Practice with Proofs

October 6, 2014

Recall the following

Definition 0.1. A function f is increasing if for every x, y in the domain of f,

$$
x < y \implies f(x) < f(y)
$$

- 1. Prove that $h(x) = x^3$ is increasing, using algebra.
- 2. Prove that $g(x) = x^3 x$ is not increasing.
- 3. Suppose that f is an increasing function with domain \mathbb{R} . Prove that f is not even.
- 4. Suppose that f is an increasing function. Show that for every x, y in the domain of f,

$$
x < y \iff f(x) < f(y)
$$

- 5. Write down an increasing function whose domain is R, but whose range is strictly smaller than R.
- 6. Prove that increasing functions are one-to-one.
- 7. Suppose that f is an increasing function with domain and range \mathbb{R} .
	- (a) What are the domain and range of f^{-1} ?
	- (b) Show that f^{-1} is increasing.
	- (c) Show that for every x, y , we have equivalences

$$
y < f(x) \iff f^{-1}(y) < x
$$

and

$$
y > f(x) \iff f^{-1}(y) > x.
$$

(d) Show that f is continuous. Hint: you'll need to solve

$$
f(a) - \epsilon < f(x) < f(a) + \epsilon
$$

for x, using f^{-1} .

8. Write down an increasing non-continuous function f whose domain is all of \mathbb{R} .

1 Solutions

1. Prove that $h(x) = x^3$ is increasing, using algebra.

Proof. Suppose that $x < y$. We need to show that $x^3 < y^3$. We break into cases according to whether x and y are positive, negative, or zero.

• Case 1: $0 < x < y$. Then x^2 , xy , and y^2 are positive, so we can multiply the inequality $x \leq y$ by these numbers, getting

$$
x3 = x2 \cdot x < x2 \cdot y
$$

$$
x2y = xy \cdot x < xy \cdot y = xy2
$$

$$
xy2 = y2 \cdot x < y2 \cdot y = y3
$$

So $x^3 < x^2y < xy^2 < y^3$, proving that $x^3 < y^3$.

• Case 2: $0 = x < y$. Then y is positive, so its cube y^3 is positive. Thus

$$
x^3 = 0 < y^3
$$

• Case 3: $x < 0 < y$. Then x is negative, so its cube x^3 is negative. Likewise, y is positive, so its cube y^3 is positive. Then

$$
x^3 < 0 < y^3
$$

• Case 4: $x < y = 0$. Then x is negative, so its cube $x³$ is negative. Thus

$$
x^3 < 0 = y^3.
$$

• Case 5: $x < y < 0$. Then $0 < (-y) < (-x)$, so by Case 1 (applied to $-y$ and $-x$, we know

$$
(-y)^3 < (-x)^3
$$

Equivalently

$$
-y^3 < -x^3
$$

Multiplying both sides by -1 yields

$$
y^3 > x^3.
$$

So in every case, we have $x^3 < y^3$, completing the proof. (Note: in Hald's class, you can probably take for granted the fact that $f(x) = x^3$ is increasing, and you probably don't need to prove it!) \Box

2. Prove that $g(x) = x^3 - x$ is not increasing.

Proof. Note that $0 < 1$ but $g(0) = 0 \nless g(1) = 1$. \Box

3. Suppose that f is an increasing function with domain R. Prove that f is not even.

Proof. Since f is increasing, $f(-1) < f(1)$. In particular, $f(-1) \neq f(1)$, so f is not even. \Box

4. Suppose that f is an increasing function. Show that for every x, y in the domain of f,

$$
x < y \iff f(x) < f(y)
$$

Proof. The \Rightarrow direction is by definition of increasing function, so we need to show the converse, that if $f(x) < f(y)$, then $x < y$. Equivalently, we need to show the contrapositive: if $x \geq y$, then $f(x) \geq f(y)$. Suppose $x \geq y$. Then either $x = y$ or $y < x$. In the first case, x and y are the same thing, so $f(x) = f(y)$. In the other case, $y < x$, so $f(y) < f(x)$, because f is increasing. Either way, we have $f(x) \ge f(y)$. This proves the contrapositive, and we're done. \Box

5. Write down an increasing function whose domain is R, but whose range is strictly smaller than \mathbb{R} .

Answer. The exponential function $f(x) = e^x$, for example. \Box

6. Prove that increasing functions are one-to-one.

Proof. Suppose that f is increasing and $f(x) = f(y)$. We need to show that $x = y$. If this weren't true, then $x < y$ or $y < x$. By definition of increasing, it would follows that $f(x) < f(y)$ or $f(y) < f(x)$. Either way, $f(x) \neq f(y)$, a contradiction. So $f(x) = f(y).$ \Box

- 7. Suppose that f is an increasing function with domain and range \mathbb{R} .
	- (a) What are the domain and range of f^{-1} ?

Answer. The domain and range of f^{-1} are the range and domain of f, which are both R. \Box

(b) Show that f^{-1} is increasing.

Proof. Suppose that $x < y$. Substituting $f^{-1}(x)$ and $f^{-1}(y)$ for x and y in problem 4, we see that

$$
f^{-1}(x) < f^{-1}(y) \iff f(f^{-1}(x)) < f(f^{-1}(y))
$$

But $f(f^{-1}(x)) = x$ and $f(f^{-1}(y)) = y$, so the right hand side is true. Therefore the left hand side is true, i.e., $f^{-1}(x) < f^{-1}(y)$. So f^{-1} is increasing. \Box (c) Show that for every x, y , we have equivalences

$$
y < f(x) \iff f^{-1}(y) < x
$$

and

$$
y > f(x) \iff f^{-1}(y) > x.
$$

Proof. Since the range of f is all of R, we can write y as $f(z)$ for some z. Then $f^{-1}(y) = z$, so the first statement says

$$
f(z) < f(x) \iff z < x
$$

and the second says

$$
f(z) > f(x) \iff z > x
$$

These follow from problem 4.

(d) Show that f is continuous. Hint: you'll need to solve

$$
f(a) - \epsilon < f(x) < f(a) + \epsilon
$$

for x, using f^{-1} .

Preliminary work to find δ *.* We need to show that

$$
\lim_{x \to a} f(x) = f(a)
$$

for arbitrary a. Given $\epsilon > 0$, we need to find $\delta > 0$ such that

$$
|x - a| < \delta \implies |f(x) - f(a)| < \epsilon.
$$

Now

$$
|f(x) - f(a)| < \epsilon \iff f(a) - \epsilon < f(x) < f(a) + \epsilon.
$$

By the previous problem,

$$
f(a) - \epsilon < f(x) < f(a) + \epsilon \iff f^{-1}(f(a) - \epsilon) < x < f^{-1}(f(a) + \epsilon).
$$

So, we need to find δ such that

$$
a - \delta < x < a + \delta \implies f^{-1}(f(a) - \epsilon) < x < f^{-1}(f(a) + \epsilon),
$$

i.e., such that the open interval $(a - \delta, a + \delta)$ is a subset of the open interval

$$
(f^{-1}(f(a) - \epsilon), f^{-1}(f(a) + \epsilon)).
$$

As usual, we take δ to be the smaller of the two distances from a to the endpoints of this interval:

$$
\delta = \min \{ f^{-1}(f(a) + \epsilon) - a, a - f^{-1}(f(a) - \epsilon) \}
$$

 \Box

One has to be careful that a actually sits inside this interval, so that δ is actually positive! This uses the fact that f^{-1} is increasing, so that

$$
f(a) - \epsilon < f(a) < f(a) + \epsilon
$$

implies

$$
f^{-1}(f(a) - \epsilon) < f^{-1}(f(a)) = a < f^{-1}(f(a) + \epsilon)
$$

Now here's the actual proof:

Proof. Fix a. We need to show continuity at a, i.e., that

$$
\lim_{x \to a} f(x) = f(a).
$$

So, we need to show that for every $\epsilon > 0$ there is a $\delta > 0$ such that

$$
|x - a| < \delta \implies |f(x) - f(a)| < \epsilon.
$$

Given ϵ , let

$$
\delta = \min \left\{ f^{-1}(f(a) + \epsilon) - a, a - f^{-1}(f(a) - \epsilon) \right\}
$$

We first check that $\delta > 0$, which amounts to checking that the two numbers it is the minimum of, are both positive. Since $\epsilon > 0$, we have

$$
f(a) - \epsilon < f(a) < f(a) + \epsilon.
$$

By the previous problem

$$
f^{-1}(f(a) - \epsilon) < a < f^{-1}(f(a) + \epsilon).
$$

Consequently both $f^{-1}(f(a) + \epsilon) - a$ and $a - f^{-1}(f(a) - \epsilon)$ are positive, so their minimum δ is positive. So $\delta > 0$.

Next, suppose that $|x - a| < \delta$. Then

$$
x < a + \delta \le a + (f^{-1}(f(a) + \epsilon) - a) = f^{-1}(f(a) + \epsilon).
$$

So $x < f^{-1}(f(a) + \epsilon)$. By the previous problem

$$
f(x) < f(a) + \epsilon. \tag{1}
$$

Similarly,

$$
x > a - \delta \ge a - (a - f^{-1}(f(a) - \epsilon)) = f^{-1}(f(a) - \epsilon).
$$

so $x > f^{-1}(f(a) - \epsilon)$. By the previous problem

$$
f(x) > f(a) - \epsilon. \tag{2}
$$

 \Box

Combining (1) and (2) , we see that

$$
f(a) - \epsilon < f(x) < f(a) + \epsilon,
$$

or equivalently that $|f(x)-f(a)| < \epsilon$, which is what we wanted to show. So we've shown that $\lim_{x\to a} f(x) = f(a)$. As a was arbitrary, f is continuous.

8. Write down an increasing non-continuous function f whose domain is all of \mathbb{R} .

Answer. For example,

$$
f(x) = \begin{cases} x & \text{when } x < 0\\ x + 1 & \text{when } x \ge 0 \end{cases}
$$

 \Box