What's a good way to represent a graph?
Listing all vertices & edges is cumbersome.

Def: Let $G = (V, E)$ be an undirected graph w/ $|V| = n$. Denote vertices by V_1, \ldots, V_n. The adjacency matrix A.

Ex:

Ex:

Ex: Draw a graph w/ adj matrix.

Obs: An adj matrix of undirected graph.
Def: If \(G = (V, E) \) is a directed graph, its adj. matrix \(A \) (an \(n \times n \) matrix) is the \(n \times n \) matrix s.t.

\[
A = \begin{pmatrix}
0 & \cdots & 1 & \cdots & 0 \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & \cdots & 1 \\
\end{pmatrix}
\]

Ex:

Not in general a

Another way to represent graph:

Def: Let \(G = (V, E) \) be undirected graph.
Let \(v_1, \ldots, v_n \) be vertices and \(e_1, \ldots, e_m \) be edges.
The incidence matrix

\[
I = \begin{pmatrix}
1 & 1 & \cdots & \cdots & 1 \\
1 & 1 & \cdots & \cdots & 1 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
1 & 1 & \cdots & \cdots & 1 \\
\end{pmatrix}
\]

Ex:

What does it mean for two graphs to be the "same"?

Def: The simple graphs \(G_1 = (V_1, E_1) \) and \(G_2 = (V_2, E_2) \) are isomorphic if
Ex: Are these 2 graphs isomorphic?

Note: If G_1 and G_2 are isomorphic, they must have

If G_1 and G_2 are 2 graphs w/ n vertices, can be hard to determine whether they are isomorphic:

If we think 2 graphs not isomorphic, good strategy is to
Def: A property preserved by isomorphism is

\[\text{a} \]

Ex: If \(G_1 \) and \(G_2 \) are isomorphic and \(G_1 \) has \(n \) vertices,

Ex: Show that these 2 graphs are not iso.
§ 10.4 Connectivity

A path in graph is

Def: Let \(n \in \mathbb{N} \) and \(G \) an undirected graph. A path of length \(n \) from \(u \) to \(v \) is

If graph simple, can just give

Def: Path is circuit if

Def: Let \(n \in \mathbb{N} \) and \(G \) a directed graph. A path of length \(n \) from \(u \) to \(v \) is
Ex of paths in graphs from real life.

Ex: Let $G = (V, E)$ where V = set of places, $E =$

Def: An undirected graph called connected if

Ex: In previous example, if $V =$

Ex: Which of these graphs is connected?

Recall: A subgraph of $G = (V, E)$ is a graph
Def: A connected component of a graph G is

Ex: What are connected components of $G = \text{...}$

For directed graphs, 2 notions of connected:

Def: A directed graph is strongly connected.

Def: A directed graph is weakly connected.

Ex: Is G st. conn? weak conn? $G = \text{...}$
Paths/circuits can be helpful in determining questions of isomorphism.

Ex: if \(f: G_1 \to G_2 \) is a graph isomorphism, and

Are these 2 graphs iso?