
Math 1B – Will Fisher Sections 207 and 210

Math 1B

Midterm 2 Review

Sequences and Series

Sequences
In this course we rarely deal with plain sequences, however it is important to distguish

sequences from series. A sequence is simply a sequence (in the usual plain English sense)
of numbers and they are typically labelled with a subscript n, e.g. (an)n or {an}.

We have three ways to represent series in this class. Namely,

(i) As a list, e.g.
1, 2, 4, 8, . . .

(ii) Explicitly via a formula, e.g.
an = 2n

(iii) Recursively, e.g.
an = 2an−1, a0 = 1.

Note that recursive definitions also require us to specify starting terms. As a rule of
thumb, a recursive definition referencing the previous m terms will initial values for
the first m terms in the sequence.

Exercises

1. Find the 3rd term of the following sequence

an =
(−1)n−12n

n!
.

2. Find an explicit formula for the following sequence

3

2
,
5

4
,
7

8
,
9

16
, . . .

Hint: Look at how the numerators and denominators behave separately.

3. Find the 5th term of the following sequence

bn+1 = bn + bn−1, b0 = b1 = 1.
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Series
In this class, series refer to infinite sums. Just as we can list out sequences or give

explicit formulas, we can do the same with series e.g.

1 +
1

2
+

1

3
+

1

4
+ · · ·

and equivalently
∞∑
n=1

1

n
.

In general, lets say we want to add up all the terms of some sequence {an}, that is we
want to compute

∞∑
n=1

an.

Now, it doesn’t make sense to add up infinitely many things so we need to make a definition
for what this means. To do this, we define partial sums of the series. The Nth partial sum
is given by

SN =
N∑

n=1

an

= a1 + a2 + · · ·+ aN

and is the sum of the first N terms. We then make sense of the infinite sum by saying that
it exists if, as we add more and more terms, the value we get approaches some number
which then becomes the value of the infinite sum. That is we set

∞∑
n=1

an = lim
N→∞

SN .

If this limit exits, we say that
∑

n an is convergent. Otherwise, we say that
∑

n an is
divergent.

Exercises

1. Using the definition of infinite series via partial sums, compute

∞∑
n=1

( 1
n
− 1

n+ 1

)
.

2. Using partial fraction decomposition and the definition of infinite series via partial
sums, compute

∞∑
n=1

n+ 1

n2(n+ 2)2
.
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3. Arguing from definition, show that
∞∑
n=1

1

diverges.

Explicit Tools for Assessing Convergence

Geometric Series and p-Series
We have the following two theorems which you should remember which help us identify

the convergence and divergence of series.

Theorem 1 (Geometric Series Test). The series

∞∑
n=0

arn

diverges if |r| ≥ 1 and converges if |r| < 1. In the case of |r| < 1, we have that

∞∑
n=0

arn =
a

1− r
.

Note that in this theorem it is important that n starts at n = 0, at least for the second
half which asserts the value of the sequence. On exams, we will often be given a severely
mangled geometry series like the following

∞∑
n=3

2n+1

32n

and we will be asked to compute its value. This is bad because not only is it not clear what
a and r are, but it also starts at n = 3. For these a suggest the following simple strategy
if you are confident that the series is geometric: Write out the first few terms

∞∑
n=3

2n+1

32n
=

24

36
+

25

38
+ · · · .

If we compare this to
∞∑
n=0

arn = a+ r + · · · ,

we see that the first term should be a and the second term should be r. Thus we find that

a =
24

36
, ar =

25

38
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at which point we immediately get a and can solve for r = 2/9. Thus

∞∑
n=3

2n+1

32n
=

24/36

1− 2/9
=

16

567
.

The second theorem we need is

Theorem 2 (p-series test). The following series

∞∑
n=1

1

np

converges if p > 1 and diverges if p ≤ 1.

Exercises

1. Compute the value of ∑
n=2

(−1)n22n+1

7n
.

2. Does the following series converge:

∞∑
n=1

ne

nπ
?

Divergence Test
Suppose that

∑
n an converges. This means that the partial sums SN approach some

number L as N gets large. As such, we may look at the following difference

aN = (a1 + · · ·+ aN)− (a1 + · · ·+ aN−1)

= SN − SN−1.

As N gets really big, the right hand side approaches L−L which is zero. Thus we see that

lim
N→∞

aN = 0.

Morally, if we want to add up infinitely many things and not have it “blow up” then the
things we are adding must be getting smaller, or approaching zero.

Turning this observation into a theorem, we get the Divergence Test.

Theorem 3 (Divergence Test). If limn→∞ an ̸= 0 then the sequence
∑∞

n=1 an diverges.

Exercises

4



Math 1B – Will Fisher Sections 207 and 210

1. Show that the series
∞∑
n=1

(−1)n

diverges.

2. Show that the series
∞∑
n=1

nn

n!

diverges.

Integral Test
Recall the integral test: Suppose that our sequence an is given explicitly via the formula

an = f(n)

where f satisfies the following properties

(i)

(ii)

(iii)

then
∞∑
n=1

an converges ⇐⇒
∫ ∞

1

f(x)dx converges

Note: Here ⇐⇒ means “if and only if.” Thus this theorem tells us that
∫∞
1

f(x)dx and∑
n an have the same behaviour in regards to convergence and divergence.
This theorem is a consequence of our earlier work on when the left and right endpoints

of a Riemann sum are over and underestimates for an integral.

Exercises

1. Does the following series converge:

∞∑
n=10

1

n ln(n) ln(ln(n))2
?

Hint: Consider a u-substitution u = ln(ln(x)).

5



Math 1B – Will Fisher Sections 207 and 210

2. The following integral does not converge:∫ ∞

1

cos(x)

x
dx.

What can we therefore say about

∞∑
n=1

cos(n)

n
?

(i) It converges, (ii) it diverges or (iii) nothing.

3. Prove the p-series test.

Root and Ratio Tests
Recall that the root test says: Suppose we have a series

∑
n an and

lim
n→∞

n
√

|an| = L.

Then if

(i) L > the series diverges

(ii) L < the series converges absolutely

(iii) L = the test is inconclusive.

The ratio test has the same conclusions but instead we compute

lim
n→∞

∣∣∣an+1

an

∣∣∣ = L.

Exercises

1. Determine whether the following series converges or diverges:

∞∑
n=1

nn

(2n)!
.

2. Determine for which p the following series converges or diverges:

∞∑
n=1

(
n

n+ 1

)np

.
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Alternating Series Test
Recall that the alternating series test says: Suppose we have an alternating series

∞∑
n=1

(−1)nan

(so in particular an ≥ 0). Then if

(i) an are eventually

(ii) limn→∞ an =

then
∑

n(−1)nan converges.
This will almost always show up in questions of conditional convergence. In practice

to check condition (i) you will need to take derivatives. You should also remember for the
exam that

cos(nπ) = (−1)n

Exercises

1. Determine whether the following series converges or diverges:

∞∑
n=1

cos(nπ)n

2n
.

2. Determine whether the following series converges or diverges:

∞∑
n=1

(−1)n3n

n2
.

Note: The alternating series test can never show divergence. If you try the alternating
series test and part (ii) fails, then you are likely wanting to quote the divergence test.

Comparison of Series

Simple Comparison Test
Simple comparison tells us that if an ≤ bn for all n then

∞∑
n=1

an ≤
∞∑
n=1

bn.

We can use this in the following ways.
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(i) To show that
∑

n an diverges to ∞ we need to find a sequence bn such that

(a) the bn are a lower bound, i.e. bn ≤ an

(b)
∞∑
n=1

bn = ∞.

Then we have that that
∞∑
n=1

an ≥
∞∑
n=1

bn = ∞,

so that
∑

n an = ∞ and therefore diverges.

(ii) To show that
∑

n an diverges to −∞ we need to find a sequence bn such that

(a) the bn are an upper bound, i.e. an ≤ bn

(b)
∞∑
n=1

bn = −∞.

Then we have that that
∞∑
n=1

an ≤
∞∑
n=1

bn = −∞,

so that
∑

n an = −∞ and therefore diverges.

(iii) To show that an converges we need

(a) the an to be non-negative, i.e. an ≥ 0

(b) a sequence bn ≥ an such that
∞∑
n=1

bn < ∞

converges.

Then
∑

n an converges.

Exercises

1. Using simple comparison, determine whether

∞∑
n=1

1

n2 + n

converges or diverges.
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2. Using simple comparison, determine whether

∞∑
n=1

3n

2n − 1

converges or diverges.

Limit Comparison Test
Recall that limit comparison says: Suppose that

∑
n an and

∑
n bn are two series such

that
lim
n→∞

an
bn

= L > .

Then
∞∑
n=1

an converges ⇐⇒
∞∑
n=1

bn converges.

A common use case in this class is that we will be given a series

∞∑
n=1

n3 − n+ 1

n5 + n2 − 6

summing some complicated rational function. For this, one should limit compare to the
series they get by throwing away all lower order terms from the numerator and denominator.
In this case, we compare to

∞∑
n=1

n3

n5
=

∞∑
n=1

1

n2
.

Exercises

1. Determine whether
∞∑
n=1

n
3
√
n7 − n+ 7

converges or diverges.
Hint: You can still throw away lower order terms.

2. Determine whether
∞∑
n=1

2n

n2+1/n

converges or diverges.
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