Worksheet 10: Monday 10/2

Acknowledgment: This worksheet has been adapted from that of Gabriel Beiner, a current GSI.

Key Points:

After 10/2 Monday's lecture, you should be able to:

• Apply derivative rules for computing derivatives

Exercises:

- 1. Compute the derivative of the following functions:
 - (a) $f(t) = 2t^{-3/4}$
 - (b) $y(x) = \sqrt[3]{x}(2+x)$
 - (c) $g(x) = 3e^x + 4x^{-1/3}$
 - (d) $h(t) = \sqrt{5t} + \frac{1}{t}\sqrt{7}$
 - (e) $q(v) = \frac{1}{v}(\sqrt[3]{v} 2\sqrt[5]{v}e^{v})$
 - (f) $k(r) = e^r + r^e$
 - (g) $f(y) = A/y^{10} + Be^y$
 - (h) $\ell(p) = e^p(p + p\sqrt{p})$
 - (i) $m(z) = (z^2 + e^z)(\sqrt{z} + 2)$
 - (j) $J(v) = (v^3 2v)(v^{-4} + v^{-2})$
 - (k) $k(r) = ae^r/(b+e^r)$
 - (l) $w(x) = x/e^x$

- 2. Find the first and second derivatives of:
 - (a) $f(x) = x^4 3x^3 + 16x$
 - (b) $f(r) = \sqrt{r} + \sqrt[3]{r}$
 - (c) $g(y) = 3e^y 5y$
- 3. Find the points on the curve $y(x) = 2x^3 + 3x^2 12x + 1$ where the tangent line is horizontal.
- 4. Find a quadratic polynomial p(x) so that p(2) = 5, p'(2) = 3 and p''(2) = 2.
- 5. Find the derivative of $e^{(ax+b)}$. (No chain rule!)
- 6. Bonus problems:
 - (a) Find the *n*-th derivatives of x^n and 1/x.
 - (b) Find the 100th derivative of xe^x .
 - (c) Find the 123,456,789th derivative of $5e^{x+1} + 3e^{-x-1}$.