Math 55 Lecture 25 8/10.5

Def: An Euler circuit in graph G is

$\exists \; \Gamma = \Gamma$

Make graph:

Question becomes:

$\Gamma =$

Note:

$(1) \quad \text{If } v \text{ is the start/end vertex, then it must have}$

$(2) \quad \text{If } v \text{ is not the start/end vertex, then for}$
Note: We always assume graphs have

Theorem: A connected graph \(G \) with at least 2 vertices has an Euler circuit iff

Example: Do these graphs have Eulerian circuit?

Lemma: Any multigraph with at least 2 vertices, s.t. all degrees are even, has

Proof:
Proof of Theorem: We already proved that if G has an $E.$ circuit, we need to show:

Step 1: Use Lemma to construct

Step 2:

Step 3: Remove edges of C_1 from H_1, get subgraph H_2.

Ex: Does G have an Eulermian circuit?

Step 1: Find a simple circuit C_0.

Step 2: Let H_1 be the graph of unused edges of G.

$$G = \begin{align*}
\begin{tikzpicture}
\node (a) at (0,0) {}; \\
\node (b) at (2,0) {}; \\
\node (c) at (1,1) {}; \\
\node (d) at (1,-1) {}; \\
\node (e) at (-1,0) {}; \\
\draw (a) -- (b) -- (c) -- (a); \\
\draw (a) -- (d) -- (c); \\
\draw (b) -- (e) -- (c); \\
\draw (b) -- (d); \\
\end{tikzpicture}
\end{align*}$$
Step 3: Let H_2 be graph of unused edges.
Related concept: Euler path

Def: An Euler path in G is

Thm: A connected graph has an Euler path but not an Euler circuit if and only if

Ex:

Note: