Universal instantiation:
Given the premise $\forall x P(x)$, we can conclude that

Ex:

<table>
<thead>
<tr>
<th>Rule of Inference</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ex: Show that premises
Let $S_n(x)$ denote
let $A_n(x)$ denote
The domain is

1. Step

2.

3.

4.

5.

§1.7 Introduction to Proofs

A proof is a valid argument that establishes the truth of a mathematical argument.

A theorem is
A proposition is
A lemma is
A corollary is
A conjecture is
1. **Direct proof** of $p \Rightarrow q$.

Rk: To prove theorem of form $\forall x \ (P(x) \Rightarrow Q(x))$, our goal is to

Def: The integer n is **even** if there

n is **odd** if

Ex: Show that the sum of two odd integers is even.

Proof:
2. **Proof by contraposition:**

Ex: Let \(n \in \mathbb{Z} \) (the integers). Show that if \(n^2 \) is even then \(n \) is even.

Proof:

Note: Direct proof is harder here...

3. **Proof by contradiction:**

Def: A real number \(r \) is **rational** if
Ex: Prove that $\sqrt{2}$ is irrational via \uparrow.

Proof:

Ex: Show that at least 10 of any 64 days chosen must fall on the same day of the week.

pf: \uparrow
Proofs of equivalence:
To prove a theorem that is a biconditional statement, i.e., \(p \iff q \), we show:

Rt: iff shorthand for “if and only if”

Ex:

Pf:

Proof by Case: Sometimes it is helpful to divide up the proof into cases...

Ex:

Ex:

Q: What cases should we consider?
Without loss of generality (WLOG):

Ex:
Pf:
Open Problems:

Example: