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There will probably be at least one epsilon-delta problem on the midterm and the final.
These kind of problems ask you to show1 that

lim
x→a

f(x) = L

for some particular f and particular L, using the actual definition of limits in terms of ε’s
and δ’s rather than the limit laws. For example, there might be a question asking you to
show that

lim
x→a

7x+ 3 = 7a+ 3 (1)

or
lim
x→5

x2 − x− 1 = 19, (2)

using the definition of a limit.

1 The rules of the game

Normally, the answer to this kind of question will be of the following form:

Given ε > 0, let δ = [something positive, usually depending on ε and a]. If
0 < |x− a| < δ then [some series of steps goes here], so |f(x)− L| < ε.

Some examples of this are Examples 2-4 of section 2.4. Note that “[some series of steps goes
here]” should consist of a proof that |f(x)− L| < ε, from the assumptions that

• ε > 0

• δ is whatever we said it was, and

• 0 < |x− a| < δ.

1i.e., prove
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In these kind of problems, much of the work goes into figuring out what δ should be.
None of this work is shown in the actual answer. To clarify: in examples 2-4 of section 2.4,
each “solution” consists of two parts. Part 2 (“showing that this δ works”) is the actual
answer–what you would turn in if asked this question on a homework or an exam. Part 1
(“guessing a value for δ”) is the bulk of the work done to produce this answer.

So there’s a sense in which you don’t have to show your work in this kind of problem; it
suffices to just write down the final answer. This is a little strange because for most math
problems it is necessary to show your work. For example, if there was a problem asking you
to evaluate

lim
x→1

x4 − 1

x− 1
,

it would not be acceptable to just write down “4.” This would be unacceptable because
there’s no way for the person reading your answer to see why the limit should be 4. But if
the answer to a question is a proof, rather than a number or an expression, then the reader
can see directly whether or not the answer is correct, because the correctness of a proof is
self-evident. In problems where the answer is a number or an expression, when we say “show
your work” we really mean “show that the answer is correct.” For example, a more correct
answer to limx→1(x

4 − 1)/(x− 1) would be

lim
x→1

x4 − 1

x− 1
= lim

x→1

(x3 + x2 + x+ 1)(x− 1)

x− 1
= lim

x→1
(x3 + x2 + x+ 1)

= 13 + 12 + 1 + 1 = 4.

The first step is just rewriting the thing whose limit is being taken. The second step is using
the fact that limx→1 only looks at values of x that aren’t 1, for which we can cancel out the
factors of (x − 1). The third step is the direct substitution principle for polynomials, and
the last step is basic arithmetic.

2 Common mistakes

From looking through people’s homework, I got the impression that the following mistakes
were common:

• Dividing by zero, or treating ∞ as if it were an actual number.

• Writing things like

lim
x→1

x4 − 1

x− 1
= x3 + x2 + x+ 1 = 4.

In limx→1
x4−1
x−1 , the variable x is a bound variable. To paraphrase Wikipedia, “there

is nothing called x on which limx→1(x
4 − 1)/(x − 1) could depend.” It doesn’t make

sense to say that the limit is equal to x3 + x2 + x+ 1, because what is x?

• Not specifying what you chose δ to be! If you don’t do this, it’s really unclear what
you’re ultimately trying to prove.
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• Confusing the preliminary analysis to figure out δ, with the actual answer (the proof),
or flat out omitting the actual answer.

• Making δ depend on x. Perhaps you’re trying to show that

lim
x→0

x

x2 + 1
= 0

and so you need to show that for every ε > 0 there is a δ > 0 such that |x| < δ implies
|x/(x2 + 1)| < ε. You note∣∣∣∣ x

x2 + 1

∣∣∣∣ < ε ⇐⇒ |x|
|x2 + 1|

< ε ⇐⇒ |x| < |x2 + 1|ε,

so you would like to take δ to be |x2 + 1|ε.
But you can’t, since the rules of the ε-δ game say that you have to specify δ before
being told what x is. In this case, you need to find a δ which will be guaranteed to
be less than |x2 + 1|ε. Since |x2 + 1| is always at least 1, you could take δ = ε/2 or
something similar.

3 Strategies for finding delta

One general strategy is to try solving |f(x)−L| < ε for x. Once you know what values of x
will work, you choose δ so that the interval (a− δ, a+ δ) sits inside the set of solutions.

For example, suppose you’re trying to prove that limx→8
3
√
x = 2. Given ε > 0, you need

to find δ > 0 such that
0 < |x− 8| < δ =⇒ | 3

√
x− 2| < ε.

One approach is to just solve the inequality | 3
√
x− 2| < ε for x, as follows:

| 3
√
x− 2| < ε ⇐⇒ 2− ε < 3

√
x < 2 + ε

⇐⇒ (2− ε)3 < x < (2 + ε)3

In order for (8− δ, 8 + δ) to sit inside the interval from (2− ε)3 to (2 + ε)3, one needs

(2− ε)3 ≤ 8− δ and 8 + δ ≤ (2 + ε)3,

or equivalently
δ ≤ 8− (2− ε)3 and δ ≤ (2 + ε)3 − 8.

So the biggest value of δ that would work is

δ = min{8− (2− ε)3, (2 + ε)3 − 8}.
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If f(x) is a polynomial or a nice enough rational function, so that L = f(a), then another
approach is to look at

f(x)− f(a)

x− a
.

If you can find some constant C and guarantee that∣∣∣∣f(x)− f(a)

x− a

∣∣∣∣ ≤ C,

then it’s safe to take δ = ε/C, because then

|x− a| < δ =⇒ |f(x)− L| = |f(x)− f(a)| = |x− a| ·
∣∣∣∣f(x)− f(a)

x− a

∣∣∣∣ < δ · C = ε.

In practice, one usually can’t find such a C without assuming that x is bounded. But this is
okay, because we can always take δ to be the smaller of two numbers. If C only works when
x is within 1/2 of a, we just take δ to be the minimum of 1/2 and ε/C.

For example, suppose you’re trying to show that limx→1 x
3 − 2x = −1. Look at

x3 − 2x+ 1

x− 1
.

Factoring the numerator, this is

(x− 1)(x2 + x− 1)

x− 1

which is the same thing as x2 + x− 1, since x is not 1. Now x2 + x− 1 could be pretty big.
But if we decide that x will be within 1/2 of 1, then |x| is at most 3/2. So

|x2 + x− 1| ≤ |x|2 + |x|+ |1| ≤ 9/4 + 3/2 + 1 = 19/4 < 5.

So it turns out that we can take δ to be min(1/2, ε/5).
This kind of approach always works for polynomials, and often works for rational func-

tions.
For taking limits of rational functions, it helps to remove any discontinuities that exist.

For example, the first step in analyzing

lim
x→1

x2 − 1

x− 1

is to replace it with the equivalent expression

lim
x→1

x+ 1.

Another way of thinking about these problems is to keep track of what things can be
made small (because they have limit 0), and what things can be bounded (because they have
some finite limit, or at least don’t have limit infinity).
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For example, if you’re trying to prove using ε-δ that limx→0 x(cosx)(x2 +1) = 0, then the
goal is to make x(cosx)(x2 + 1) be really small. This is a product of three things. The first,
x, can be made arbitrarily small, because limx→0 x = 0. On the other hand limx→0 cosx
and limx→0(x

2 + 1) are nonzero, so we shouldn’t expect to make those small. But they
do approach finite limits, so we can at least make them be bounded: by choosing δ small
enough, we can ensure that cosx will be at most 2 (duh), and that x2 + 1 will be at most 2,
because 2 > limx→0(x

2 + 1).
So of the three factors in x · (cosx) · (x2 + 1), we can make the first one as small as we

like, and the second and third be as small as 2. We want the product to be smaller than ε,
so we should make the first one be as small as ε/4.

So now we just need to choose δ to ensure that |x| < ε/4, that | cosx| < 2, and that
|x2 + 1| < 2. The first condition is ensured by δ ≤ ε/4. The second is ensured by anything;
it’s always true. The third is ensured by, I guess, taking δ ≤ 1/2. We need to take the
smallest of these three values of δ, so we take δ = min(ε/4, 1/2).
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