Recall: Let A,B be sets. A binary relation R from A to B is a relation on A is transitive if whenever $a R b$ and $b R c$, then $a R c$.

Suppose R is not trans. What do we add to R to make it trans?

Say $R =$

Attempt 1:

Is it enough to add a new arrow $a \rightarrow c$ whenever $a \rightarrow b$ and $b \rightarrow c$?

Attempt 2:

Def: A path of length n from a to b in the directed graph G is a sequence of edges...
Also: there is path from a to b in relation R if there is sequence of elements

What are paths of length 2

Recall: If R relation on A,

$R \circ R = \{(a, c) | \exists b : (a, b) \in R \land (b, c) \in R\}$

So $R \circ R \circ R = \{(a, d) | \exists b, c : (a, b) \in R \land (b, c) \in R \land (c, d) \in R\}$

Notation: $R^2 = \cdots, R^3 = \cdots$

Theorem: Let R be relation on A.
There is path of length n, where $n \in \mathbb{Z}^+$, from a to b, iff

Definition: Let R be relation on A, The connectivity relation $R^* = \{(a, b) \mid \exists \text{ path of length } n \}\$?

So $R^* = \{(a, b) \mid \exists \text{ path of length } n \}$

Example: Let $R = \{(a, b) \mid \}\$

$R^* = ??$
Thm: The transitive closure of relation R is R^*

Proof: What do we need to show?
"R^* is the smallest transitive relation that contains R"

(1)

(2)

(3)

(i) $R^* \supseteq R$ by def.

(ii) To show R^* is transitive: need to show that

(iii)

of 9.5 Equivalence Relations

Def: A relation R on set A called

equivalence relation if

Recall: R is reflexive if $\forall a \in A$

R is symmetric if whenever $(a,b) \in R$, we also have

Ex: Choose $n \in \mathbb{Z}^+$ let R be relation on \mathbb{Z} defined by

$R = \{(a,b) | a - b \equiv 0 \mod n\}$

Then R is

We showed
Def: If \((a, b) \in R\) and \(R\) an equiv. relation, we say \(a\) and \(b\) are

Sometimes use notation

\[\begin{align*}
\text{Ex: } R = \{(a, b) \mid a \equiv b \mod n\} \text{ is} \\
& \text{we use notation}
\end{align*} \]

\[\text{Ex: Are these equiv. relations on } \{0, 1, 2\} \ ? \]

\[\text{Ex: Which of these relations on set of all} \]

\[\text{functions } \mathbb{Z} \to \mathbb{Z} \text{ are equiv. relations?} \]

* \(R = \{(f, g) \mid \) \]
 Reflex:
 Symm:
 Trans:

* \(R = \{(f, g) \mid \) \]
 Reflex:
 Symm:
 Trans:
Ex: Let \(R \) be a relation on the set \(\mathbb{Z} \times \mathbb{Z} = \{ (a, b) \mid a, b \in \mathbb{Z}^+ \} \) such that \((c, d), (e, f) \in R \) iff

Def: Let \(R \) be an equivalence relation on set \(A \). Choose \(a \in A \). Define \(\left[a \right]_R \) called the equivalence class of \(a \). Sometimes denoted \([a] \). Any element \(b \in \left[a \right]_R \) called a
Ex: What is equiv. class of 1, 2, for

Ex: How many equiv. classes are there

Sol:

Note:

Theorem: Let R be an equiv. relation on set A.

TFAE: (i) (ii) (iii)

Pf: Show (i) \Rightarrow (ii).
Show (ii) ⇒ (iii)

Show (iii) ⇒ (i).

Theorem: Let R be equiv. relation on set A.
Then: The union of all equiv. classes is
Two equiv. classes are either

Def: A partition of a set S is collection of disjoint nonempty subsets of S.

Ex:

.