Recall: Let A, B be sets. A binary relation R from A to B is a relation on A.

A relation R on A is transitive if

Suppose R is not trans. What do we add to R to make it trans?

Say $R = \{1 \rightarrow 2, 2 \rightarrow 3, 3 \rightarrow 4, 4 \rightarrow 5\}$ What to add?

Def: A path of length n from a to b in the directed graph G is a
Also: there is path from a to b in relation R if

Recall: If R relation on A,
\[R \circ R = \{(a, c) \} \]
So \[R \circ R \circ R = \{(a, b) \} \]

Notation: \(R^2 = R \circ R, \quad R^3 = R \circ R \circ R, \ldots \)

Theorem: Let R be relation on A.
There is path of length n,

Def: Let R be relation on A. The connectivity relation \(R^* \) is
\[R^* = \{(a, b) \} \]
So \(R^* = \)

Ex: Let \(R = \{(a, b) \} \) there is simple cycle blur from place a to b
\[R^* = \]
Thm: The transitive closure of relation R is
R^*.

Proof: What do we need to show?
R^* is the smallest transitive relation that contains R

(1)

(2)

(3)

Section 9.5 Equivalence Relations

Definition: A relation R on set A called an equivalence relation if R is reflexive and symmetric.

Recall: R is reflexive if aRa for all a in A
R is symmetric if $$(a,b) \in R \Rightarrow (b,a) \in R$$

Example: Choose $n \in \mathbb{Z}^+$ and let R be relation on \mathbb{Z} defined by

$R =$
Def: If $(a,b) \in R$ and R an equiv. relation, we say a and b are *alms*.

Sometimes use notation \sim to denote equiv. relation.

Ex:

Ex: Are these equiv. relations on $\{0,1,2\}$?

- $\{(0,0), (1,1), (0,1), (1,0)\}$
- $\{(0,0), (1,1), (2,2), (0,1), (1,2)\}$
- $\{(0,0), (1,1), (2,2), (0,1), (1,2), (1,0), (2,1)\}$
- $\{(0,0), (1,1), (2,2), (0,1), (0,2), (1,0), (1,2), (2,0), (2,1)\}$
- $\{(0,0), (1,1), (2,2)\}$

Ex: Which of these relations on set of all functions $\mathbb{Z} \to \mathbb{Z}$ are equiv. relations?

- $R = \{(f,g) \mid f(1) = g(1)\}$
- $R = \{(f,g) \mid f(0) = g(0) \text{ or } f(1) = g(1)\}$
Ex: Let R be relation on the set $\mathbb{Z} \times \mathbb{Z} = \{(a, b) \mid a, b \in \mathbb{Z}^+\}$ s.t.
$((a, b), (c, d)) \in R$ iff $a + d = b + c$. Show that
R is equiv. relation.

Def: Let R be an equiv. relation on set A.
Choose $a \in A$. Define
Ex: What is equiv. class of \([1,2]\) for congruence mod 5? Let \(R = \{(a,b) \mid a = b \mod 5\}\)

Ex: How many equiv. classes are there mod 5?

SOL:

Note:

Theorem: Let \(R\) be an equiv. relation on set \(A\).

TFAE:
Theorem: Let R be equiv. relation on set A. Then: The union of all equiv. classes is A. Two equiv. classes are either equal or disjoint (empty intersection).

Def: A partition of a set S is

Ex: