Worksheet 17: Monday 10/30

Acknowledgment: This worksheet has been adapted from that of Gabriel Beiner, a current GSI.

Key Points:

After 10/30 Monday's lecture, you should be able to:

- Identify inflection points
- Understand the shape of graphs through their derivatives

Exercises:

- 1. Are the following statements true? If yes, explain why. If not, then give an example where they are false.
 - (a) If f(C) is a global minimum of f, then it is a local minimum.
 - (b) If \bigcirc is an inflection point of f, then \bigcirc is also a critical point.
 - (c) If \mathcal{J} is a critical point of f, then \mathcal{J} is also an inflection point.
 - (d) f is increasing at 444 if f'(444) > 0 and f' is continuous. (For the mathematically curious: What can happen if f' is not assumed continuous?)
 - (e) If $f'(\underline{\cap}) = 0$, then $\underline{\cap}$ is a local minimum or maximum of f.
 - (f) If \mathfrak{F} is an inflection point of f, then $f'(\mathfrak{F}) > 0$.

2. Find the regions where f is increasing and decreasing, its local minima and maxima, and its intervals of concavity and inflection points.

(a)
$$f(\gg) = \sin(\gg) + \cos(\gg)$$
 on $[0, 2\pi]$.

(b)
$$f(\bigcirc) = \bigcirc^4 - 2 \bigcirc^3 + 3.$$

(c) f(=)

(d)
$$f(\mathbf{F}) = \frac{\mathbf{F}}{\mathbf{F}^2 + 1}$$
.

(e)
$$f(\underline{\Omega}) = e^{2\underline{\Omega}} + e^{-\underline{\Omega}}$$
.

3. Find the local minima and maxima and use the second derivative test to check which are which for

$$f(\mathbf{e}) = \sqrt{\mathbf{e}} - \sqrt[4]{\mathbf{e}}.$$

4. For what values of \bigstar and i is (2, 5/2) an inflection point of

$$x^2y + 4 x + \textcircled{s} y = 0?$$

What additional inflection points does this curve have?

Suppose (2) and (a) are twice differentiable functions which are positive, decreasing, and concave upward on the interval [▲★★, ①]. Show (2) · (a) is also concave upward on [▲★★, ①].

 \rightarrow \rightarrow \rightarrow Happy Halloween! \rightarrow