Def: A random variable is a function from

Note: Random variable is

Ex: Suppose coin

The expected value of a random variable is a

Def: The expected value (or expectation) of the random variable X on the sample space S is
Ex: What is the expected number of times a

Notation: If \(X \) is a random variable on sample space \(S \), let
\(p(X = r) \) be

Lemma: If \(X \) a RV w/ range \(X(s) \), \(E(X) \)

Redo Ex above:

Note: If \(f_1 \) and \(f_2 \) are functions from \(A \) to \(IR \), we can
Definition: \((f_1 + f_2)(x) := (f_1 f_2)(x) := \)

Definition: Given \(a, b \in \mathbb{R}\) and \(f: A \to \mathbb{R}\), we can also define a new function \((a f + b): A \to \mathbb{R}\) by

So if \(X_1\) and \(X_2\) are both random variables with sample space \(S\), we can

And if \(a, b \in \mathbb{R}\), get new RV \(a X_1 + b\) defined by

Theorem "Expectation is Linear": If \(X, X_i, \ i = 1, 2, \ldots, n\) are random variables on \(S\), and if \(a\) and \(b \in \mathbb{R}\), then

(i)
(ii)
\(Pf (n=2); (i) \, E (X_1 + X_2) \)

(ii)

Ex: Suppose that \(n \) Bernoulli trials are performed, where \(p \) is the probability of success on each trial. What is

\[\text{Sol:} \]

Def: A random variable \(X \) has a geometric distribution \(w/ \) parameter \(p \) if

Ex: Suppose that the probability that a coin comes up tails is \(p \).
Lemma:

\[\sum_{j=0}^{\infty} x^j = \frac{1}{1-x} \text{ for } |x| < 1 \text{ (limit of geometric series found)} \]

Differentiate both sides:

\[\sum_{j=1}^{\infty} j x^{j-1} = \frac{1}{(1-x)^2} \]

Sol: What is the sample space?

Let \(X \) be random variable equal to

Theorem: If the random variable \(X \) has the geometric distribution w/ parameter \(p \), then

...
Def: The random variables X and Y on a sample space S are independent if:

Theorem: If X and Y are independent random variables on a space S, then

Pf: $E(xy) =$

The expected value of a random variable tells us

What if we want to know how far from the average
Def: Let X be a random variable on sample space S. The variance of X, denoted $V(X)$, is $V(X) =$

Theorem: If X is a random variable on sample space S, then

Using this, can prove...

Thm: If X and Y are two independent random variables on sample space S,