Recall: A relation R on set A is an equivalence relation if it is:

* Reflexive

* Symmetric

* Transitive

Ex: Let S be relation on \mathbb{R} defined by $S = \{(x, y) \in \mathbb{R} \times \mathbb{R} | x + y = 0 \}$.

Show that S is equivalence relation.

Reflex: Need to show $x + x = 0 \quad \forall x \in \mathbb{R}$

Symm: Suppose $(x, y) \in S$. Need to show $(y, x) \in S$.

Trans: Suppose $(x, y) \in S$ and $(y, z) \in S$. Need to show $(x, z) \in S$.
Def: An (undirected) graph \(G = (V, E) \) is

Def: If there are several edges between same 2 endpoints, called

Def: A loop is

Ex: Let \(V = \) set of all students in class.
Let \(E = \)

Part of graph might look like:

For some types of information, a directed graph is better.

Def: A directed graph or digraph \((V, E) \) is
Ex: Let V = set of all species.

Draw edge u to v whenever

Ex: The web (internet). Let V =

Q: What if we want to model

Q:

\[f(10, 2) \]

Def: Two vertices u and v in undirected graph G are adjacent in G if
Def: The degree of a vertex in an undirected graph is the number of edges incident to it.

Handshaking Theorem: Let $G = (V, E)$ be a graph with e edges. Then

Pf:

Ex:
"Handshaking" because:

Theorem:

PF:

Special kinds of graphs:
The complete graph K_n

The cycle C_n has
The wheel W_n

The n-cube Q_n

Def: A graph $G = (V, E)$ is bipartite if V can

Ex:
Thm: A simple graph is bipartite iff

\[\text{Def: Let } G = (V, E) \text{ be an undirected graph w/ } |V| = n. \]
Denote vertices by \(v_1, \ldots, v_n \). The adjacency matrix \(A \) (or \(A_c \)) of \(G \) is
\varepsilon_x^* \\
\varepsilon_x^* \\
Obs.