A1 Evaluate each expression without using a calculator:

(a)
$$(-3)^4$$
 (b) -3^4 (c) 3^{-4}

(b)
$$-3^4$$

(c)
$$3^{-4}$$

(d)
$$\frac{5^{23}}{5^{21}}$$

(d)
$$\frac{5^{23}}{5^{21}}$$
 (e) $\left(\frac{2}{3}\right)^{-2}$ (f) $16^{-3/4}$

(f)
$$16^{-3/4}$$

A5 Simplify each rational expression.

(a)
$$\frac{x^2 + 3x + 2}{x^2 - x - 2}$$

(a)
$$\frac{x^2 + 3x + 2}{x^2 - x - 2}$$
 (b) $\frac{2x^2 - x - 1}{x^2 - 9} \cdot \frac{x + 3}{2x + 1}$

(c)
$$\frac{x^2}{x^2 - 4} - \frac{x+1}{x+2}$$
 (d) $\frac{\frac{y}{x} - \frac{x}{y}}{\frac{1}{y} - \frac{1}{x}}$

(d)
$$\frac{\frac{y}{x} - \frac{x}{y}}{\frac{1}{y} - \frac{1}{x}}$$

A9 Solve each inequality. Write your answer using interval notation.

(a)
$$-4 < 5 - 3x \le 17$$
 (b) $x^2 < 2x + 8$

(b)
$$x^2 < 2x + 8$$

(c)
$$x(x-1)(x+2) > 0$$
 (d) $|x-4| < 3$

(d)
$$|x-4| < 3$$

(e)
$$\frac{2x-3}{x+1} \le 1$$

- **B1** Find an equation for the line that passes through the point (2, -5) and...
 - 1. ... has slope -3.
 - 2. ... is parallel to the x-axis.
 - 3. ... is parallel to the y-axis.
 - 4. ... is parallel to the line 2x 4y = 3.
- **B3** Find the center and radius of the circle with equation $x^2 + y^2 6x + 10y + 9 = 0$.
- **B4** Let A(-7,4) and B(5,-12) be points in the plane.
 - 1. Find the slope of the line that contains A and B.
 - 2. Find an equation of the line that passes through A and B. What are the intercepts?
 - 3. Find the midpoint of the segment AB.
 - 4. Find the length of the segment AB.
 - 5. Find an equation for the perpendicular bisector of AB.
 - 6. Find an equation of the circle for which AB is a diameter.

C3 Find the domain of the function

(a)
$$f(x) = \frac{2x+1}{x^2+x-2}$$
 (b) $g(x) = \frac{\sqrt[3]{x}}{x^2+1}$ (c) $h(x) = \sqrt{4-x} + \sqrt{x^2-1}$

C5 Without using a calculator, make a rough sketch of the graph.

(a)
$$y = x^3$$
 (b) $y = (x+1)^3$ (c) $y = (x-2)^3 + 3$
(d) $y = 4 - x^2$ (e) $y = \sqrt{x}$ (f) $y = 2\sqrt{x}$
(g) $y = -2^x$ (h) $y = 1 + x^{-1}$

D6 If $\sin x = \frac{1}{3}$ and $\sec y = \frac{5}{4}$, where x and y lie between 0 and $\pi/2$, evaluate $\sin(x+y)$.

- **D7** Prove the identities.
 - 1. $\tan \theta \sin \theta + \cos \theta = \sec \theta$
 - $2. \ \frac{2\tan x}{1+\tan^2 x} = \sin 2x$

These problems are from pages xxiv-xxviii of the textbook.