Worksheet 24: Friday 12/1

Acknowledgment: This worksheet has been adapted from that of Gabriel Beiner, a current GSI.

Key Points:

After 12/1 Friday's lecture, you should be able to:

• Use integrals to compute volumes

Exercises:

1. Find the volume of the region enclosed by $y = \sqrt{x}$ rotated around the x-axis for $0 \le x \le 1$

2. Find the volume enclosed by $x = 2 - y^2$ and $x = y^4$ rotated around the y-axis.

Final Review:

Here is a list of review problems adapted from Richard Borcherds that should cover most of the topics from the course.

- 1. Draw a graph of $|\cos(x)|$ for $x \in [-\pi, \pi]$.
- 2. Evaluate $\lim_{x\to 9} \frac{x^2-81}{\sqrt{x-3}}$.
- 3. Prove that $x^4 + 1 = 3x$ has a solution.
- 4. Differentiate $e^x/(x+1)$.
- 5. Find the derivative of $\cos(\cos(\cos(x)))$.
- 6. Find $\frac{\mathrm{d}y}{\mathrm{d}x}$ if $x^2y + xy^2 = 2x$.
- 7. Find the 57th derivative of $\sin(2x)$.

- 8. If f(1) = 10 and $f'(x) \ge 1$ for all x, what is the smallest possible value of f(5)?
- 9. Find $\lim_{x\to\infty} x^{1/x}$.
- 10. Sketch $y = x \ln(x)^2$ for x > 0.
- 11. Find two numbers whose difference is 10 and whose product is minimal.
- 12. Using one iteration of Newton's method, estimate $9^{1/3}$ with initial approximation $x_1 = 2$.
- 13. Find f so that $f'(x) = x^3$ and f is tangent to the line x + y = 0.
- 14. Using a left endpoint Riemann sum with three equal length regions, estimate the area under $f(x) = x^2$ on [1, 4].
- 15. If $\int_1^5 f(x) dx = 12$ and $\int_1^4 f(x) dx = 14$, find $\int_4^5 (2f(x) + 1) dx$.
- 16. Prove $1/e \le \int_0^1 e^{-x^2} dx \le 1$.
- 17. Find the derivative of $g(x) = \int_0^x 2te^{-t^2} dt$.
- 18. Find the derivative of $y(x) = \int_{\cos(x)}^{\sin(x)} \tan(t) dt$.
- 19. Evaluate $\int_{-1}^{1} (x^3 + 2x + 1) dx$.
- 20. Evaluate $\int_0^{\pi/4} \sec(\theta) \tan(\theta) \, \mathrm{d}\theta.$
- 21. Evaluate $\int (1+y)^{10} dy$.
- 22. Evaluate $\tan(u) \ln(\cos(u)) du$.
- 23. Evaluate $\int_1^e \frac{\ln(x)^3}{x} dx$.
- 24. Find the area enclosed by $y = x^2$ and $y = 2/(x^2 + 1)$.
- 25. Find the volume of the region obtained by rotating the region bounded by the curves $y = \sqrt{x}$, y = 0, x = 2, x = 10, about the x-axis.
- 26. Find the average value of $\sin(x)^2$ on $[0, 2\pi]$.