving 10x+20 = 0 for x, we see that
the unique critical point is at x = −2. So the global minimum of d(x) is at x = −2.
The corresponding point on the line is (x, 2x + 5) = (−2,−4 + 5) = (−2, 1).

So, ultimately we conclude that the closest point to the origin is (−2, 1).

4. Note that ln e = 1, so

lim
x→e

(lnx)2 − 1

x− e
= lim

x→e

(lnx)2 − (ln e)2

x− e
.

This last expression is just f ′(e), for the function f(x) = (ln x)2. We can determine
what f ′(x) is by the chain rule:

f ′(x) = 2(ln x)
1

x
,

so

f ′(e) =
2 ln e

e
=

2

e
.

So the limit is 2/e.

5.

F (x) =

∫ x

0

|t| dt

1The function d(x) is continuous on its domain, but the Extreme Value Theorem doesn’t apply because
the domain is a closed interval, so something slightly fishy is going on here.



6. Let x and y be the side lengths of the rectangle. Then we’re trying to maximize xy
subject to the constraints that x ≥ 0, y ≥ 0, and 2x + 2y = 4. This last equation
lets us write y in terms of x, as 2 − x. The area is then x(2 − x). The constraint
on y, that y ≥ 0, then turns into the constraint that 2 − x ≥ 0, or equivalently, that
x ≤ 2. So equivalently, we’re trying to maximize the expression A(x) = x(2−x) where
0 ≤ x ≤ 2.

We know how to do this kind of optimization problem: we just need to evaluate A(x)
at the endpoints and critical points, and find the biggest value. To find the critical
points, we take the derivative

A′(x) = 1 · (2− x) + x · (−1) = 2− x− x = 2− 2x.

Then A′(x) = 0 when 2 − 2x = 0, which is when x = 1. So the critical point is at
x = 1, and we also need to check the end points x = 0 and x = 2:

A(0) = 0(2− 0) = 0

A(1) = 1(2− 1) = 1

A(2) = 2(2− 2) = 0.

So the maximum is at x = 1. For this value of x, the other side length y is y = 2−x =
2− 1 = 1. So both side lengths are 1.

So in conclusion, the rectangle with maximum area, among those having perimeter 4,
is the 1× 1 rectangle, i.e., the square.

7. L’Hôpital’s rule applies because limx→0+ lnx = −∞ and limx→0+ x−1 = +∞. Then

lim
x→0+

x lnx = lim
x→0+

lnx

x−1
L’H
== lim

x→0+

1/x

−1/x2
,

assuming the right hand limit exists. But

1/x

−1/x2
= −x,

so

lim
x→0+

1/x

−1/x2
= lim

x→0+
(−x) = 0,

and therefore
lim
x→0+

x lnx = 0.

8. Since lnx is only defined for x > 0, the domain of this function is x > 0. Therefore
there are no y-intercepts. To find x-intercepts, you solve the equation

0 = x lnx.



The only possible solutions are when x = 0 (but this doesn’t work because then x lnx
isn’t defined), and when lnx = 0, which is when x = 1. So the only x-intercept is at
x = 1. Moreover, since lnx is negative for x < 1 and positive for x > 1, we see that
x lnx is negative for x < 1 and positive for x > 1.

To find the local minima and maxima, we find the derivative:

y′ = 1 ln x + x
1

x
= 1 + lnx.

This equals zero exactly when lnx = −1, i.e., when x = e−1 = 1/e. The corresponding
y-value is

x lnx = e−1 ln e−1 = −e−1 = 1/e.

So there is a critical point at (1/e,−1/e).

To see whether it’s a local maximum or local minimum or neither, we use the second
derivative test:

y′′ =
d

dx
(1 + ln x) =

1

x
.

This is always positive, so the function is concave up, and the critical point is a local
minimum.

Also, since the first derivative is 1+lnx, and lnx is increasing, we see that y′ = 1+lnx
is positive for x > 1/e, and negative for x < 1/e. This means that the original function
y = x lnx is increasing on the interval [1/e,+∞), and decreasing on the interval (0, 1/e].

The only possible place there could be a vertical asymptote is at x = 0. But as x→ 0+,
we know that y gets bigger (since the function is decreasing on the interval (0, 1/e] and
x is getting smaller), and also that y stays below 0, because x lnx is negative for x < 1.
So y can’t go to −∞ (because it’s getting bigger), and it can’t go to +∞ (because it’s
stuck below 0).

In fact, from the previous problem, we know that limx→0+ x lnx = 0, so there’s defi-
nitely not a vertical asymptote.

Finally, we check for horizontal and slant asymptotes. Note that limx→+∞ x lnx =
+∞, because x and lnx are both going to +∞ in the limit. So there’s no horizontal
asymptote. In order for there to be a slant asymptote,

lim
x→+∞

x lnx

x

would need to exist (though this wouldn’t suffice). But

lim
x→+∞

x lnx

x
= lim

x→+∞
lnx = +∞,

so this limit does not exist. Therefore there is no slant asymptote.

So, we know the following facts about the graph:



• The domain is exactly the values of x that are positive.

• The function approaches 0 as x approaches 0 from above, and it approaches +∞
as x approaches +∞.

• There are no horizontal, vertical, or slant asymptotes.

• The function is concave up everywhere.

• The function crosses the x-axis at (1, 0).

• The function is decreasing from 0 to 1/e, and is increasing from 1/e to +∞. In
particular, the function has a global minimum at 1/e.

• The function is continuous and differentiable on its domain, so there are no corners
or jumps.

Using all this, you should be able to sketch the graph. See here for what the graph
looks like.

9. If we evenly divide the interval [0, 1] into n pieces [x0, x1] ∪ [x1, x2] ∪ · · · ∪ [xn−1, xn],
each of length ∆x, then ∆x = 1/n, and xi = i/n. Thus

n∑
i=1

2i/n

n
=

n∑
i=1

2xi∆x,

so the limit in question is

lim
n→∞

n∑
i=1

2xi∆x.

This is a right-endpoints Riemann sum for the function 2x on the interval [0, 1]. Since
this function on that interval is integrable (because it’s continuous), the limit exists
and equals ∫ 1

0

2x dx =

[
2x

ln 2

]1
0

=
21 − 20

ln 2
=

1

ln 2
.

10. To solve ex = 0, Newton’s method gives us the formula

xnew = xold −
f(xold)

f ′(xold)
= xold −

exold

exold
= xold − 1.

So each iteration decreases x by 1, and thus

x0 = 0, x1 = −1, x2 = −2, x3 = −3, . . .

The pattern is clear: xn = −n.

https://www.google.com/search?q=graph+y+=+x+*+ln(+x)


11. (a) Let f(x) be the function x+ex. This function is a sum of differentiable functions,
so it is itself differentiable, and continuous. We need to show that there is exactly
one value of x such that f(x) = 2. We first show that there is at least one, using
the Intermediate Value Theorem. Note that

f(100) = 100 + e100 > 100 > 2,

and
f(−100) = −100 + e−100 < −100 + 1 = −99 < 2,

where we have used the fact that e−100 < 1. So 2 is a number between f(−100)
and f(100). As f is continuous on [−100, 100], it follows that f(x) = 2 for some
x between −100 and 100. So there is at least one value of x such that f(x) = 2.

Finally we show that there is at most one value of x such that f(x) = 2. Suppose
for the sake of contradiction that there were two values a and b such that f(a) =
f(b) = 2. Since f is continuous and differentiable everywhere, it follows by Rolle’s
theorem that f ′(c) = 0 for some c between a and b. But

f ′(c) = 1 + ec,

which is always positive, contradicting f ′(c) = 0.

(b) To solve the equation ex + x− 2 = 0, Newton’s method yields the iteration

xnew = xold −
exold + xold − 2

exold + 1
.

In particular, if we start with xold = 2, then the next value of x is

xnew = 2− e2 + 2− 2

e2 + 1
= 2− e2

e2 + 1
.

If we like, we can “simplify” this answer as

2e2 + 2

e2 + 1
− e2

e2 + 1
=

e2 + 2

e2 + 1
.

12. First, we evaluate the limit

lim
n→∞

n∑
i=1

i

n2
= lim

n→∞

1

n2

n∑
i=1

= lim
n→∞

1

n2

n(n + 1)

2
= lim

n→∞

n2 + n

2n2
= lim

n→∞

1 + 1/n

2
=

1

2
.

Next, we interpret it as an integral, as in problem 9. If one subdivides the interval
[0, 1] into n pieces [x0, x1] ∪ [x1, x2] ∪ · · · [xn−1, xn] of equal length ∆x, then

xi = i/n



and
∆x = 1/n.

So
n∑

i=1

i

n2
=

n∑
i=1

xi∆x.

So this is a right-endpoints approximation to
∫ 1

0
x dx. So, we’ve just shown that∫ 1

0
x dx = 1/2.


	Solutions

