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1 Introduction

The goals of these notes is to rigorously develop the theory of calculus and explore the definitions
and concepts encountered along the way. They are heavily inspired by Walter Rudin’s Principles of

Mathematical Analysis.

2. The real numbers

The goal of this section is to rigorously define and study the set of real numbers and its structure. At
first glance, this may appear like a superfluous endeavor. If T asked you to define the real numbers, you
would probably be at a loss, but we all £zow what we mean, so why dwell?

Consider the following basic issue: Early in one’s math career one often encounters the fact that
0.99999... = 1.

But suppose we weren’t convinced of this. How would we add in a sensical manner? If decimal ex-

pansions are meant to exist then surely
1/3 = 0.33333..,,
but if 1/3 is to mean anything then surely we also have
1=3-(1/3) = 0.99999....

We thus immediately see that non-obvious facts such as 0.9999... = 1 are already integral to having a
proper definition of R where both decimal expansion and addition makes sense.

On another level, we also need a proper definition of R to make sense of some of our favorite
operations. Consider for example y/-. Morally 1/~ should take in a real number and give back a number

which squares to its input. Let us focus on V2.
Proposition 2.0.1. /2 is not a rational number, i.e. there is no rational number whose square is 2.
Proof. Suppose we could write

V2=,

where a/b is in reduced form, i.e. 2 and & share no common factors. Then we would have

207 = 2%



From this we see that 42 is even, which is only possible if « is itself even. Thus write 2 = 22 for some
integer 7. This then gives
20% = (2n)* = 4n*

)
b = 21>

However, this shows that 4% is even and hence so is 4. But then 4/b was not in reduced form, since

and b are both even, a contradiction. O

This proposition shows that V2 isan example of a real number which is not rational. This also tells
us that there is something special about R—why can we be certain that square roots exist in R and

therefore define /-2 All of these concerns require a rigorous definition of R to address.

2.1 Fields and ordered sets

Our construction of R will be motivated as follows: First we will use our working understanding of
R to decide what a rigorous definition should look like. We will then formulate the definition of an
object worthy of being called the real numbers and prove that there is a unique such object satisfying
this definition, which we will from there on out refer to as R.

In this section we will abstract two essential structures of R: the ability to add, multiply and divide
elements as well as the ability to compare “sizes” of elements. The first of these structures we capture

with the following definition.

Definition 2.1.1. A field is a set F with three operations—addition (+), multiplication (-), and divi-

sion satistying the following axioms.

(A) (i) There exists an element of F denoted by 0 such that forallz € F,
a+0=04+a=a

0 is referred to both as zero and as the additive identity of F.

(ii) Addition is associative, that is for any three elements 4, b, ¢ € F we have
a+(b+c)=(a+b)+c
(iii) Addition is commutative, that is for any two elements 4, b € F we have

a+b=b+a.



(iv) Addition has inverses, i.e. for alla € F there exists some b € F such that
a+b=0.

b is often denoted by —a and we will write ¢ — d to mean ¢ + (—d).

(M) (i) There exists an element of F denoted by 1 such that forallz € F,
a-1=1-a=a

1is referred to both as one and as the multiplicative identity

(ii) Multiplication is associative, i.. forall 2, b, c € F

(iif) Multiplication is commutative, i.e. foralla, b € F
a-b=b-a
(iv) Multiplication is déstributive over addition, i.e. for all @, b, ¢ € F we have

a-(b+c)=(a-b)+(a-c).

(D) Forallnon-zeroa € F,ie.alla # 0, there existsa b € F such thata - b = 1. b is often denoted

by 1/2 and we will write ¢/d for ¢ - (1/d) provided d # 0.

Remark 2.1.2. Often we will abuse notation by writing b for a - b and writing expressions such as

ab + cinstead of (a - b) + ¢ with the understanding that multiplication is done before addition.

Example 2.1.3. The integers

Z={0,1,-1,2-23-3,...}

have a multiplication and addition which satisfy axioms (A) and (M) of Definition [2..]but does not

satisfy (D), the ability to divide. Such an object is called a r7ng.

If we take the integers and allow division we get the rational numbers Q which should be your

canonical example of a field.



Example 2.1.4. Let Z/k be the set
Zh={0,1,...,k— 1}

Define addition and multiplication for x, y € Z/k by doing the usual operation as integers and then

taking the remainder given by dividing by 4. For example, in Z/11 we have
7-10 =4

since 7 x 10 = 70 and 70 has a remainder of 4 after division by 11. Then we have that Z/3, Z/5, etc...
is a field.
In fact, Z/k is a field if and only if & is prime.

Proposition 2.1.s. IfF is a field, then the additive and multiplicative identities are unique. In partic-
ular, in makes sense to refer to them as 0 and 1.
Similarly, additive and multiplicative inverses are unique. In particular, it makes sense to denote

them by —a and 1/a and refer to them as the additive and multiplicative inverse of a.

Proof. Suppose we have two e}, ¢; € F such thatforallz € F,

ate=e+a=a (2.1.1)

ate=e¢+a=a (2.1.2)

Then
e=e +e (by )

=6 (by (2.1.1))

so €1 = ¢; as required. The proof is similar for uniqueness of the multiplicative identity.

For additive inverses, let 2 € F. Suppose b1, b, € F are such that

bh+a=a+b =0 (2.1.3)

by+a=a+b,=0. (2.1.4)



We want to show &, = b,. Well,

by=b+0 (by definition of 0
=b + (62 + bz) (by ’
= (b1 +a)+ b, (associativity

“0+5, (by @1

as required. The proof is similar for multiplicative inverses.

Proposition 2.1.6. Let F be a field. Then the following statements hold for all x, y, z € F:

(1) Ifx+y=x+ztheny=z

(i) Ifx +y =xtheny=0

(7)) —(—x)=x

(tv) Ifx # 0 and xy = xzthen y = z
(v) Ifx # 0 andxy = xtheny = 1
(vi) Ifx # 0 then 1/(1/x) = x.

Proof. We prove only some of these. For (i), we have that
x+y=x+z
Adding —x to both sides of we get

(—x) +(x +9) = (—x) + (x + 2).
However, by associativity, we have that

(—x)+(x+9) = ((—x) +x) +y
=0+y
—4 y.
Similarly, (—x) + (x + 2) = 2, s0 gives y = z as required.

Statement (ii) follows from (i) by taking z = 0.

(2.15)

(2.1.6)



We have that x + (—x) = 0 by definition. However, this also tells us that x is the inverse of —x, so
—(—x) = «x.

Statements (iv)-(vi) are proven similarly to the above. O
Proposition 2.1.7. If F is a field then for all a, b € F the following statements hold:
(7)) 0-a=0
(7i) (—a)b = —(ab).
Proof. We first prove (i). Notice that we have
0-2a+0-2=(0+0)-a
=0-a

Then by Proposition ii) we get that 0 - 2 = 0.
For (ii), it suffices to check that (—a)b + 2b = 0 as we are then done by the defining property of
—(ab). By commutativity and distributivity of multiplication we have
(—a)b+ab=(—a+a)b
-0-b
-0
where on the last line we used part (i). O

Looking at the above definition and comparing our intuition for what R should be, we see that
any rigorous definition of R should have the structure of a field.
Next, we abstract the essential properties that allows us to compare real numbers. We first do this

by defining a general notion of an ordering on a set.

Definition 2.1.8. An ordered set is a set S with a relation < such that for all 2, 4, ¢ € S the following
holds:

(i) Exactlyoneofa < b,b < aora = bholds
(ii) Ifza < band b < ¢, thena < ¢
We will write 2 < & to mean that either 2 < b ora = b and writez > btomean b < a.

If we also have a field structure on our set S, then we would like this ordering to be compatible

with the field operations.



Definition 2.1.9. An ordered field is a field F which is also an ordered set such that
(i) foralla, b,c € F,ifa<bthena+c<b+c
(ii) foralla, b, ¢ € Fwitha < band 0 < ¢ we have ac < bc.

Givenx € F,if x > 0 we say that x is positive and if x < 0 we say that x is negative.

Example 2.r.10. We have already seen in Example[z.1.3| that Q is a field. The standard ordering on Q

also gives Q the structure of an ordered field.

Example 2.x.ax. The field structure on the complex numbers C and fields Z/p (see Example [2.1.4)

cannot be given the structure of an ordered field. (Exercise: Prove this.)

Proposition 2.1.x2. If F is an ordered field then the following statements hold for a, b, c € F:
() ifa > 0then —a < 0

(17) ifa < bandc < 0then ac > be

Proof. We first prove (i). By property (i) in Definition .1.9] we have that
a>0=a+(—a)> —a

buta + (—a) = 0 so the second relation says 0 > —a as desired.
For (ii), by part (i) we know that since ¢ < 0 we have —¢ > 0. Thus by property (ii) of Definition

we have

a<b=(—c)a < (—c)b

Now by Proposition [2.1.7] this second relation is just —c2 < —cb. Now adding ca + cb to both sides
and using property (i) of Definition [2.1.9] we get the result. U

Definition 2.1.13. Let F be an ordered field (or simply an ordered set) and suppose that S C F. We
say that 2 € F is an upper bound for S if for every s € S we have thats < 4. We say that 4 is a least
upper bound (or supremum) for S if a is an upper bound of S and for any other upper bound & of S,
a < b. We denote the least upper bound of S (if it exists) by sup S.

Similarly we define lower bounds and greatest lower bounds (called infimums) for S. We denote

the greatest lower bound of S (if it exists) by inf .S.

Example 2.1.14. The infimum or supremum may or may not belong to the set S itself if it exists.

Consider QQ with its usual ordering. Then the infimum of
S={l/n:neN}

I0



is 0 € Q which does not belong to S.
However, the infimum of § = {x € Q : x > 0} is 0 which does belong to S.

Proposition 2.1.15. [fsup S orinf S exists then it is unique.
Proof. Exercise to the reader. O

Definition 2.1.16. Let /' be an ordered field (or simply an ordered set). We say that /* has the least-
upper-bound property if for every non-empty S C F with an upper bound, sup S exists.

Theorem 2.1.x7. If F has the least-upper-bound property, then for every non-empty set S C F which is
bounded below, inf S exists.
In fact, if L denotes the set of all lower bounds of S, then inf S = sup L.

Proof. We have assumed that S is bounded below, so L is non-empty. Moreover, since S is non-empty,
there exists some s € S. Since every x € L is a lower bound for S, x < 5. Hence s is an upper bound
for L. Thus L is bounded above and non-empty, so sup L exists. Set « = sup L.
We wish to show that  is a lower bound for S. The above shows that every element of ' is an
upper bound for L. Thus for every x € B, since « is the least upper bound for L, 2 < x. Thus € L.
Moreover, since « = sup L it is an upper bound for L so it is greater than or equal to every lower
bound of . Hence 2 = inf S by definition. O

Remark 2.1.18. Following this section, we will assume minor results about how arithmetic works in
fields similar to Propositions [2.1.5|and [2.1.7] without proof, and encourage the reader to prove them
themselves.

2.2 Construction of the real numbers

In the previous section, we saw that any good definition of R should be such that R is an ordered
field. However, Example shows that Q is also an ordered field which means that this alone is
not enough to determine a proper definition of the real line. In this section we will motivate what

addition property should determine R and then prove its existence and uniqueness.

Example 2.2.1. Consider the set
S={acQ:4*<2}CQ

Clearly S is bounded above, as any 2 € § must have 2 < 2, for example. However, we prove that §

has no least upper bound in Q.

II



Indeed, suppose that « is an upper bound for §. We must then have 2 > 0 (since, e.g.,1/2 € §
and z is an upper bound for §). Then by Propositionwe know that 2> # 2. If we were to have
a* < 2 then we would be able to slightly increase the size of 4 to get some & > 4 such that * < 2 still
holds (check this!). Therefore we'd have & € S buta < b violating the assumption that z is an upper
bound for S. On the other hand, if 22 > 2 then we could slightly decrease the size of 4 to find some

0 < b < a with b* > 2 (check this!). But then for any ¢ € S we would have
F<2<t?

which forces ¢ < & (check this!). Hence & is still an upper bound for §, but with 4 < 2 meaning that 2
was not a least upper bound. Therefore S has no least upper bound.

From the above argument, we also see that if a least upper bound s = sup S were to exist, it should
satisfy s* = 2 and the fact that sup.S does not exist essentially boils down to Propositionwhich
says that /2 is irrational. This should be thought of informally as saying “Q has holes” where certain

least upper bounds should exist but are missing.

At this point, motivated by the above example, the reader should consider other subsets of Q
which have upper bounds but no least upper bound and simultaneously convince themselves that in

their intuitive model for R these least upper bounds do exist. This will become the defining property
of R.

Theorem 2.2.2. There exists a (unique) ordered field, denoted R, which contains Q as a sub-ordered
freld and bas the least-upper-bound property.

Corollary 2.2.3. For every non-empty, lower bounded S C R, inf S exists.

Proof. This is Theorem O

We now begin a sketch of the proof of Theorem We saw in Examplethat certain real
numbers can be “encoded” by subsets of Q which ought to have a given real number as a supremum.
This will be our approach to constructing the real number line—we will encode real numbers as sub-
sets of Q. However, we must take slight care in doing this. If we are to encode the real numbers by

subsets of (Q under the correspondence

{subsets of Q} —— R

S —— supS

we must constrain which subsets we consider. Indeed, in Examplethe set .S we considered looks

12



like , .

V2 V2

A
~

on our intuitive real number line. But if we are encoding real numbers as supremums of subsets, it
doesn’t matter if we add smaller elements. Thus to get a unique subset encoding V2 an easy option

would be to take the set which contain // things smaller than V2, ie.

) AY
A) 7

V2

~

This motivates the following definition.
Definition 2.2.4. A Dedekind cut is a subset S C Q such that
(i) ifz € Sandb <athenb e S
(ii) S has no greatest element
This definition in hand we are ready to sketch a proof of Theorem/|z.2.2}

(Sketch) Proof of Theorem[z.2.2) We also sketch the proof of existence. For this, we define R as a set by
R ={S C Q: SisaDedekind cut}.

We now need to give R a field structure and an ordering.

Morally, if a Dedekind cut S is supposed to represent the real number sup S, then we may give the
following natural ordering: We say §; < S, if S, contains an upper bound for S;. We leave it to the
reader to check that this gives an ordering on R.

To define the field structure we have
S1+85, = {51 +s5:5 €S, 52 € Sz}

One needs to check this is still a Dedekind cut and gives an addition which satisfies all the necessary

axioms. With respect to this addition we have

0={7€Q:9<0}

and to define multiplication one needs to break into cases based on sign. This is left to the reader.

3



Finally, we confirm that Q is a subfield of R. To see this, we encode the rational numbers as follows:

Q— R
g——{ae€Q:a<gqg}

O]

We now take account of some properties of R. One could prove these using the explicit construc-
tion of R, however since Theoremclassiﬁes R abstractly, we opt to prove these results using the

least-upper-bound property.

Theorem 2.2.5. The following statements are true:

(1) (Archimedean Property) Given x,y € Rwith x > 0, there exists some n € N such that nx > y.
(17) (Density of Q) Given any two x, y € R with x < y, there exists some p € Q withx < p < y.

Proof. For (i), let
S={nx:ne N}

Suppose that for all € N we were to have #nx < y. Then y is an upper bound for S. Since S is clearly
non-empty, we can take @ = sup S. Then, as x > 0 we have that — x < @ and thus 2 — x cannot be
an upper bound for §. Thus let 7z € N be such that & — x < mx. But then this gives 2 < (m + 1)x
contradicting the fact that 2 is an upper bound for .

For (ii), since x < y we have that y — x > 0, so (i) gives a positive integer 7 such that
n(y —x) > 1. (2.2.1)
Now, apply (i) twice to find positive integers 721, m, such that m; > nx and my > —nx. Then
—my < nx < my.
But this then tells us that there exists an integer 7 (with —m, < m < my) such that
m—1<nx<m. (2.2.2)

Combining and we get

nx <m < 1+nx<ny

14



or in particular zx < m < ny. Dividing by 7 we get

m
x<—<
P

as required. O
Theorem 2.2.6. Forevery real x > 0 and every integer n > 0 there is exactly one'y > 0 such that y* = x.

Proof. Uniqueness follows from the fact that if 0 < y; < 72, then »] < »5. Thus we are left with
proving existence.
Let
S={teR:t>0,¢" <x}.

If weletz = x/(1+x)then0 < # < 1so#” <t < xandthusz € S. Hence S is not empty. Additionally,
ifr>1+x,thent” > ¢>xsot € S. In particular, if #* < x then# < 1+xs01+ xis an upper bound
for S.

Thus by Theoremwe may take y = sup S. To see that y” = x, we will show that either one
of the assumptions y” < x and y” > x leads to a contradiction.

First, note that we have an algebraic fact that
V' —a"=(b—a) "+ 0" 2a+---+a" )

If 0 < 2 < b then this yields
b —a" < (b—anb". (2.23)

Assume that " < x. Our goal is to show we can add a small » > 0 to y to get some y + » with

(y + h)" < x so that y is not an upper bound for S. For this, choose / such that 0 < » < 1and

x—y"
h< ———. 2.
Sy (224)
Then applying withz = yand b = y + b gives

(y+h)" — " < nb(y + by
< nh(y + D"t (ash<1)
<x—y" (by .2.4))

Thus (y+h)* < xandsoy+h € Sbuty < y+ b contradicting the fact that y is an upper bound for S.

Now assume that y* > x. We want to find some /» > 0 such that y — b is still an upper bound for

15



S, contradicting the fact that y is a least upper bound for S. Put

[ -
ny*—

Then 0 < b < y. Ift > y — b we get from (2.2.3) that
<bny”_1

=y —x

Thusx < #*so¢ & S. In particular, we get that y — b > ¢ forallz € S so y — his still an upper bound
for S. ]

Proposition 2.2.7. Ifx > 0, and p/q = m/n with p, q, m, n non-negative integers withq # 0, n # 0,
then
(W) = ()4,

Proof. Exercise to the reader. Use the uniqueness of roots. O

In particular, given any non-negative p/g € QQ we can define
xp/q — (xp)l/q
and this is independent of the choice of how to represent p/g as a fraction.

2.3 Cardinality

Definition 2.3.1. Given two sets 4, B, a function f from A to B, denoted by f : 4 — Bis an assign-

ment f(«) € B of an element of B to every element of 4.

Example 2.3.2. For every set 4 we have the identity functionid4 : 4 — A which is given by id4(a) =

a.

Example 2.3.3. Given two functions / : 4 — Bandg : B — C we can form the composite g o f
given by the assignment (¢ o f)(2) = ¢g(f(«)).

Definition 2.3.4. A function f : 4 — Bis said to be
(i) Znjectiveif f(a) = f(b) impliesa = b

(ii) surjective if for every b € B there exists some 2 € A4 with f(a) = b

16



(ili) bejective if there exists a functiong : B — A with f o ¢ = idgand g o f = id,4. In this case g is

said to be an znverse of f .
Proof. Exercise for the reader. O

With a formal notion of functions, we can now introduce the notion of cardinality, which is the
mathematical formalism for the slogan that “some infinities are larger than others.” In particular, we

will be interested in sets whose elements we can count.

Definition 2.3.6. A set S is called countable if either S is finite, or there exists a bijection / : N — .§

where N = {1, 2,... } is the natural numbers. Otherwise, S is said to be uncountable.

Note that being countable is the same as saying we can “list” the elements of S. Indeed, if f : N —

S is a bijection, then if we set x, = f(7) then x1, x5, x3, ... lists or enumerates the set S.

Example 2.3.7. N is countable via the identity function idy. Moreover, Z is also countable as we can
enumerate it via

0,1-12-2,3 -3,....

Example 2.3.8. If 4 and B are countable, then 4 x B is countable. Indeed, enumerate 4 as xy, x», . . .

and enumerate B as yy, y2, . ... Then the elements of 4 X B fit into an array

(1) (en2)  (x1,93)
(202, 91)  (x2,92) (%2, 93)
(i3 01) (x3,02) (%3,93)

which we can enumerate by reading along the diagonals, i.c. as

(xb )’1)) (Xz; }’1), (xl; yz), (X3, )’1), (xz, yz), (xl; y3), ceee
In particular, we have that Z x Z is countable.
Proposition 2.3.9. If A is countable, then any B C A is countable.

Proof. If 4 is finite, we are done as any subset of a finite set is finite. Thus we may assume A is infinite
and hence there exists a bijection /' : N — 4. Under this bijection, B C A corresponds to some

subset C C N. Hence it suffices to show every subset of N is countable.

7



Thus suppose C C N. If C is finite we are done. Otherwise we inductively construct a sequence

(%), which enumerates C. For this we define
x;1 =minC

which exists as every non-empty subset of N has a minimal element. Now suppose xi, . . . , x, have been
constructed. Then define

Xpe1 = min C \ {xg,..., %, }.

This is well-defined as C is assumed to be infinite so C \ {xy,..., x,} is never empty. We now claim
that every element of C is given by some x,,. Indeed, suppose that 2 € C. Then m must belong to

{x1,..., %, }. Thus C is countable with an explicit bijection given by

N——C
n—> X,

Indeed, we just argued this map was surjective and if m > n thenasx,, € C\ {xy,..., x,,—1} we have

Xm F Xy, S0 the map is injective. O
Corollary 2.3.10. Q s countable.

Proof. We have that Q C Z x Z by sending a fraction p/g in reduced form to (p, g). Now, Z X Zis
countable so we are done by Proposition ]

Our main goal of this section is to show that R is fundamentally larger than Q or N. We will do

this by showing that R is uncountable.
Theorem 2.3.11. R is uncountable.

Proof. We will prove this by an argument which is referred to as Cantor’s diagonalization argument.
Clearly R is infinite as it contains Q. Thus suppose we were to have an enumeration xy, x, x3, ... of
R. We will make use of decimal expansions to construct a real number not on this list.

Writing out the x; as their decimal expansions we get a list

X10 - X11X12X13X14 - - -
X20 - X21X22X23X24 . . .

X30 - X31X32X33X34 - - -
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where we are writing x; = X;0 . %;1X,2%;3%4 . .. Where x;0 is the integer part of x; and X7 > 1is the
7-th decimal digit of x;. We now construct a real number x which does not belong to this list. To do
this, let the integer part of ; be 0, and let the j-th decimal digit be given as follows: If x;; = 1 then the
j-th decimal digit is 2, otherwise it is 1.

Then, by construction, x # x; for any ; as x and «x; disagree at the j-th decimal digit. (Note that
decimal expansions are not unique so there is something to check here—in theory we could have x =
1.0000... and x; = 0.99999... and thusx = x; even though as written the decimal expansions aren’t
equal, but we’ve ruled this possibility out by the rules for our construction of x). Thus x does not

belong to {x1, %2, 3, ... } and hence (x,),, was not an enumeration of R. O
Question 2.3.12. Does there exist an uncountable set .S with cardinality smaller than R?

Remark 2.3.13. The above question has been proven to be unanswerable. The assumption that no
such § exists is referred to as the continuum hypothesis, and it has been shown that this assumption
is independent of the usual axioms of math. That is, it can be axiomatically assumed true or false

without contradicting the other axioms in standard math.

Exercises

Exercise 2.1. Prove that additive and multiplicative identities and inverses are unique.
Exercise 2.2. Show that for a positive integer 7, /7 is rational if and only if 7 is a square.

Exercise 2.3. Using the definition of R in terms of Dedekind cuts, give a definition for a function
f:{dER:dZO}—)R

such that forevery 2 € R, 2 > 0 we have f(4)* = 4. That s, define rigorously a square root function

and prove it is well-defined with the desired properties.

Exercise 2.4. Prove that for any two real numbers 4, b with @ < b there exists a rational number ¢

witha < g < b.

Exercise 2.5. Prove that the set of all subsets of N, denoted by P(N) and referred to as the power set

of N, is uncountable.

Exercise 2.6. Show that there is never a surjection / : X — P(X) where P(X) is the set of all subsets

of X. This is a generalization of the previous exercise.
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3 Metric spaces and their topology

In this section we attempt to abstract the properties of Euclidean space R” which make in useful for
doing math. R” is a vector space, meaning we can add and multiply by scalars which in this case are

real numbers. On top of this, it is given an inner product

n
(v, w) = Z v;w;,

i=1

i.e. a bracket which takes in two vectors and spits out a number and has certain geometric properties.
Here v; denotes the 7-th coordinate of v in the standard basis of R”.

From this inner product, we get a zorm which helps us measure the length of vectors.

Definition 3.0.1. The canonical norm on R”, denoted by || - || is given by

12
loll = V0w o) = | Do

/

With the ability to measure the length of a vector, we are then able to measure the relative distance

between two vectors.
Definition 3.0.2. Given two v, w € R”, the distance between v and w is given by ||v — w|).

Morally, one can think of ||» — w|| as representing the length of the shortest path between v and w.
In this framing, we expect certain things to hold: If we travel from » to w, that distance should always

be less than the total distance had we first went from v to 2z then z to w, i.e. we expect
lo = wl < [lo— =] + |z — wl.

Proposition 3.0.3 (The Triangle Inequality). Foranyx, y, z € R” we have
[lx =l <l = =]l + |z — |

To prove this we first need a lemma.

Lemma 3.0.4 (Cauchy-Schwarz). For any two v, w € R” we have that | (v, w)| < ||v|| - ||w]l.
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Proof. Consider the polynomial in x given by

(vix + w))* + -+ (0% + w,)* = <Z vf) e (Z viwi) o Z wy
7 7 7

= H0H2x2 +2{v, w)x + HwHZ

However, looking at the left hand side, we see that the polynomial is always non-negative, hence cannot
have two distinct real roots. Thus the discriminant must be non-positive. Computing the discrimi-

nant with the right hand side we see that
40, w)* — 4flo]|* - [|w]* < 0
from which the result follows. 0
Proof of Proposz'tz'on It suffices to prove that
o + o] < el + [J2]]
as then taking # = x — zand v = 2z — y gives the result. For this, notice that

||u+vH2=<u+v,u+v)

= Jluel|* + 2w, o) + ||o]|*.
By Cauchy-Schwarz we have that

leel® + 242, 0) + [lo]|* < [ll|* + 2lJe] - [Jo]] + [|o]*
= ([lae]] + [lo]1)*.

Thus ||« + v||* < (||| + ||2]|)* and the result follows. O

3.1 Definition of a metric space
Metric spaces

Definition 3.1.x. A metric space is a pair (X, d) where X isasetandd : X x X — Ris a function

satisfying the following properties for all x, y, z € X:

(i) dlx y) = d(y x)

(ii) d(x, y) > 0 with equality if and only if x = y
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(iii) (Triangle Inequality) d(x, y) < d(x, 2) + d(z, y)
d is referred to as the metric on X.
Remark 3.1.2. When the metric d is clear from context we will often simply write X instead of (X; 4).

Example 3.1.3. R” with distance function d(x, y) = ||x—y|| isa metric space. The triangle inequality is
Proposition[3.0.3} while properties (i) and (i) of Definition[3.r.iJfollow from the analyzing the algebraic

expression for || - ||.

Example 3.1.4 (Discrete Metric). Every set X can be equipped with the discrete metric given by

0 ifx=y
d(xy) =

1 otherwise.

Subspaces

We often will want to restrict from one large ambient space to a smaller one. Given a metric space
(X, d) and asubset ¥ C X, the restriction the metricd : X x X — R to Y gives a metricon Y. We

give this a name.

Definition 3.1.5. Let (X, ) be a metric space and ¥ C X a subset. The subspace metric or subspace
topologyon Yisd|yxy : ¥ X ¥ — R.

Remark 3.1.6. Unless otherwise stated, all subsets of a metric space will be assumed to be equipped

with the subspace metric.

3.2 Open and closed sets

We now wish to study two types of subsets that are important to the study of metric spaces—open
and closed sets. Given the ability to measure distance on a set X and a point x € X, it makes sense
to speak of points that are “close to x.” Often, we will want to talk about properties or features of a

metric space that need only hold “close” to a certain point. Consider the following two pictures:
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(A) (B)

Suppose that these two pictures represent subsets of a metric space X and the points in blue are where
some property P holds and the points in red are where P does not hold. In picture (B), if one takes
any pointx € X where P holds and zooms in, we find that all nearby points are also blue, i.e. P holds.
However, in picture (A) this is not the case—if one chooses a point on the “boundary” then no matter
how much we zoom in there will be points that are both blue and red.

Informally, open sets will be sets “having no boundary points” and closed sets will be sets having
“all their boundary points.” This will be of great importance when discussing properties which should

hold “locally,” i.e. after zooming in.

Open sets

Definition 3.2.x. Let (X, d) be a metric space. Forx € X and » > 0 the set
Bix)={y€eX :d(xy) <r}

is referred to as the open ball of radius r centered at .

Definition 3.2.2. A subset U C X is said to be open if for every x € U there exists some 7 > 0 such
that B(x) C U.

Example 3.2.3. Being an open subset depends on the ambient space. For example, we have that (0, 1)

is open in R but not in R?.

Example 3.2.4. Every set in a discrete metric space is open. Indeed, let X have the discrete metric and

let S € X. Then given x € S we have that

Bip(x) = {x} C S
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Proposition 3.2.5. All open balls B,(x) are open.

Proof. Take y € B,(x), so by definition d(x, y) < r. Let
R=r—dxy) >0.
We wish to show that Br(y) C B,(x). Indeed, consider z € Br(y). Then

d(x z) < d(x y) + d(y, 2)
<d(xy)+R

=7
s0 2 € B,(x) as required. O
Theorem 3.2.6. The following statements are true:

(z) A finite intersection of open sets is open.

(1) An arbitrary union of open subsets is open.

Proof. For (i), let Uy, ..., U, be open subsets and let
xeUnN---NU,

Then, since each U; is open, we may find for every 7 some 7; > 0 such that B,,(x) C U;. Then if we
set 7 = min{ry,..., 7, } we have that » > 0 and B,(x) C U; N - - - N U, as required.

For (ii), suppose that {U, : « € A} is an arbitrary collection of open sets. Let
x € U U,.

Then there exists some 8 € A4 such thatx € Up. Since Uy is open, there exists some » > 0 such that

vEB)CUC U,
a€A

as required. O

Example 3.2.7. The finiteness assumption in Theorem i) is necessary. Indeed, consider

Rsp={x€R:x>0} CR
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with the subspace topology. Then [0, 2) is open in R>¢ for all 2 > 0 but we have that

([0,1/2) = {0}

neN
which is not open in R .

Definition 3.2.8. Let (X, d) be a metric space and x € X. A neighborhood of x refers to an open set
U withx € U.

By Proposition saying that a set § contains a neighborhood of a point x is equivalent to

saying that S contains a ball of positive radius centered at x.

Proposition 3.2.9. Let p,q € X be two distinct points in X, i.e. p # q. Then there exist disjoint
neighborboods of p and q. That is, there exists a neighborhood V of p and W of q such that VO W = ().

Proof. Setr = d(p,q). Thenr > 0asp # gand take V' = B,/»(p) and W = B,/»(q). The fact that
V' N W = () then follows from the triangle inequality. O

Before closing this section we remark that Example[3.2.3|shows that the property of being open
is not intrinsic to the subspace—it depends on the parent or ambient space. This next theorem com-

pletely classifies this dependence.

Theorem 3.2.30. Let U C Y C X. Then U is open as subset of Y if and only if it may be written is the
form U =Y NV for V an open subset of X.

Proof. For the purpose of distinguishing between spaces, given y € Y we will write BY (y) for the open
ball of radius 7 centered at y taken in ¥ and BX(y) for the open ball of radius 7 centered at y taken in

X. Note that because dy = dy|yxy we have that
BY() = ¥ N B(). (5:24)

Thus first suppose that U = Y N V for some V" open in X. Then take y € U. Since V" is open in
X there exists some 7 > 0 such that BX(y) C V. But then by we have that

BYy)=YnBXp)cynrv=uU

so U is open as required.
Conversely, suppose that U is open in Y. Then for every y € U we may find some » > 0 such
that BY (y) C U. Set V,, = BX(y). Then by we have that

y € VyﬂY:Bf(y)gU. (3.2.2)

25



Nowset V' =, V5. By Theorem V is open in X. Moreover, by (3.2.2)) we have that ' NY C
U and for every y € U we have y € yvyny crny. ThusU C VNYand VNY C Uso
U =V NY asrequired. O

Sequences

Equipped with a way of measuring distance, we can now speak of when points “approach” other

points or when sequences converge.
Definition 3.2.01. Let (X, d) be a metric space. A sequence in X is a function f : N — X,

Remark 3.2.12. We will often denote a sequence by a subscript indexed sequence such as (x,), or

X1, X2, %3, . .. . When doing this, we implicitly mean the sequence f : N — X given by f(#) = x,.

Definition 3.2.13. Let (X, d) be a metric space and (x,,), a sequence in X. Then, given x € X, we say
that (x,), converges to x, denoted x,, — x, if for all ¢ > 0 there exists some N € N such that for all
n > N we have d(x,, x) < e.

Morally, convergence says that no matter how close we want to be to x (with distances measured
by our metric d), if we go far enough down our sequence all of our terms are eventually at least that

close to x.

Example 3.2.14. In (R, | - |) we have that I/z — 0. Indeed, fix¢ > 0. Then we wish to find N € N

such thatif » > N we have

1
——0l<e
n

n
This is true if and only if # > 1/2 so we may take N' = [1/z] + 1.

Example 3.2.15. In the discrete metric, the only convergent sequences are those which are eventually

constant.

Closed sets

Definition 3.2.16. Let (X, d) be a metric space and § C X. Define lim S to be the set
limS = {x € X : I sequence (x,), in S withx, — x}.

We say that S is cdlosed if S = lim S.
Example 3.2.17. For every metric space X, both () and X are closed.

Proposition 3.2.18. limS§ DO §.
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Proof. For every s € S we have that the constant sequence (s),, converges to s. O

Example 3.2.19. S = [0, 1] C Ris closed. By Proposition[3.2.18} we only need to show thatlim S C S.
For this, suppose that (x,,), is asequence in [0, 1] which converges tox € R. Suppose for contradiction

thatx > 1. Then let e = x — 1 > 0. For 7 sufficiently large, we must have that |x — x,| < ¢. But then
Xx—x,<e=x—1

which implies x, > 1, contradicting that x,, € [0,1]. Similarly, if x < 0 we get a contradiction, so
x € [0,1]. Thuslim S C § as required.

Generalizing this example we get the following proposition.

Proposition 3.2.20. Forr > 0 let
D,(x) = {yGX:d(x,y) <r}

be the closed ball of radius r centered at x. Then D,(x) is closed.

Proof. Let(y,), be a sequence in D,(x) with y, — y. We want to show that y € D,(x). Suppose not,
so that d(x, y) > 7. Then set
e=d(xy) —r>0.

Since y, — 7, for z sufficiently large we must have that d(y, y,,) < . But then
d(x,)’n) Z d(ny) - d()’:}’n)
> d(x,y) — ¢
=7
contradicting that y € D,(x). O
Proposition 3.2.21. lim S 75 closed, 7.e. lim lim S = lim S.

Proof. Suppose that (x,), is a sequence with x,, € lim .S which converges to some point x. We need
to show thatx € lim S.

By definition of lim §, since each x,, € lim S we may find for every 7 some y,, € S with d(y,, x,) <
1/n. We will show that y, — x at which point we are done by definition of lim S. Fix ¢ > 0. Since

X, — %, we may find IV such that for all z > N, d(x,, x) < /2. Now, increasing NV if necessary, we
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may assume that 1/N < /2. Then for » > N we have that

A %) < (Y, %) + A, %)
<lUn+e/2
<1/N +¢/2
<eg/2+¢/2 =

This shows that y, — x as required. O
Theorem 3.2.22. A subset E C X is closed if and only if E° = X \ E is open.

Proof. First assume that £ is closed. Suppose that £° were not open, so we could find some x € E°
such that every ball centered at x does not lie in £°, i.e. intersects E. Thus, for every z choose some
%, € E N Byy(x). Then by construction x, — x so x € lim . But £ is closed so £ = lim £ and thus
x € E, acontradiction.

On the other hand, suppose that £¢ is open. Then let (x,), be a sequence in £ with x,, — x. If we
were to have x € E° then as £° is open there would exist some 7 > 0 such that B,(x) C E° violating
the fact that x, — x. Thus we must have x € EsolimE C E. By Propositionit follows that
E = lim E so E is closed. [

Remark 3.2.23. It turns out that open sets are the more intrinsic collection of sets, and Theorem

is often taken as the definition of what it means to be closed.

Example 3.2.24. Theorem[s.2.22]gives another way of showing that [0, 1] C R s closed. Indeed,
[0,1]° = (—o0, 0) U (1, 00)

is the union of two opens, hence open. Thus [0, 1] is closed.

Example 3.2.25. Every subset of a discrete metric space is closed. Indeed, by Example every

subset is open, and hence every subset has open complement.

Corollary 3.2.26. Arbitrary intersections of closed subsets are closed, and finite unions of closed subsets

are closed.

Proof. Apply Theorem and Theorem O

Corollary 3.2.27. Let K C Y C X. Then K is closed as a subset of Y if and only if we can write
K =S8S0Y forS a dosed subset of X.
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Proof. Apply Theorem and Theorem O

Definition 3.2.28. Let (X, d) be a metric space and S C X. The closure of S, denoted by S, is the

smallest closed set containing S.
Note that by Corollary closures exist. Indeed, X itself is a closed set containing S, and then
5= () E

EDS
E closed

gives the closure of S.
Proposition 3.2.29. One hasthat S = lim S.

Proof. By Propositionsand , we have thatlim S D S. However, since.S O S we must have
by definition of lim that lim S D lim S. ButSisclosed so S = lim S and thus S D lim S giving reverse

containment. 0
Corollary 3.2.30. A set S is closed if and only if S = S.
Proof. Since S =limS by Propositionthis is just the definition of being closed. O

Proposition 3.2.31. Let S C R be upper bounded. Then sup S € im S. In particular, sup S € S if S

is closed.

Proof. We construct a sequence (x,), in S such thatx, — supS. For this, let x = sup S. Then for
all » € N we cannot have that x — 1/z is an upper bound for S, so there must exist x, € S with

x — 1/n < x,. But then since x is an upper bound for § we have that
x—1n<x,<x

s0 |x — x,| < 1/n. Thus we must have thatx,, — x as required. O
Definition 3.2.32. Let (X, d) be a metric space. We say that S C X is clopen if is both open and closed.

Example 3.2.33. The only clopen subsets of R are () and R. Indeed, suppose that .S were a clopen set
with S # () and S # R. Then both § and ¢ are non-empty soleta € Sand & € R\ S. Suppose that

a < b (the proofis similar if & < ). Consider

¢ = sup(S N [4, b]).
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Since S and [, &] are closed, we have that § N [4, &] is closed and thus ¢ € § N [4, 6] by Proposition
Butc #basb & Ssoa < ¢ < b. Moreover, by construction of S it follows that (¢, 4] C R\ §

contradicting that S is open as no neighborhood of ¢ can then be contained in S.

Example 3.2.34. Let X = [0,1] U [2,3] C R with the subspace metric. Then [0, 1] and [2, 3] are
both clopen in X.

We will later see when studying connected sets that the only spaces which have non-trivial clopen
sets are “disconnected” in some suitable sense. This is illustrated by Examples and
3.3 Compact sets
Compactness
Definition 3.3.1. Let (X, d) be a metric space and S C X. An open cover of S is a collection { U, },c4

UUaQS.

a€A

of open subsets of X such that

A subcover of { U, } 4e 4 refers to an open cover of the form {U, } ,c for some B C A.

Definition 3.3.2. Let (X, d) be a metric space and C C X. C is said to be compact if every open cover

of C has a finite subcover, i.e. a subcover with finitely many elements.
Example 3.3.3. Any finite subset of a metric space is compact.
Theorem 3.3.4. Closed intervals [a, b] C R are compact.

Proof. Suppose we have an open cover {U, }, of [4, b]. Note that for all x € [, b], [4, x] is still
covered by { U, }. Let S be the collection of all x € [4, 6] such that [4, x] has a finite subcover. Then S
is non-empty as4 € S and S is upper-bounded by definition. Thus let

xo = supS € [a, b].

Our goal is to show that xp = 4. Note that xy > « since taking any open containing 2 produces an
interval of points with a finite subcover, namely covered by a single open.

Suppose thatxy # bsoa < xy < band let 7y be such thatxy € Uj,. Then we may find ¢ > 0 such
that

a<xg—e<xo<x0+te<b

and such that

(xo —&x0+¢) C U (3.3.1)
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since Uj, is open. Then since xp = sup .S we may find some x; € S withxy — ¢ < %1 < xp. Thus we
have by definition of S that [4, x1] has a finite subcover, and adding Uj; if necessary to this subcover
we see by that [4, xo + ¢] has a finite subcover. Thus xy + ¢ € S contradicting that xy is an upper
bound for §.

We conclude that xg = . Moreover, the same argument shows that xy € S (or more strongly that

S¢is open, so S is closed). Thus we conclude that & € S so [4, b] has a finite subcover as required.  [J

Compactness should be thought of as a way of saying that a space is “not too big.” We will prove
various theorems throughout this section that justify this intuition. Moreover, this sense of size is

intrinsic to the subspace itself, not its ambient space as the following theorem says.

Theorem 3.3.5. Let C C Y C X. Then C is compact as a subset of Y if and only if it is compact as a
subset of X.

Proof. Suppose C is compact as a subset of Y. Then let {U, : « € A} be an open cover of C as a
subset of X. Then by Theoremwe have that {U, N Y : 2 € A} is an open cover of C'in Y.
Since C is compact as a subset of ¥ we may find a finite subset B C 4 such that {U, N Y : « € B} is
acover of C. But then {U, : « € B} isacover of C in X. Thus C is compact as a subset of X.
Conversely, suppose that C is compact as a subset of X. Let {U, : « € 4} be an open cover of C
in Y. Then by Theoremfor each 2 € A we may write U, = Y N V, for V, an open subset of
X. We then have that {V,, : « € A} is an open cover of C in X. Thus it has a finite subcover indexed
by B C A4 and we get that {U, : « € B} is a finite subcover of C in Y as required. O

In light of this theorem, we could say that a metric space X is compact if it is compact as a subset
X C X of itself. Then, by Theorem given C C X saying C is compact as a subset of X is

equivalent to saying C is compact as a metric space when given the subspace metric.
Theorem 3.3.6. Let C C X be compact. Then C is closed.

Proof. We will show that the complement of C is open from which the result will follow from Theo-
rem
Fix some p € X \ C. We wish to find some neighborhood of p lying outside C. To do this, note
that for every g € C by Proposition 3.2.9| we may find disjoint neighborhoods 7, and W, of g and
p respectively. Now, {7 : g € C} form an open cover of C, so by compactness we may find a finite
subcover V-3V, such that
CCV,U---uUv,,. (3.3.2)

Then take W = W, N---NW,,. Since W is afinite intersection of neighborhoods of p, W itself is a
neighborhood of p. Moreover, by construction, W NV, = () forallso by we have W NC = 0.
Thusp € W C X \ CandsoX \ Cis open as required. O
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Theorem 3.3.7. Let X be compact. Then every closed subset E C X is compact.

Proof. Givenanopencover {U, : « € A} of Ein X, since E is closed in X we find that {X'\ E}U{U, :
a € A} isan open cover of X. Since X is compact this has a finite subcover, which, after throwing out

X \ E if necessary, gives a finite subcover of E. ]

Sequential compactness

Definition 3.3.8. A metric space X is said to be sequentially compact if every sequence (x,), in X has
a convergent subsequence. That is, we may find some sequence #; < 7y < n3 < --- of increasing

integers such that (x,, ), converges.

We have two goals in this section and the following: To prove that compactness and sequential
compactness are the same (in the setting we are in), and to classify compact subsets of Euclidean space
Rﬂ

We begin with an easy direction.

Lemma 3.3.9. Let (x,), be a sequence in a metric space X with no convergent subsequence and let x € X.

Then we may find an open neighborhood of x which does not contain any of the x,, (except possibly x itself).

Proof. WLOG we may assume that x is not one of the x,, as if it is then we may remove all occurrences
of x in (x,), and apply the result.

Next, assuming that x does not belong to {x, : » € N}, notice that it suffices to find an open
neighborhood of x containing finitely many x,,’s. Indeed, suppose we have some neighborhood U of

x containing only finitely many of the x,,’s, i.e.
Un{x,:n €N} ={x,,...,%,}

Then asx # x,, for any 7, we may find for each 7 a neighborhood U of x with x,,, ¢ U; by Proposition

Then setting

V=unun---Nnu,

we have that V" is a neighborhood of x with
V{x,:neN}=10

as required. Thus for contradiction assume that every open neighborhood of x contains infinitely
many of the x,,’s. From this we will construct a subsequence of (x,), converging to x giving a contra-

diction.
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To do this, let 71 be any index such that x,, € Bi(x). Now, assume that n; < -+ < 7;_; have
been constructed. Since By (x) contains infinitely many of the x,,’s, we may find 73 > 7;_; such that
Xn, € Big(x). Doing this, we inductively get a sequence (7;);, such that d(x, x,,) < 1/k and hence

(%, )& is a subsequence converging to x, a contradiction. O
Proposition 3.3.10. Let (X, d) be a metric space. If X is compact then X is sequentially compact.

Proof. Let (x,), be a sequence in X. Suppose (x,), did not have any convergent subsequences. We
will use this to construct an open cover with no finite subcover.
For this, fix x € X. By Lemmal3.3.9} we may find an open neighborhood Uy of x such that

U, N{x, : n € N} C {x} (3:33)

Then {U, : x € X} is an open cover of X with no finite subcover.

Indeed, suppose that { U, : x € B} were a subcover. Then since

X=UUx

xEB

we in particular have that

{xn:nGN}={xn:n€N}ﬂ<UUx>

xXEB
= U ({x, : » e N} N Uy) (33-4)
xEB
CB

where in the last step we use (3.3.3). But (x,), has no convergent subsequence, so {x, : € N} must
be an infinite set, and hence B must be infinite by (3.3.4)). O

The other direction requires some work. We begin with some definitions and preliminaries.
Definition 3.3.11. Let (X, d) be a metric space and let § C X. We say that S is dense if S = X.
Proposition 3.3.02. 4 set S is dense in X if and only if every non-empty open set in X intersects S.

Proof. For one direction, suppose that U is a non-empty set not intersecting S. Then U* is closed and

we have that

SCU#X

50 .S is not dense.



For the other direction, suppose that every non-empty open U C X intersects S. Then if S#X

~C . N . . .
we have that .S is a non-empty open not intersecting S, a contradiction. L]

Definition 3.3.13. We say that a metric space X is separable if there exists a countable dense subset of

X.

Example 3.3.14. Q is dense in R. In particular, R is separable. Indeed, this follows from Theorem

[2.2.s| which tells us that every open interval in R contains a rational number.
Proposition 3.3.55. Let X be a sequentially compact metric space. Then X is separable.

Proof. Fixe > 0. X can be covered by finitely many open balls of radius . Indeed, suppose not. We
will construct inductively a sequence (x,), with no convergent subsequence. For this, let x; be any
x1 € X. Now suppose that xy,. .., x, have been constructed. Then since X cannot be covered by

finitely many balls of radius ¢, we can find
X1 € X\ (Be(x) U - - - U B.(x)).

This sequence then has the property that d(x;, x;) > ¢ forall/ # j, so in particular (x,), has no
convergent subsequence.

We now construct our countable dense subset. For every z € N, let
S, = {xl,...,xm}
be a finite set of points in X such that
X = Bip(x1) U -+ - U By()

which exists by the above work. Then

S=USn

neN

is countable and we show that § = X.

Indeed, let U be a non-empty open subset of X. Then in particular, U contains some open ball
B,(y) for » > 0. But taking » with 1/z < » we may find some z € S, C S such thatd(z, y) < I/n < r.
Thus in particular, z € § N U so S is dense by Proposition O

Proposition 3.3.06. Let X be a separable metric space. Then every open cover {U,}, of X bas a countable

subcover.
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Proof. Let S be a countable dense subset of X. Note that there are only countably many open balls of
rational radius and center belonging to S (since Q X S is countable). Thus it sufhices to find a collection
C of open balls of rational radius centered at points of S which cover X and have the property that for
every V' € C there exists U, in our original cover with /" C U,.
To show this, notice that for every x € X we may find some Up in our cover with x € Up. Then
we may find some g € Q with
B,(x) C Up.

Since § is dense, we may find some y € S with d(x, y) < /2. Then
X € Bq/Z()’) - Bq(x) - Uﬁ

Let Vy = By/a(y). Then € = {V; : x € X'} is our desired collection. O

Lemma 3.3.x7. Let X be a sequentially compact space and let Iy D Fy O F3 O - - - be a nested sequence
of non-empty closed subsets. Then (), F, # 0.

Proof. For each n pick x, € F,. Then as X is sequentially compact, (x,), has a convergent subse-
quence, say x,, — . We wish to show thaty € (), F,.
For this, notice that because the £’s are nested, for any 7 the tail of the subsequence (x, ), lies in

F,. Thusy € lim F, so y € F, as each F,, is closed. Thus y € F, for all  as required. ]

Theorem 3.3.18. Let X be a sequentially compact metric space. Then X is compact.

Proof. By Propositions and we have that every open cover of X has a countable subcover.
Thus it remains to show that every countable open cover of X has a finite subcover.
Let {U}, Uy, Us, ... } beacountable open cover which we may WLOG assume s infinite. Suppose

that no finite subset covers X. Then set
E,=UNn---NU,.

Then F), is closed and non-empty as X # U U- - - U U,. Moreover, we have that F/; O F, D F5 D - --.
Thus by Lemmawe have that
(F=(\U; #0.

But then the U; do not cover, a contradiction. O

Corollary 3.3.19. A metric space X is compact if and only if it is sequentially compact.
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3.4 Heine-Borel and Bolzano-Weierstrass

Having proved that sequential compactness is the same as compactness, we are able to reap immediate

benefits which we take account of in this section.

Definition 3.4.1. Let (X, dx) and (Y, dy) be metric spaces. We define the product metricon X x Y

to be the metric given by

d((xe1, 1), (2, 92)) = \/dX(xb x)? +dy(y, y2)*

Example 3.4.2. Usual Euclidean space R” is equal to the product metric space
R x---R.
\w—/
7 umes

There are many different ways we could have equipped the productset X x ¥ with a metric. Some

of the natural ways are:

e, 1) (22, 32)) = \ (o, 2)2 + dy (3
di((x1, 1), (w2, ¥2)) = dx (%1, %2) + dy(y1, y2)
doo((x1, 1), (%2, y2)) = max{dx(x1, %2), dy(y1, 2) }.

It turns out that these metrics are equivalent in a suitable sense (see homework) and thus checking

whether aset4 C X X Y is open does not depend on which of the above metrics we choose.

Proposition 3.4.3. Let X, Y be metric spaces. Then a sequence ((Xn, y))n in X X Y converges to (x, y)
if and only if x,, — x and y, — .

Proof. Exercise to the reader. O
Theorem 3.4.4. Let X, ..., X, be compact metric spaces. Then Xy X - - - X X, is compact.

Proof. By induction, we may reduce to the case » = 2. Since compactness is the same as sequential
compactness, it suffices to show that every sequence in X; X X; has a convergent subsequence.

For this, let (x4, y2))» be any sequence in X; X X,. Then (x,), has a convergent subsequence,
say (%, )i» since Xj is compact. But then (y,,); also has a convergent subsequence by compactness of
X3, say (y,, ). Then by Proposition we have that ((x4,, y,,))e is a convergent subsequence of
(%> ¥2))n as required. O

This gives us some more examples of compact subsets.
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Definition 3.4.5. A k-cell in R¥ is a set 7 of the form
1= [ﬂlx bl] X X [ﬂ/e) bk]

foray, by,...,a, by € R”.
Theorem 3.4.6. k-cells are compact.

Proof. Theorem tells us that the closed intervals [4; 4] C R are compact. Then the result
follows from Theorem[3.4.4} ]

This is a strong result from which many famous corollaries follow.

Definition 3.4.7. A metric space (X, d) is said to be bounded if there exists some A4 > 0 such that
d(x,y) < Mforally, y € X.

Theorem 3.4.8. Every compact metric space is bounded.

Proof. This is a consequence of our proof of Proposition j3.3.15, which we repeat here. Let X be a
compact metric space. Notice that

{Bi(x): x € X}

is an open cover of X. Thus, by compactness, we may find a finite subcover and write
X = Bi(x1) U+ - U By(x). (3-4.1)

Then let
M= max{d(xj, x;):1 <47 <n}

Forevery x, y € X, by , we may find x; andxj such that d(x;, x) < 1and d(xj, y) < 1. Then
d(x, y) < d(x, %) + d(x, x]) + d(x]«,y)
<M+2
so X is bounded. O

Combining Theorem and Theorem we see that every compact space is closed and bounded.

The Heine-Borel theorem will give us the converse in the case of subsets of R”.

Theorem 3.4.9 (Heine-Borel). Let A C R”. Then A is compact if and only if A is closed and bounded.
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Proof. One direction follows from Theorems|3.3.6|land[3.4.8}
For the other direction, if 4 is bounded then we may find some #-cell 7 with 4 C 1. But by

Theoremwe have that 7 is compact, and since 4 is closed as a subset of R”, it is closed as a subset
of 1. Thus 4 is compact by Theorem OJ

Example 3.4.10. This theorem only works in R”. Indeed, let X be any infinite discrete metric space.

Then X is bounded and closed, but never compact.

Theorem 3.4.11 (Bolzano-Weierstrass). Every bounded sequence in R” has a convergent subsequence.
Proof. Every bounded sequence (x,), can be contained in some 7-cell /. But 7 is compact, hence
sequentially compact, and we are done. L]
3.5 Connected sets

Definition 3.5.1. A metric space X is said to be connected if it cannot be written as a disjoint union of

two non-empty open sets.
Proposition 3.5.2. A space X is connected if and only if the only clopen subsets of X are ) and X.

Proof. First suppose that X is connected and let U C X be clopen. Then
X=UuUU"

and U and U* are disjoint open sets. Since X is connected, one of U or U must be empty. Thus we
getthat U = ) or U = X as required.

Next, suppose that the only clopen subsets of X are the trivial ones and suppose that
X=UUV

for U, IV disjoint open subsets. Then U¢ = V" is open, so U is clopen. Hence either U = PDorU =X
in which case 7 = {). Thus X cannot be written as a disjoint union of two open sets and is therefore

connected. O

Theorem 3.5.3. The connected subsets of R are precisely the intervals. That is, it is those I C R with the
property that if x,y € I and x < z < y, then z € I.

Proof. Suppose that 4 C R is a subset without this property. That is, we may find x, y € 4 and
x <z <ywithz &€ 4. Then

A=(AN(—0,z2))U(A4N(z 00))
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witnesses 4 as a disjoint union of two non-empty open subsets.

On the other hand, suppose that 7/ C R is an interval. We will replicate the proof in Example
which shows R has no non-trivial clopen subsets. Suppose that S C 7 is a non-trivial clopen
subset. Then choosex € Sandy € I\ S. Since 7'\ S is also a non-trivial clopen subset we may WLOG
assume thatx < y. Set

z = sup(S N [x y])

Then since S is closed we have that z € S and in particular z # y. Moreover, since §'is open and x € S,
we must have z > x. Thusx < 2 < y. Since / is an interval, we know [, y] C I and it follows from the
above that

(my] CI\S

which contradicts that S is open, since no ball centered at z is contained in S, a contradiction. O

Theorem3.5.4. Let {X,, : « € A} bea family of connected subspaces of some space X with (¢ 4, X 7 0.
Then | J ¢ 4 X, is connected.

Proof. Letx € (),c X, and set

Y=U&

acd
Suppose that we could write Y = U U V' for U, V" disjoint open sets. Then WLOG x € U. Now, for
every 2 € A we have that
X, = (X, NU)U(X,NV)

witnesses X, as a disjoint union of two open sets. Since X, is connected, one of these sets must be
empty. Butx € X, N U so it must be the case that X, N U = X, and X, N V' = (). In particular, we
have that U D X, foralla,soU D Y.

We conclude that U = Y and V" = (), so ¥ cannot be a written as a disjoint union of non-empty

open sets, as required. ]

Exercises

Exercise 3.1. (i) Show that the set {1/z : » € N} is not closed a subset of R, but is closed as a subset
of

Roo={x € R:x>0} =(0,0).

(ii) Show from definition that {1/z : » € N} U {0} C R is compact.

Exercise 3.2. Let (X, 4) be a metric space. Recall that we defined the open and closed balls of radius
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7 as follows:

B(x)={yeX :d(xy) <r}
Dx) = [y € X+ (s ) < r}.

(i) Show that B,(x) C D,(x). (This should take one sentence if you quote results from lecture.)

(i) Construct a metric space (X, d) and x € X, » > 0 such that B,(x) # D,(x). That is to say, the
closed ball of radius 7 centered at x is not necessarily the closure of the open ball of radius » centered

atx.

Exercise 3.3. Let X be a set with two metrics d; and dy. We say that d is equivalent to d if there

exists constants Cj, C; > 0 such that for all , y € X we have
Cldl(x;}’) < dz(x,}’) < Czdl(x:)’)-

Show that if d; and d; are equivalent metrics on X, then aset4 C X is open with respect to d; if and

only if 4 is open with respect to d5.

Exercise 3.4. Let X be a metric space, and let € = {U, : « € A} be an open cover. We say that an

open cover 8 is a refinement of C if for every A € § there exists some B € C with 4 C B.
(i) Show that a space X is compact if and only if every open cover has a finite refinement.
(i) Show that every open cover has a refinement 8 consisting only of open balls.

(iii) Deduce using (i) and (ii) that a space X is compact if and only if every open cover by open balls

has a finite subcover.
Exercise 3.5. Show that the product of two connected metric spaces is connected.

Exercise 3.6. Give an example of a nested sequence C; 2 C, D C3 2 --- of closed, connected

subsets of R* such that (72, C, is not connected.

Exercise 3.7. Show that
A={(xx):xeX} CX xX

is closed for any metric space X.
Exercise 3.8 (*). Show that R cannot be written as a disjoint union of bounded, closed intervals of

positive length.
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4 Sequences and series

4.1 Convergence

Recall that a sequence (x,,), is a metric space (X, d) is said to converge to x if for all ¢ > 0 there exists

some N € Nsuch thatforall z > N we have d(x,, x) < ¢. In this scenario we will write
limx, = x
n

and say that (x,,), converges. If no such x exists we will say that (x,,), diverges.
Note that convergence is dependent on the ambient space and is closely related to the notion of
closed-ness that we have studied. Indeed, for example, (1/z), converges in R but diverges in (0, 0o).
We now collect some basic facts about sequences that we have implicitly encountered in the pre-

vious section.
Theorem 4.x.x. Let (x,), be a sequence in a metric space X. Then the following statements hold:

(2) (%), converges tox € X if and only if every neighborhood of x contains x, for all but finitely many

n
(ii) Ifx € X and x' € X withx, — x and x, — x, then x = x'
(177) 1If (x,), converges, then (x,), is bounded

Proof. For (i), suppose that x,, — x and let U be a neighborhood of x. Since U contains an open ball
centered at x, we reduce to showing that every open ball about x contains all but finitely many x,’s.
For this consider B,(x) for » > 0. Since we have d(x,, x) < » for z sufficiently large we are done.

On the other hand, suppose every neighborhood of x contains all but finitely many of the x,’s.
Then given ¢ > 0, we have that B,(x) contains every x,, for all but finitely many ». Then taking N
to be the largest subscript not contained in B.(x) we have that for all z > N + 1 that d(x,, x) < ¢ as
required.

For (ii), suppose that x # x’. Then take
g=d(xx')/2 > 0.
Then for 7 sufficiently large we have that d(x,, x) < ¢ and d(x,, x') < ¢, but this is impossible since

B.(x) N B(x) = 0.
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For (iii), let x,, — x. Remark that, by (i), Bi(x) contains all but finitely many terms say x,,,, . . ., %, .
Then setting
M =max{d(p,q) : p,q € {xnp>. .., X x}} +2

we have that {x, } is bounded by 1. O

We now take account of how numerical sequences behave with respect to arithmetical operations.
First, we equip C with the metric

d(zb Zz) = |Zl - Zz|

where

la + bi| = Va* + b~

Note that this is the same as the metric on R when we identity C with the plane via real and imaginary

parts.

Theorem 4.x.2. Let (s,), and (t,), be sequences of complex numbers with s, — s and t, — t. Then
(i) s, +t, > s+t

(12) cs, — csand c + s, — ¢ + s for any numberc € C

(i7) spt, — st

(iv) if s, # 0 forall nand s # 0, then 1/s, — 1/s

Proof. For (i), let e > 0. Then we may find N, N, such that for all » > N; we have
s, —s| <&/2

and for all » > N, we have
|t, —t| < e&/2.
Then for N = max{/Nj, N, } we have that
|(fn +tn) - (5+t)| < |Ji’t _5‘ + |tn - t|
<e2+¢2

=

as required.

The proof of (ii) is an exercise for the reader.
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For (iii), we write
it — 5= (50— Ntw — ) +s(tw — 1) + £5n — 3). (411
Now, fix ¢ > 0. Then for z sufficiently large we have that
s, —s| < Ve

and

|t, — t| < Ve
It follows that for 7 sufficiently large we have
(50— s)ew — D) < Ve Ve=c
Thus lim, (s, — s)(¢, — ) = 0. Taking limits of both sides of and applying (i) and (ii) we get that
li;n(:ntn —st) = 0.

Applying (ii) once more we get lim,, 5,2, = s as required.
For (iv), since s # 0, for z sufficiently large (say z > m) we have that |5, — 5| < |s|/2. When this
holds, we have that
Is,| > |s|/2.

Fix e > 0. For # sufficiently large (say » > M) we have that
1

5w — 5| < = |s]%.
2

Then for n > max{m, M} we have that

1 Il |s—s
s, sl | s,
|s|%¢/2
|s|2/2
=
as required. O

Limits also play well with arithmetic in R”.
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Theorem 4.1.3. () Ler

X = (X105 Xpyn)
be a sequence in RE. Then x, — (1, .., i) if and only if x;,, — y; for all i.
(i2) Let (%), and (y,), be sequences in R¥ and let f € R. If x, — x and y, — y then we have
liznxn Yp =Xy
hfzn(x” +yn) =X +Y
li}rﬁn Bxp = fx.

Proof. (i) follows from Proposition (ii) then follows from (i) and Theorem|4.1.2} O

4.2 Cauchy sequences

Definition 4.2.1. A sequence (x,), in a metric space X is said to be Cauchy if for all ¢ > 0 there exists

N € Nsuch that forall #, m > N we have d(x,, x,,) < &.

Remark 4.2.2. Cauchy-ness is a property of the sequence itself. It does not required addition input
to state, unlike convergence which requires reference to a point to which the sequence converges. As
such, Cauchy-ness also does not depend on the ambient space unlike convergence. The following

example illustrates this point.

Example 4.2.3. (i) (1/z), is Cauchy in (0, 00) but not convergent.

(ii) (7), in R is not Cauchy.

(iii) Only the eventually constant sequence in a discrete metric space are Cauchy.

(iv) If we equip R with the metric
dxy)=le™ —e?

then (), is Cauchy but convergent.

Our goal for this section is to show that being Cauchy is the same as being convergent in certain

settings.

Proposition 4.2.4. Let (x,), be a Cauchy sequence with a convergent subsequence x,, — x. Then (x,),

is convergent with x, — x.
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Proof. Fixe > 0. Then there exists some N such that for #, m > N we have
A%, xm) < &/2.

Now, since x,, — x, we may find some 7, such that z, > N and d(x,,, x) < &/2. We then have that

forn > N,
A(xp, x) < d(265, x,) + (0, %)

<e/2+¢/2
=¢
as required. O

Proposition 4.2.5. Every Cauchy sequence is bounded.

Proof. Let (x,), be a Cauchy sequence. Then there exists some /N such that for , m > N we have

that d(x,, x,,) < 1. Then setting

M =max{d(p,q) : p,q € {x1,...,xn}} +1

we have that {x, : z € N} is bounded by M. O
Theorem 4.2.6. (7) In any metric space, every convergent sequence is Cauchy.

(i) Every Cauchy sequence in a compact metric space is convergent.

(1iz) Every Cauchy sequence in R” is convergent.

Proof. For (i), suppose that x,, — x. Then fixe > 0. Let N be such that for all z > N we have
d(x,, x) < &/2. Then for all z, m > N we have

A%, %) < (6, %) + (%, %,)
<e2+¢/2

=€

as required.

For (ii) and (jii), we remark that by Proposition [4.2.4]it suffices to show every Cauchy sequence
has a convergent subsequence in these settings. For (ii), we know that every sequence in a compact
metric space has a convergent subsequence. For (jii), Proposition [4.2.| tells us every Cauchy sequence

is bounded so we are done by Bolzano-Weierstrass. O

45



4.3 Completeness

We remark that Theorem [4.2.6[i) tells us that being convergent is stronger than being Cauchy and
Example shows that in general it is a strictly stronger notion. However, Theorem [4.2.6{ii) and
(iii) gives us examples of spaces where the two notions are in fact equivalent. We give such spaces a

name.
Definition 4.3.x. We say thata metric space X is complete if every Cauchy sequence in X is convergent.
Proposition 4.3.2. Every closed subspace of a complete space is complete.

Proof. LetX be completeand ¥ C X aclosed subset. Then given a Cauchy sequence (y,), in Y, since
X is complete we know that y, — x for some x € X. But Y is closed so we must have thatx € Y, so

(¥2)n is convergentin Y. ]

Combining with Theorem are examples of complete spaces now include compact spaces

and closed subsets of Euclidean space.

4.4 limsup and lim inf

Similar to how every convergent sequence is Cauchy, but not necessarily the converse, we have by
Theorem iii) that every convergent sequence is bounded. The converse to this is also clearly not
true: The sequence ((—1)"), is R is bounded but not convergent.

There is however a special case in which being bounded does imply convergence.
Definition 4.4.1. A sequence of real numbers (x,), is said to be
(i) monotonically increasing if x, < x,41 forall n
(ii) monotonically decreasing it x, > x,41 forall n
If either of these hold, we say that the sequence (x,,), is monotone.

Proposition 4.4.2. A monotone sequence (x,), s R is convergent if and only if it is bounded. In this

case, we have
() x, — sup{x,} if x, is monotonically increasing
(ii) x, — inf{x,} if x, is monotonically decreasing

Proof. We have already seen that all convergent sequences are bounded, giving one direction.
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For the other direction, we prove the proposition in the case of x,, monotonically increasing as the

decreasing case is proved similarly. Since {x, } is bounded and non-empty we may take

a = sup{x, }.

Now fix ¢ > 0. Since 2 — ¢ cannot be an upper bound for {x, } we must be able to find some N with
xN > a — . But(x,), is increasing so for all # > N we have that x, > xx;. Combining this with the

fact that 2 is an upper bound for {x, }, we find that forallz > N
a—e<x, <a

Hence x, — « as required. O

If we allow statements of the form x,, — 0o and x, — —oo then parts (i) and (ii) of Proposition

[4.4.2)may be written without boundedness hypotheses. We thus make such a definition

Definition 4.4.3. Let (x,), be a sequence of real numbers. We write x,, — +ocif forall M € R
there exists N € N such thatx, > M foralln > N.

Similarly, we write x,, — —oo if for all M € R there exists N € N such thatx, < A1 for all
n>N.

We will also write lim, x,, = +00 and lim,, x,, = —00 to mean the same thing as x,, — +00 and

X, — —00 respectively.

Remark 4.4.4. Even though we may now write lim,, x,, = 300 sequences for which this hold are

still said to be divergent (check that such sequences are indeed divergent per our definition!).

Using Proposition(4.4.2]it is possible to extract from every sequence of real numbers two sequences
which are guaranteed to converge. Let (s,,),, be a sequence of real numbers. For now, suppose that (s,),

is bounded below. Define the following modified sequence:
s, =inf{s; : &> n}.
If (s,)» is bounded above, then we may also define
5, = sup{s; : k> n}.
Then one checks that (5, ), is monotonically increasing and (5, ), is monotonically decreasing. We use

these to make the following definition
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Definition 4.4.5. Let(s,), be a sequence of real numbers. We define the lower limit of (s,),, denoted

by lim inf, s,,, as follows:

(i) liminf, s, = lim, s, if (s,), is bounded below

(ii) liminf, s, = —o0 otherwise.

Similarly, we define the upper limit of (s,),, denoted by lim sup, s, as follows:
(i) limsup, s, = lim,, 5, if (s,), is bounded above

(ii) limsup, s, = +00 otherwise.

Theorem 4.4.6. For cvery sequence of real numbers (s,), we have that

liminfs, <limsups,
n
n

with equality if and only if s, — s with

s = liminf s, = lim sup s,.
n
n

Proof. We remark that
limsups, = inf{sup{s; : ¥ > n} : n € N}

n
and

liminf's, = sup{inf{s; : # > n} : n € N}

by Proposition Seta = limsup_ s, and 8 = liminf, 5, and let £ > 0. Then we may find N € N
such that
B—e<inf{s,: k> N}.

However, notice that we then in fact have foralln > N

B—e<inf{s, : k> N}
<inf{s, : k> n}

<sup{s : k> n}.

We find then that 8 — ¢ is then a lower bound for {sup{s; : £ > n} : n € N} so # — ¢ < a. But this
holds foralle > 0,508 < «.
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For the second part, suppose thats, — sfors € R. Then fixe > 0. We may find N € N such

that for all # > N we have |5, — 5| < . In particular, we have that

Sp<S+¢

forallz > N so

limsups, <s+e
n

But also we have thats — ¢ < 5, forn > N so
liminfs, >s—e
n

Thus

limsups, — e <s < liminf +¢

n n

forall ¢ > 0 soin fact

limsup < s < liminfs,.
n n

Combined with first part of the proposition we find that

s =limsups, = liminfs,
n
n

as required.

Next suppose that s = limsup, s, = liminf,, 5,,. We wish to show that s, — 5. We will check the
case when s € R and the case of s = +00 is an exercise. Let¢ > 0. Then we may find N € N such
that

s—e<inf{s, : k> N} <sup{s; : k> N} <s+e¢

(check this!). But then for all # > N we have that
S—e<s,<s+¢

as required. O

Example 4.4.7. (i) Lets, = (—1)"/(1 + 1/z). Then

limsups, =1, liminfs, = —1
n n

and since lim sup, s, # liminf, 5,, (5,), does not converge.
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(ii) Let (s,), be an enumeration of the rational numbers. Then (s,,),, is neither bounded above nor
below so
limsups, = +oo, liminfs, = —oo.
n
n

4.5 Series

From here on out, it will be assumed that all sequences are complex valued.

Given a sequence («,), we denote by

the sum @, + 541 + - - - + a, of all sequential terms starting at the index p and ending at the index 4.

Definition 4.5.1. Let (4,), be a sequence. The sequence of partial sums is the sequence

n
w=Ya
k=1

Further, we will write

Zﬂn (4.5.1)

n=1
for the limit of the partial sums lim,, 5,,. We refer to the above as a series or infinite series. We will say

that (4.5.1) converges if (s,,),, converges, otherwise we will say that (4.5.1) diverges.

. o0 . . . . . . [ee]
Remark 4.5.2. Since ), a,, is simply notation for lim,, s,, it makes sense to write ), 2, = 00

using the notation of the previous sections. However, in this case we still say that ) 4, diverges.

Collecting the results from the previous sections about sequences and applying them to the se-

quence of partial sums we get the following results.

Theorem 4.5.3. Let (a,), be a sequence. Then ), a, converges if and only if for all ¢ > 0 there exists
N & Nsuch that for all n, m > N we bave

m
Z arp| <ée.
k=n

Proof. This criterion is precisely the assertion that the sequence (s,),, of partial sums is Cauchy, and

we have seen that R? (and hence C) is complete. O

Theorem 4.5.4 (Divergence Test). If') . a, converges then a, — 0.

50



Proof. For any Cauchy sequence (s,), we have thats,,; — 5, — 0 (check this!). Applying this to the

sequence of partial sums this precisely says that 2, — 0. ]

Example 4.5.5. The converse to Theorem 4.5.4]does not hold. Indeed, one has that
1
SEEN
n
n=1

(see homework or later in notes). However, it does give a criterion for showing that a series diverges.

In particular, if 2, 7 0 then ) 4, necessarily diverges. This is sometimes called the divergence test.

Theorem 4.5.6. Let (a,), be a sequence of non-negative terms. Then ) a, converges if and only if the

sequence of partial sums is bounded.

Proof. 1f the a,,’s are non-negative, then the sequence of partial sums is monotone increasing and the

result follows from Propositionm O

The above theorem justifies the intuition that a sequence on non-negative terms either converges
or “blows up.” Since sequences of non-negative terms have simple behavior in regard to convergence,

we define a stronger notion of convergence.

Definition 4.5.7. Let (a,), be a sequence. We say that ), a,, is absolutely convergent if ", |a,|

converges.
Proposition 4.5.8. If ) . a, is absolutely convergent, then ., a, is convergent.

Proof. We have that

S a < lay
k=n k=n
and so the result follows from Theorem 4.5.3} O

Remark 4.5.9. Theabove proof shows thatif ) | |a,| convergesthen ) " |a,|is Cauchy. One might
wonder whether there is a more direct proof that does not use that C is a complete metric space.
However, it turns out that if one considers series in more general metric spaces where it makes sense

to add things, then completeness is necessary for absolute convergence to convergence.

Example 4.5.10. Being absolutely convergent is a strictly stronger notion than being convergent. In-
deed, >, (—1)"/n is convergent (see Homework 3) whereas ) 1/ is divergent (see Theorem |4.6.4)).

Theorem 4.5.1x (Comparison Test). Lez (a,), be a sequence.
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(2) If |a,| < c, for all n sufficiently large and )y, c, convergesthen'y , a, is absolutely convergent.
(i) If ay > b, > 0and ), b, diverges, then ) ., a, diverges.

Proof- For (i), to show that ) | |, | converges, it suffices by Theorem to show that the sequence

of partial sums is bounded. However, we have that
n n
S la <> e
k=1 k=1
o
< Z Cp < 00
n=1

as required.
For (ii), again by Theorem 4.5.6 it suffices to show that ) _ 4, is unbounded. Since the terms
b, are non-negative and ) | b, diverges, we know that the sequence of partial sums of the &,’s are

unbounded. But we have that .

Zﬂ/@ > Z by
kel

k=1

so the sequence of partial sums of the 2,’s are unbounded as well. O

4.6 Special series

In the previous section, we saw some basic tests for establishing convergence and divergence of series.
However, to make use of these test, especially the comparison test, we need families of series for which
their convergence and divergence is known. In this section we take account of some common series

and their convergence properties.

Theorem 4.6.1. Foranyx € C with |x| < 1 we bave that

> 1

E A= l4x+xi 4+ = .
1—x
n=0

If |x| > 1 then the above series diverges.

Proof. We have an explicit expression for the partial sums of these series. In fact, we have for x # 1 that

n
n—1 _ l—x

sp=1l4x+--+x (4.6.1)

1—x

Letting 7 — 00, if |x| < 1 then the above expression approaches the claimed one. If |x| > 1, then the
limit of (4.6.1) does not exist or is infinite (check this!). O
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Remark 4.6.2. Theseries ) . x”, or more generally those of the form ) |, ax” fora € C, are referred

to as geometric series.

We now want to address convergence of series of the form ) |, #»77. To do this we need the fol-

lowing peculiar looking lemma.

Lemma 4.6.3. Let(a,), be a monotone decreasing sequence of non-negative terms, i.e.ay > az > az >

- 2> 0. Then ), a, converges if and only if

00
E anzn :ﬂl+242+4ﬂ4+843+”'

n=1

coon verges.

Proof. Since all terms in sight are non-negative, convergence is equivalent to bounded-ness of partial

sums. For this, let

Sp=ay+ax+---+ay,

Ik:ﬂl+242+"‘+2kﬂzk.

For n < 2% we have that

so <aj+(ay+az)+-+(ap+-+am_)
§41+242+"'+2/€612k
= Ip.
Thus if (#;);, is bounded, then (s,),, is bounded.
On the other hand, if » > 2%, then

Sp > ar+az+(azs+as)+-+(ag_g+ - +an)

1 _
Z*ﬂl+42+244+'-'+2k lélzle

il )

Stk

\®]

50 if (s,), is bounded then (# ) is bounded, as required. O

The above lemma lets us turn certain non-geometric series into geometric series, as the next theo-

rem shows.
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Theorem 4.6.4. The series

ii—1+i+i+...
nb 20 3P

n=1

converges if and only if p > 1.

Proof. By Lemmawe have that ) #™? converges if and only if

oo 1 oo 1

k —
Z 2 2kp - Z 2k(p—1)
k=1 k=1

converges. By Theorem this convergesifand onlyif |1/2”~!| < 1whichisifandonlyifp > 1. [

4.7 More convergence tests

In this section we take account of more useful convergence tests. The next two tests, the root and ratio

test, may be thought of morally as combining the geometric series test and comparison test.
Theorem 4.7.1 (Root test). Let (a,), be a sequence and set 2 = lim sup \”/W. Then

(2) ifa <1, then ) a, converges absolutely

(ii) ifa > 1, then ) a, diverges

(1i2) ifa = 1, then the test is inconclusive.

Proof. For (i), take any f with 2 < 8 < 1. Since

a= igf{sup{m ck>n}t}<p

we may find N € N such that
sup{y/|ar| : k> N} < 8.

Thus for all z > N we have that {/]a,,| < . Thus we have that |2,| < £* forallz > Nand 5", 4"
converges by Theorem Hence by the Comparison Test (Theorem we have that ) 4,
converges absolutely.

For (ii), notice that if lim, 4, = 0 then for 7 sufficiently large we have that |2,| < 1 and thus
\/a, < 1for n sufficiently large. It follows that if lim, 2, = 0, then lim sup M < 1. Thusif

a > 1, then lim, 4, # 0 and we must diverge by the divergence test. ]
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Example 4.7.2. The inconclusivity of Theorem [4.7.]when « = 1is necessary. Indeed, we have that
forallp € R

1 ?
lim sup V1/#? = lim sup (1/;1) =1
n n n

Thus the root test is inconclusive for all sequences of the form ) »77. However, we know by The-

orem that these series are convergent when p > 1 and divergent when p < 1.

Example 4.7.3. The series

1
"
n=1
is convergent. Indeed,
1 1/n 1
lim <> =lim-=0<1
n n" n n

Theorem 4.7.4 (Ratio test). Let (ay,), be a sequence of non-zero terms. Then

(z) iflimsup ‘ﬂnﬂ < 1then ), a, converges absolutely

an

An+l

(i7) if > 1 for n sufficiently large, then ), a, diverges.

n+
d”
Proof. For (i), choose any 8 with lim sup, |4,41/2,| < 8 < 1. Then there exists N € N such that for

n > N we have that
An+1

<p.

an

Hence for » > N we have that

] <@ Nan| = 2

ﬂN

However, Y 8" |ay| converges since 8 < 1 by Theorem Thus ) a, converges absolutely
by the comparison test.
For (ii), suppose that |a,41/4,| for all z > N. Then past the first N terms, we have that the

sequence becomes monotone increasing. In particular, for » > NN, we have
24| = lan| >0

solim, 2, # 0andso ) | a, must diverge. O
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Remark 4.7.5. Case (i) of Theorem|4.7.4]holds in particular when

a
n+l > 1

lim
n

d}’l
Thus an alternative, but weaker statement, would be to say: Suppose

An+l

a = lim
n

an
exists. Then

(i) ife <1, then) a4, converges absolutely

(ii) ifa > 1, then ) a, diverges

(iii) if « = 1, then the test is inconclusive.

However, as stated, Case (i) of Theorem does not require that the limit (4.7.1) exists.

Example 4.7.6. Consider the series

1+1+1+1+1+1+
2 3 22 32 233

Then we have that

1

1\
lim sup y/|a,| = lim <2n> =

.1 (3Y”
=lim=-(=) =
nz (3)

Sl -

An+l

lim sup

8

an

so the Root Test implies convergence but the Ratio Test does not apply.

(4.7.1)

It turns out the above example is indicative of a broader phenomenon. In fact, we have the fol-

lowing result which says that the root test is a strictly stronger test for determining convergence than

the ratio test.

Proposition 4.7.7. For any sequence (c,), of positive numbers, we bhave that

Cn+l

lim sup /¢, < limsup

n C}’L

Proof. See [Rud64, Theorem 3.37].
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In practice, however, the ratio test tends to be easier to apply.
The root and ratio tests above only allow us to conclude absolute convergence of series. For series

which converge but not absolutely, such as ) | (—1)"/z, a different test is needed.

Theorem 4.7.8 (Alternating series test). Let (a,), be a decreasing sequence of non-negative real num-

bers. Then
Z( _l)nﬂn

n=1

converges if and only if lim, a, = 0.

Proof. One direction is the divergence test, so we prove the other direction. Let (s,), be the sequence
of partial sums. We show that the sequence of even partial sums converges, i.e. lim,, s, exists. Then
since

lim(s,4+; — 5,) = lima, = 0,
n n

this tells us that the whole sequence (s,,),, converges (check this!).

Notice that

S2n+2 = S2n — A2p+1 T A2p42

S 2n

since @241 > d2,42. Thus (s2,), forms a decreasing sequence, so it suffices to show that it is lower

bounded. However,

Sop = —ay + (ay — a3) + - + (@22 — a2,—1) + a2,
>0 >0 >0
> —a
as required. O]

Example 4.7.9. Theoremcan be used to immediately conclude that ) (—1)"/z is convergent.

= (—1y
>

n=1

In fact, it shows that

converges for all p > 0.



4.8 Power series

Definition 4.8.1. Let (c,), be a sequence of complex numbers. Series of the form
o
E 2"
n=0

where 2 is a complex number are referred to as power series.

In a power series, 2 is often treated as a variable and thus we get a function
o
flz) = E 2.
n=0

However, this definition only makes sense when the right hand side converges. Thus it is of interest

to understand when power series converge.

Theorem 4.8.2. Let (c,), be a sequence. Set

. 1
a =limsup y/|c,|, R=-
N a

where we take R = 00 when a = 0. Then the power series ) ., ¢,2" converges absolutely when |z| < R

and diverges when |z| > R.

Proof. We have that

lim sup {/|c,2"| = |2|a.
Then |z]« < 1if and only if |z| < R so the conclusion follows from the root test (Theoreml[4.7.1). [

Definition 4.8.3. Given a power series ) . ¢,2”, the value of R in Theorem is referred to as the

radius of convergence of ) ¢,5".

Example 4.8.4. We define the exponential function by

oo n

2z
exp(g) = Z pr} (4.8.1)
n=0 "
We have that
. 1 1/n
hmnsup (71') =0 (4.8.2)

so exp has radius of convergence co. Thus exp defines a function C — C.
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Alternatively, since is a difficult limit, we could apply the ratio test. Indeed,

lim
n

2"/n! n n+1

z”“/(n+1)!‘ e

= 0.
Thus (4.8.1)) converges forallz € Cby the ratio test, so the radius of convergence of (4.8.1) is necessarily

Q.

4.9 Rearrangements

Normally, addition is commutative. That is, we have thata + & = b + a. It is thus tempting to think

that series, i.e. infinite sums, should also be unaftected by rearranging its terms.

Definition 4.9.1. We say that a series is conditionally convergent if is is convergent but not absolutely

convergent.

Definition 4.9.2. Let (4,), be a sequence. A rearrangement of (a,), is any sequence of the form

(@, )n where

N— N
n——k,
is a bijection.
Example 4.9.3. Consider the series
1 1 1
l— -+ ==+
2 3 4

We know by the alternating series test that this sequence converges to some 5. We also know that the

odd partial sums form a decreasing sequence so

1 1 5
s<l—=-+-=-.
2 3 6

However, consider the following rearrangement of the terms giving the series

1+1 1+1+1 1+ ( )
3 257 4 491

where we add two positive terms then one negative each time. Every term in this series still appears,

however since
1 N 1 1 >0
4k —3 4k—1 2k
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if (s],), denotes the sequence of partial sums then (s},,), is an increasing sequence. In particular,

1- / !/ _ é
lmsup,\‘3n > 53 = 6.
n

Thus if the series (4.9.1) converges, it certainly cannot converge to s.

The above example shows that rearranging terms may change the value of series, and potentially
even affect convergence. In fact, in the case of conditionally convergent series, the situation is as bad

as it could be.

Theorem 4.9.4. Let ) a, be conditionally convergent. Then for any
—o0<a<pB <o

there exists a rearrangement (al,), of (ay)n, such that, if (s},), are the corresponding partial sums,

Il
R

. . /

liminfs,
n

. /

limsupys,
n

Il
=

Proof (Sketch). For a complete proof, see [Rud64, Theorem 3.54].

Since the series ) 4, is convergent, we know thatlim, 2, = 0. However, since it is not absolutely
convergent one can show that the sum of all the negative terms, when ordered in decreasing absolute
value, must equal —00 and the sum of all the positive terms, when ordered in decreasing absolute
value, must equal co.

Using this, we may pull from the negative and positive terms and required to oscillate the value of
our partial sums. We can change its value as much as desired, since the sum of these terms is infinite,
and the granularity at which we can adjust the value increases as we include more terms since lim,, #,, =
0. Thus we can add positive terms until our partial sums approach 4, then add negative terms until

we approach down to @, and repeat, each time getting closer. O
However, when we are absolutely convergent, we can rearrange.

Theorem 4.9.5. Let Y . a, be an absolutely convergent series withy ", a, = s. Then for any rearrange-
ment (), of (an), we have that Y, a, = s.

Proof. Let (ay, ), be our rearrangement of (4,), and denote by (s),),, the partial sums of (4, ),. Fix
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¢ > 0. Then we may find N' € N such that for all , m > N we have that

m
> Jail <. (4.9.2)
k=n

Now, choose p sufficiently large so that {1,..., N — 1} C {4y,..., /ep}. Then we have that
B T
(=1 (=1
n n
=D =) a
(=N =1

k>N

since the terms z; for 1 < 7 < N — 1 will cancel out. But then by (4.9.2)) we have that
/
s, — &,| < 2e.
Since ¢ was arbitrary and s, — s, we get that 5, — s as required. O

Exercises

Exercise 4.1. (i) For every #, let S, be the set of all rational numbers that can be represented as a

fraction p/g with |g| < n. Show that S, is complete.

(ii) Show that

Q=U5n.

neN
(iii) Show that Q is not complete.

Exercise 4.2. Let (s,), be a sequence of real numbers. Show that if (s, ), converges then (|s,]), con-

verges. Given an example to show that the converse is not true.

Exercise 4.3. Give an example of two sequences (s,), and (z,), of real numbers such that
lim inf(s,2,) # liminf's, - liminfz,
n n n

where all terms in the above are finite (i.e. not +00).

Exercise 4.4. Show that for two real sequences (s,), and (¢,),, that

lim sup(s, + 2,) < limsups, + limsupz,
n n n
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(whenever the right hand side is not of the form co — 00).
Exercise 4.5. Consider the sequence defined by

1 1
5n=1+§+~--+7.
n

(i) Show that (s,), is monotone.

(ii) Show that

Sontl — Spn 2 E.
Deduce that (s,), is unbounded.
(ili) Deduce from (i) and (ii) that (s,),, does not converge.

Exercise 4.6. Suppose that we have a series

[e.o]

Zﬂn=ﬂ1+dz+ﬂ3+'“- M

n=1
We will call a regrouping of ., a, to be any series arising by grouping terms in the summation, e.g.
a1 +(ﬂz+d3)+(&l4+45 + ag +ﬂ7)+ﬂg + a9 +(6110 +6111)+ cee
and
(a1 +ar+az)+ag+as+ag+---
are examples of regroupings of ().
(i) Show thatif ), a, converges, then every regrouping converges to the same value.

(ii) Givean example of a divergent series ) 4, which has a convergent regrouping.

Exercise 4.7. Suppose that ) | (—1)"2"a, converges, does it follow that ) | 4, converges? Prove or

giVE a counterexample.

Exercise 4.8. Compute the radius of convergence of

Hint: You may use that



s Continuity

s Limits of functions and continuity

Our goal in this section is to consider the behavior of functions / : X — Y between two metric spaces
X and Y. We would like to produce machinery for rigorously making statements such as “as the input
x approaches a point p, f(x) approaches the point ¢4.” To begin we first need to make rigorous which

points in a metric space can be “approached.”

Definition s.r.x. Let X be a metric space and £ C X. A point p € X is a limit point of E if every
neighborhood (taken in X)) of p contains a pointin £ \ {p}.

If £ = X and p € X is notalimit point, we say that it is an isolated point.
Remark s.1.2. p € X being isolated is equivalent to {p} being an open set.
Limit points are our rigorous notion for points that can be “approached.”

Definition s.1.3. Let X, Y be metric spaces, £ C X andf : £ — Y. If p € X is alimit point of E,
then given some g € Y we say that f(x) approaches q as x approaches p, written f(x) — g asx — por

lim f(x) = ¢,

X—p

if for all ¢ > 0 there exists § > 0 such that

dy(f(x),q) <e

for all points x € E with 0 < dy(x, p) < 0.

Morally, this definition is saying that /() can be made arbitrarily closed to g provided we make x

sufficiently close (but not equal) to p.

Example 5.1.4. It’s important to note that the statement lim,,, f(x) = ¢ depends only on the be-
haviour of /" at points near p which are not equal to pitself. Asan example of this, consider the function
f : R — Rgiven by

1 x#0

flx) =
0 x=0.

Then lim,_,o f(x) = 1 even though £(0) = 0.

63



Definition s.r.5. Let/ : X — Y be a function between two metric spaces. Given p € X, we say that

[ is continuous at p if for every € > 0 there exists a d > 0 such that

dy(f(x).f(p)) < ¢

whenever dx(x, p) < 9. Otherwise we say that f is discontinuous at p.

We say that f is continuous if it is continuous at every p € X.

Proposition 5.1.6. A function f : X — Y is continuons at p € X if and only if either p is isolated or

limy, f(x) = f(p)-

Proof. It is clear that if p is a limit point of X, then the definition of / being continuous at p implies
that lim,,, f(x) = f(p). This gives one direction.
Now, suppose that p is isolated. Then there exists some & > 0 such that B;(p) = {p}. Thus f is

continuous at p since for any £ > 0 we have that

dx(xp)<d=x=p
= dy(f(x), f(p)) =0 < e

Lastly, suppose that p is a limit point and lim,—,, f(x) = f(p). Then one verifies from the definitions

that £ is continuous at p. O
Example s.1.7. (i) For any metric space X, the identity function idy : X — X is continuous.
(ii) Constant functions are continuous.

(iii) The function f : R — R given by

X ifx<0

Sfx) =

1+x ifx>0

is continuous at every point x # 0 and discontinuous at x = 0.

(iv) The function f : R — R given by

x ifxeQ
0 ifxgQ

is continuous atx = 0 and discontinuous at every x # 0.
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The intuition for continuous functions is that there are no abrupt “jumps”—as we perturb the

input by small amounts the output also only ever changes by small amounts.

Theorem s.1.8. Letf : X — Yandg : Y — Z. Suppose that f is continuous atp € X and g is
continuous at f(p) € Y. Then g o f is continuous at p.

Proof. Fixe > 0. Then as g is continuous at f(p), there exists 7 > 0 such that

dy(,f(p)) <7 = dz(g0) g(f () < = (5.1.1)

Then, since f is continuous at p, there exists d > 0 such that
dx(x p) < 0 = dy(f(x), f(p)) < 7. (5:1.2)
Combining and we see that

dy(x p) < 9 = dz(¢(f (%)) g(f () < e

Thus g o f is continuous at p. ]
Corollary s.1.9. The composition of two continunous functions is continuous.

It turns out that being continuous is a topological property. That is, the continuity of a function
f + X — Y can be checked with only the knowledge of what the open sets of X and Y are—the

precise metric is not important.

Definition s.r.ro. Given afunctionf : 4 — Bofsetsand I/ C B, we write

FV)={acd:fla)eV}
for the collection of all elements of 4 which are mapped into V" by .

Theorem s.t.xx. A function f : X — Y is continunous if and only if f =X (V') is open in X for all open
subsets V" C Y.

Proof. First suppose that f is continuous and let 7 C Y be open. Then we may write /” as a union

v=JB

BeC

of open balls, i.e.
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where € is some collection of open balls in Y. Then

o =Ur'o),

BeC

so it suffices to show that for every open ball B,(y) in Y, £ ~1(B,(y)) is open. For this, let p € f~1(B,(y))

SO

dy(f(p),y) < r.

Sete = » — dy(f(p), y) > 0. By continuity of £, there exists a 9 > 0 such that

dx(x p) < 0= dy(f(x).f(p)) <e¢
= dy(f(x),y) <r.

Thus B(p) C £ 1(B(y)) so f " (B.(y)) is open as required.
Conversely, suppose that £~!() is open for all ¥ C Y andletp € X. Fixe > 0. Then
FYBAf(p))) is open and contains p. Hence we may find 8 > 0 such that

By(p) C £ (BAF ().

But this exactly says that
dy(x p) < 0 = dy(f(x),f(p)) <

so f is continuous at p, as required. L]

Remark s.x.x2. The equivalent formulation of continuity in Theorem|s.1.1is often given as the def-
inition of continuity and in some ways is the “correct” definition since it generalizes to spaces where

we have a notion of open sets but not necessarily any notion of distance.
Since f 1Y\ V) = X \ f~}(V) we also have the following corollary:

Corollary s..13. A function f : X — Y is continunons if and only if f~\(S) is closed in X for every
closed subset S C Y.

Definition s.r.i4. Letf : 4 — Bbeafunction of sets. Given S C 4 we define the restriction of f to
S, denoted f|s, to be the function f|s : § — B given by the formula f|s(x) = f(x).

Corollary s.rxs. Let f : X — Y be a continuous function and Z C X. The restriction f|z : Z — Y

is continuous.
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Proof. Notice that for /' C Y we have that

(flo~ "M = (nnz
Thus the result follows from Theorem|[s.r.iand Theorem .2.10] O

5.2 Arithmetic and continuity

We now want to take account of operations which preserve continuity so that we may build large

classes of continuous functions. First we prove a sequential characterization of continuity.
Proposition s.2.1. Let X, Y be metric spaces, E C X, p a limit point of E and f : E — Y. Then
lim,—,, f(x) = g if and only if for every sequence (p,), in E, p, # p, with p, — p we have that
fpn) = 4.

Proof. For one direction, let (p,,), be any such sequence and fix & > 0. Then as lim,_,, f(x) = g we

have that there exists some ¢ > 0 such that forall x € E,

0 <dx(xp) <d=dy(f(x),q) <e

Since p, — p, for n sufficiently large we have that dx(p,, p) < 9. Moreover, p,, # p so for n sufficiently
large 0 < dx(pn, p) < 9. Thus for # sufficiently large we have dy (£ (p,), ) < £ and so f(p,) — g as
required.

Conversely, suppose the sequence formulation holds but lim,,, f(x) # g. Lete > 0 be such
that no such ¢ > 0 as in Definition exists. Then for every natural » we may find p, € E with
0 < dx(pn p) < Vnanddy(f(ps), q) > . Then(p,), is a sequence satisfying the necessary hypotheses
but having 7 (p,) / ¢, a contradiction. O

Corollary s.2.2. 4 functionf : X — Y iscontinuousatp € X if and only if for every sequence p, — p
in X we bave that f(p,) — f(p).

Using this sequential characterization of continuity the following theorems are corollaries of pre-

vious work with sequences.

Definition 5.2.3. Given functions /' : X — Fandg : X — FF where F = R or C, we define new

tunctions f + g, f - ¢ and f/g (provided g is never zero) pointwise, i.e. via

(f +0)(x) = f(x) + g(x)
(f - ©)x) = f(x)glx)
(7g)(x) = f (x)/g(x)
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Similarly, given vector valued functions f : X — R¥and g : X — R* we may define f + g and
f - g by pointwise addition and dot product respectively. From here on out, operations on functions

will assumed to be computed pointwise unless otherwise stated.

Theorem s.2.4. Letf : X — Fandg : X — F be continuous functions where F = R or C. Then

(i) f + g is continuous

(11) fg is continuous

(111) /g is continous provided g is never zero

Proof. This follows immediately from Corollaryand Theorem O
Theorems.2.5. Letf : X — Yandg : X — Z be continuous. Then (f; g) : X — Y X Z is continuous.

Proof. This follows immediately from Corollary[s.2.2Jand Proposition O

Remark s.2.6. Infact, moreis true. A function b = (f, g) : X — Y x Zinto a product is continuous
if and only if both f; ¢ are continuous. To show this, it suffices to show that each projection 7y :
YxZ — Yandzz : ¥ X Z — Zis continuous. Then if / is continuous the compositions

f =myohandg = 7z o hare also necessarily continuous.
Corollary s.2.7. All polynomials from R — R are continuous.

Proof. All polynomials can be built using arithmetic out of the identity function f(x) = x and con-
stant functions which are continuous (Example[s.1.7)), thus are continuous by Theorem]s.2.4} O

Example 5.2.8. The map f : R¥ — R given by f(x) = ||x| is continuous. Indeed, by the triangle

inequality we have that

£ Ce) = FDI = [l = [yl < v = ol (5:2.1)
Thus fixany e > 0 and x € R*. Then by we have that

lx =yl < e = |If(x) = fOI <=

Since £ was arbitrary, we see that f is continuous at x, so f is continuous.
More generally, we say that a function f : X — Y is Lipschitz if there is a constant C > 0 such

that

dy(f(x), f(y) < Cdx(x y).

In this case we say that £ is C-Lipschitz. We then have that any Lipschitz function is continuous as we

may take 0 = ¢/C is the definition of continuity.

68



Example s5.2.9. Given any metric space X, the metricd : X X X — R is continuous. Indeed, since
continuity depends only on the opens sets (Theorem|s.1.11) it does not matter which of the equivalent

metrics we put on X' x X. We then have that

|d(x1, 1) — d(x2, y2)| < |d(xen, 1) — dloen, y2)| + |, y2) — d(x, 32)]
< d(y1, y2) + d(x1, x2)
= di((x1, 1), (%2, ¥2))
via the triangle inequality. Hence 4 is 1-Lipschitz with respect to the d; metric on the product. Thus
d is continuous by the discussion in Example

Since constant map and identity maps are continuous, we have by Theorem that for any

%9 € X the map
X — X xX
x> (x0, %)

is continuous. Composing with d, we then see that for any xy € X, the map

X —R
x — d(x0, X)

is also continuous.

5.3 Interaction with compact and connected sets

Continuous functions behave well with compact and connected sets. Intuitively, continuous func-
tions send points that are close together to points that are close together. Thus, intuitively, continuous
functions should not be able to separate connected spaces in two nor create too large of spaces from

sufficiently “finite” spaces.

Definition s.3.1. Let f : 4 — B be afunction of sets. For S C 4 we define £(S) to be the image of

all points in S under £, i.e.

FS) = {f) s € 8V,
Theorem s.3.2. Letf : X — Y be a continuous function and K C X compact. Then f(K) is compact.

Proof. Let C be an open cover of f(K). Then we have that

S={f'(V):rvec}
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is an open cover of K. Indeed, each £ (V) is open by Theoremand it covers K. This is because
ifx € K, then f(x) € f(K)so f(x) € V forsome V € C,s0x € f~Y(V).

It follows by compactness of K that 8 has a finite subcover, say
K CF AU U

But then f(K) C V1 U --- U V, so we are done. O

This has some useful corollaries.

Theorem s5.3.3. Let f : K — R be a continnous function where K is compact. Then f achieves a

maximum and minimum, i.e. there exists p, q € K such that

f(p) = sup f(x) = sup f(K)
x€K
£(q) = inf f(x) = inf f(K).

RIS

Proof. By Theorem[s.3.2} weknow thatf(K) C Ris compact, hence closed. It follows thatsup f(K) €
f(K)and inf f(K) € f(K). In particular, we may find points p,g € K such that f(p) = sup f(K)
and f(g) = inf f(K). O

Definition s5.3.4. We say thata function f : X — Y is dosed if f(E) C Y is closed for every closed
subset £ C X.

Theorem s.3.5. Letf : K — Y be a continuous map where K is compact. Then f is closed.

Proof. Let E C K be closed. Then E is compact as it is a closed subset of a compact space. Hence
f(E) C Y is compact by Theorem hence closed, as required. O

Example 5.3.6. Let X be any metric space and K, K, C X disjoint compact subsets. Then there
exists £ > 0 such that

d(x,y) > ¢

forallx € Kjandy € K.

Indeed, we know that the metricd : X x X — R is continuous by Example Moreover, by
Theoremwe know that K x K is compact. Hence d|g, <k, : K1 X K, — Ris continuous and
thus achieves a minimum, say at (x, yo), so set

= i f d > Zd > .
2 (x)y)él}quz (x )’) (%0 )’0)
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Then d(x,y) > ¢forallx € Kjandy € K, by definition, and since K1 N K, = () we know that
¢ = d(x0, y0) > 0.

We now return to connected sets.

Theorem s.3.7. Letf : X — Y be a continuous function and let C C X be connected. Then f(C) is

connected.

Proof. Suppose that f(C) € U U V for U, V" open. Our goal is to show that either U D f(C) or
V2 f(V). However, this then gives that

CCrHUF(P).

Since C is connected and both £ ~!(U) and £ ~!(V) are open, we may WLOG assume that f~}(U) 2
C. But then f(C) C U as required. 0

Corollary 5.3.8 (Intermediate Value Theorem). Lez f' : R — R be continunous. Given a < b and
fla) <y < f(b) (or f(b) < y < fla)), there existsa < ¢ < bwith f(c) = y.

Proof. We have seen (Theorem that the connected subsets of R are precisely the intervals. It
follows that f([4, &]) is connected, thus an interval. It follows that any y as in the hypothesis satisfies
y € f([4, b]) and thus we may find 2 < ¢ < bwith f(c) = y. O

Example 5.3.9. This theorem does not have a converse—there are functions R — R which send

intervals to intervals which are not continuous. Consider for example

sin (%) ifx#0
ifx=0.

flx) =

Then £ is continuous at every x # 0 (assuming for now that we know sin(x) to be continuous) as it is

a composition of two continuous functions. However, f is not continuous at 0. Indeed, we have that

1
/2 + 2mn

1
f(7r/2+27m> =1—1Z£(0).

Thus £ is not continuous.
f does, however, send intervals to intervals. To see this, let / C R be an interval. If 0 ¢ 7, then

f(I) is the image of a connected set under a continuous function R \ {0} — R, hence connected.
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If 0 € 7, we have two cases. Either / = {0} in which case f(7) = {0} is an interval. Or [ is not the
singleton zero set and £ (/) = [—1, 1] which is again an interval.
s.4 Homeomorphisms and topological properties of metric spaces

Now that we have the correct notion of “maps” between metric spaces, i.e. continuous maps, we may

speak of when two spaces are “the same.”

Definition s.4.x. We say that a continuous function f : X — Y is a homeomorphism if there exists a
continuous function g : ¥ — X such thatf o ¢ = idy and g o f = idy.

We say that two spaces X, Y are homeomorphic, denoted X = Y, if there exists a homeomorphism
X =Y.

Definition s.4.2. We say that a continuous function f : X — Y isgpen if (V) C Y is open for all
open subsets I C X.

Proposition 5.4.3. Letf : X — Y be a homeomorphism. Then (V') is open if and only if V" is open
and f(E) in closed if and only if E is closed. In particular, homeomorphisms are open and closed.

Proof. If f(V') is open, then since f is bijective we have

V=f£F)

is open by continuity of f. Conversely, let ¢ be the inverse of f. If I is open then

is open by continuity of g.

The proof for closed subsets is similar. O

Remark s.4.4. Having a continuous inverse is s¢ictly stronger than saying that £ is continuous and
bijective. Indeed, let (R, dgisc) be the real line with the discrete metric and let R be the real line with

the standard metric. Then the identity function

f+Rdgisc) — R
X x

is continuous (since the pullback of any open is open as all subsets of discrete metric spaces are open)
and it is clearly bijective as a map of sets. However, it is not an open map since f({0}) = {0} is not

open. Hence, / cannot be a homeomorphism by Proposition
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Proposition s.4.5. Let [ : X — Y be a continuous bijection. Then the following are equivalent:

(i) f isa homeomorphism
(17) [ is open
(177) f is closed.

Proof. Letg : Y — X be the set-theoretic inverse to £. Then (i) is equivalent to g being continuous.
But

) =f1)
so the pullback of opens along ¢ are open if and only if / is open. Similarly, the pullbacks of closed
along ¢ are closed if and only if £ is closed. O

In light of the above proposition, we do have a special case where being continuous and bijective

zs sufhicient for being a homeomorphism.

Theorem s5.4.6 (Topological inverse function theorem). Let f : K — Y be a continuous bijection

where K is compact. Then f is a homeomorphism.

Proof. This follows from Proposition and Theorem O]

Example s.4.7. In the above theorem, it is import that the domain is the one that is compact. We may
have continuous bijections f : ¥ — K into compact spaces which are nothomeomorphisms. Indeed,
take any connected, compact space K with more than one point and let (K, dg;sc) be the metric space
with the same underlying set as K and the discrete metric. Then, just as in Remarkwe have that
the set-theoretic identity function (K dgisc) — K is a continuous bijection, but not open, hence not

a homeomorphism.

Example s5.4.8. Consider the subspace SU(2) C C* given by all 2 x 2 matrices

with complex entries satisfying

det(M) = ad — bc =1 (5.4.1)
and

(5-42)

N
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)

N~

1l
<
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Q>
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This subspace is called the special unitary group. We will show that
SUQR)~ P ={ve C*: ||v]| = 1}.

Now, (s.4.2) forces that

1=az +bb=|a|* +|b]? (5-4-3)
1=|c?®+|d)? (5-4-4)
0 = ac + bd. (5.4-5)

Multiplying both sides of by d and using , we get that

0 = adc + bdd
= (1+ bo)e + bld|)?
=0+ b(|c* +1d]?)

=c+b

Thus b = —¢. Similarly, one finds thatd = z.

Thus consider the map

F:82={(@p) eC?:|a]*+ 8> =1} ——— SU(2)

. a« B
()

Itis continuous as each projection is and by the above it is bijective. Since S 3is compact by Heine-Borel

(as itis closed and bounded), we get by Theoremthat f is a homeomorphism.

By Proposition|s.4.3} given a homeomorphism f : X — Y we may use f to identify points of X
with points of " in such a way that preserves open sets. As such, definitions which care only about
open sets and not the metric itself will be invariant under homeomorphisms. We give such properties

a name.

Definition 5.4.9. Let P be a property of metric spaces. We say that P is a topological property it given
any two homeomorphic spaces X, Y, P holds for X if and only if P holds for Y.

Theorem s.4.10. Compactness and connectedness are topological properties.
Proof. This follows from Theorems|s.3.2Jand O
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Example s.4.11. Combining the above theorem and Example[s.4.8} we see that SU(2) is compact.

s.s Uniform continuity

Definition s.5.1. Letf : X — Y be a function between two metric spaces. We say that £ is uniformly

continuous if for all ¢ > 0 there exists a § > 0 such that

dx(xy) < 9 = dy(f(x).f(y)) <

forallx, y € X.

Uniformly continuity should be thought of as regular continuity, except the § we pick must work
for every point. As such, it also only makes sense to speak of a function being uniformly continuous
on its whole domain—speaking of uniform continuity at a single point is meaning]ess.

Example s.5.2. Lipschitz functions (see Example[s.2.8) are uniformly continuous.
Example 5.5.3. f : R — R given by f(x) = x*
ford > 0,

is not uniformly continuous. Indeed, we have that,

[F(x) = floc+9)| = |x* — (x + 9)?|
= 9|2x + 4.

Thus by making x sufficiently large we may find two points distance & apart such that |f(x) — f(x + 9)|

is arbitrarily large. It follows that f cannot be uniformly continuous.

Theorem s.5.4. Let f : K — Y be a continuous function where K is compact. Then [ is uniformly

continuous.

Proof. Fixe > 0. Since f is continuous, for each point p € K we may find some @(p) > 0 such that

di (% p) < e(p) = dy(f(x), f(p)) < &/2. (5-5.1)

We then have that
{Bop)2(p) : p € K}

forms an open cover of K, so by compactness we may write

K = Bopyya(p1) U -+ - U By, y2(pn)

for some finite collection of points py, ..., p, € K.

75



Now set

2= min{p(p)..... p(p)}.

We claim that this § works. For this, let p, ¢ € K with dg(p, 9) < 9. First, we may find p;, such that
di(p, pi) < @(p:)/2. We then have that

dK(q:Pz') < dK(qu) + dK(P:Pi)
<+ @(pi)/2

sop,q € B?(p,-)(]’i)- Hence we have that

dy(f(p).f(9)) < dr(f(p) f(p:)) +dy(F(q). f ()

<&/2+¢/2

=é

using (s.5.1)) as required. ]

Example s.s5.5. We saw a failure of Theorem in the case of non-compact domain in Example
We can give another family of examples when the domain is bounded, but not compact.
Let £ C R be a bounded, non-compact subset. By Heine-Borel, this means that £ must not be

closed. Thusletxy € lim £\ E and consider

1

x—xo'

flx) =

Then given any 0 > 0, we may find x € E with |x — x| < /2. Since f is unbounded as x — xy,
we may then make |f(x) — f(y)| as large as desired by taking y sufficiently close to x. In particular,
considering only y € E with [y — x| < /2, we may make |f(x) — f(7)| as large as desired while
keeping |x — y| < 9.

It follows that / : £ — R cannot be uniformly continuous.

5.6 Discontinuities of functions on the real line

We now focus in on discontinuities of functions £ — R where £ C R.

Definition 5.6.1. Letf : / — R,/ C Raninterval, beafunctionandletc € 7. Wesay that f(x) — »

asx — ¢ ,denoted

lim f(x) =7

X—r
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if for every sequence £, — ¢in (—00, ¢) N I we have f(¢,) — r. We also refer to this as the left limit

of fasx — c.

Similarly, we write

lim f(x) =7

X—C

to mean that f(#,) — 7 for every sequence z, — cis (¢, 00) N 1.

Remark 5.6.2. For notational simplicity, in this section we will write £ (c+) for lim,_,+ f(x) and f(c—)
for lim,_, - f(x).

Definition 5.6.3. We say that / : 7 — R has a simple discontinuity, or discontinuity of the first type,
atx € (a, b)if f is discontinuous at x and f(x+) and f(x—) both exist.

If / has a discontinuity at x which is not simple, we say / has a discontinuity of the second type at x.

Comparing the definitions of /(x—) and f(x+) with the definition of continuity at x, we see that
f has a simple discontinuity at x if and only if either f(x+) # f(x—) or f(x+) = f(x—) # f(x).

Example 5.6.4. The function
sin (1) ifx#0
0 ifx=0

flx) =

has a discontinuity of the second type at x = 0 as neither f(0+) nor f(0—) exists.

Example 5.6.5. The function given by the following graph
fx)

has f(1—) = 3and f(1—) = 1, so f has a simple discontinuity at x = 1since f(1—) # f(1—).
The function given by the following graph

77



has f(1—) = f(1+) = 3 but f(1) = 2, so f again has a simple discontinuity at x = 1.

Definition 5.6.6. Wesay thatafunctionf : I — Rismonotone increasing if we have that f(x) < f(y)
whenever x < y.
Similarly, we define monotone decreasing tunctions. We say thata function f : I — R is monotone

if it is either monotone increasing or monotone decreasing.

Proposition 5.6.7. Let [ : I — R be a monotone increasing function. Then we have that

f(x—) = supf(z)

<x

ot = inf £,

Moreover, f(x—) < f(x) < fx+) and if x < y then f(x+) < f(y—)

Proof. We have that f(x) is an upper bound for {f(¢) : # < x},s04 = sup{f(¢) : ¢ < x} exists and
A < f(x). Thus we need to show that f(x—) = 4. To do this, fix¢ > 0. Then we may find 9 > 0 such
that

A—ce<flx—29) <A

Then forx — J < ¢ < x we have, as f is monotone increasing, that
A—e<fle—0)<f(r) <A

Hence lim,_, .~ f(z) = A as required.

The case for f(x—) is similar.
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To show the last statement, notice that

f(x+) = inf £(2)

x<t

= inf f(?)
X<ty

<supf(z)

<y
=f0-)
using that f is monotone increasing. O

Corollary 5.6.8. Monotone functions only have simple discontinuities.
Theorem 5.6.9. A monotone function f : I — R has at most countably many discontinuities.

Proof. WLOG assume that f is monotone increasing and let x be a discontinuity. Then we have by

Proposition that
Sle—=) < flx) < flxt).

Thus we may find a rational g(x) € (f(x—), f(x+)).

Given two discontinuities x and y, say with x < y, then we have that f(x+) < f(y—) by Proposi-

tion[5.6.7} Hence
(fa=) [l N (FO=-)fO+) =0

s0 g(x) # g(y). Thus
{discontinuities of /} —— Q

x —— ¢q(x)

is injective so / has countably many discontinuities. O

Exercises

Exercise s.1. Let f : X — R be a continuous function. Define

Z(f)={x € X : f(x) =0}

to be the zero set of f. Show that Z(f) is closed.

Exercise 5.2. Let X, Y be metric spaces. Show that the two projection maps

7y : X XY ——X
(6 y) ——— x
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and
Ty : X XY —— Y

are continuous.
Exercise s5.3. Is the function / : R — R given by f(x) = 2* uniformly continuous?

Exercise 5.4. Let f : [2,6] — R be a continuous function and (x,), a Cauchy sequence in [, &].

Prove that (f(xz))y is a Cauchy sequence.
Exercise 5.5. Let f : S* — R be a continuous function where
S'= {0 e B2 o] = 1}
is the unit circle. Show that there exists some x € S* such that £(x) = f(—x).
[Hint: Consider the function g(x) = f(x) — f(—x).]

Exercise 5.6. Let (7,), be an enumeration of the rational numbers and consider the function
1
f=> .
27[
N rp<x

Show that /" is discontinuous on QQ and continuous on R \ Q.

6 Differentiation

6.1 The derivative

Definition 6.1.x. Letf : 7 — R for/ C R an interval. For x € 7, form the quotient
(£) — f(x)
o(t) =% I\ {x} > R

We set
f(x) = lim o() (6.1.1)

—x

provided the limit exists, and call /' (x) the derivative of f at x.
When the limit in (6.1.1) exists, we say that f is differentiable at x. If f is differentiable at all points
in 7, we say that f is differentiable. The function

f':{x € I: fisdifferentiable atx} —— R
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is referred to as the derivative of f .
Theorem 6.1.2. Iff : I — Risdifferentiable at x € I, then [ is continuous at x.

Proof. We have that
lim £(¢) = lim (F(x) + p(e) - (¢ — )
= f@) +f(x)- 0
=/ )
as required. O

Example 6.1.3. (i) Constant functions are differentiable with derivative zero. Indeed, let f(x) = «.

Then
fO-f6)

t—x

pr) =
so lim,_,, () = 0.
(ii) Iff(x) = x, then @(¢) = 1s0 f'(x) = 1.

Theorem 6.1.4. Letf, ¢ : I — R bedifferentiableatx € I. Then [ + g, fg and f/g (provided g(x) # 0)

are differentiable at x with derivatives given by
(i) (f +8) (%) = f'(%) + £ ()

() () (x) = f'(x)gle) + (@) ()

(i) (f) 'y = L8 — fe' ()

g £(x)?
Proof. Given a function b we will write @, for the @ occurring in the definition of the derivative of »
(Definition[6.L.1).

For (i), we have that
Preg(t) = @r(2) + 9y ()

from which the result follows.

For (ii), let b = fg. Then

e
on(t) = f()@g(t) + g(x)pr ().
Taking the limit as # — x and using Theoremthe result follows.
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For (iii), since g(x) # 0 and ¢ is continuous at x by Theorem we know that g(#) # 0 for ¢

near x. We then have that

1
)= ey W0 —F(peto)

Letting # — x and using Theoremthe result follows. O

Example 6.1.5. Combining Example[6.1.3lwith Theorem|6.1.4] we see that every polynomial is differ-

entiable. Moreover, using that the derivative of x is 1 and inductively implying Theorem i) we

see that the derivative of x” is 7x” 1.

Theorem 6.1.6 (Chain rule). Lerf : I — Randg : ] — R where ,] C R are intervals and
f(I) CJsothatg o f exists. Given x € I such that f'(x) exists and g'(f (x)) exists, then (g o f) (x) exists
with

(g of) () = g (Fl@))f ' (x).

Proof. We may write

f(&) = o) + (£ = ) - [f(x) + (0)]
£(0) = g(f () + (¢ — f(2)) - [¢'(f(x)) + o(e)]

where #, v are functions such that# — 0asz — xandv — Oas# — f(x). Indeed, for f we take
u(t) = pr(¢) — f(x) and similarly for g.
It follows that
2(F(0) = g(f () + (F(2) — F(2)) - [¢'(F(x)) + o(f ()]
LU + (£ = 2) - [f'(x) + u(0)] - [¢'(F(x)) + o(F (2)].

Thus
o (2) = (f'(x) + u(2)) - (¢'(F(x)) + o(f (2)).

Letting # — x and using that f(#) — f(x) as# — xso that () — 0and v(f(z)) — O asz — x, we

get the result. O]

Example 6.1.7. (i) Consider the function

xsin (1) x#0
- { () =7
0

x=0.
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Assuming for now that sin’(x) = cos(x), we may apply Theorems and to find that, when

x#0,
f(x) = sin <i> — icos (i) .

However,

which has no limitas # — 0 so //(0) does not exist.

(ii) Consider the function

Then for x # 0 we have

and at x = 0 we have that

/ _1:
SOl
1
= lim ¢sin <>
t—0 t
= 0.

Thus f is differentiable at every point, but f/” is not continuous. Indeed, lim, o /(#) does not exist

due to the cos(1/x) term.

6.2 Local extrema

Definition 6.2.1. Letf : X — R be a function where X is any metric space. We say thatp € X isa
local maximum if there exists an open neighborhood U of p such that f(p) > f(g) forallg € U.
Similarly, we define what it means for p € X to be local minimum of f. We say thatp € X isa

local extremum of f if it is either a local minimum or a local maximum of /.

Proposition 6.2.2. Let [ : [a, b] — Rand x € (a, b) be a local extremum of . If f is differentiable
at x, then f'(x) = 0.

Proof. We will only prove the case where x is a local maximum, as the proof for local minima is similar.

For this, let
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Since f(¢) < f(x) whenever ¢ is near x, we have that p(#) < 0 when ¢z < x and ¢(¢) > 0 when ¢ > x.
Thus p(x—) < 0and p(x+) > 0. Hence

Fl(x) = lim o(2) = p(x—) = p(x+)

t—x

must be zero. ]

Remark 6.2.3. This gives a strategy for maximizing and minimizing a differentiable function f* :
[4, b] — R. By Theorems]s.3.3and|6.1.2Jwe know a maximum and minimum are achieved. By Propo-
sition these extrema must occur either a the endpoints 4, & or where f’(x) = 0. In most cases

this gives a finite set of points to check.

6.3 The mean value theorem

Theorem 6.3.1. Let f, ¢ : [a, b] — R be continuous functions which are differentiable on (a, b). Then

there exists a point x € (a, b) such that

[F(6) = f(@)] - & (x) = [¢(6) — g(@)] - £ ().

Proof. Set
h(e) = [f(6) — fla)] - g(2) — [g(b) — gla)] - f(2).

Then / is continuous on [4, ] and differentiable on (4, ). Moreover, we have that h(a) = h(b). To
prove the theorem it suffices to find x € (4, 4) with /(x) = 0.

Now, by Theorem we know that » achieves a minimum and maximum. If there are no
extremain (, b), then since () = h(b) we must have that /is constant on [4, b]. In this case, /' (x) = 0

forall x € [4, b] and we are done. Otherwise, / has an extrema at x € (4, ) and so by Proposition

[6.2.2 we have that #/(x) = 0. O

Theorem 6.3.2 (Mean Value Theorem). Letf : [a, b] — R be continuous on [a, b) and differentiable
on (a, b). Then there exists x € (a, b) such that

Proof. Take g(x) = xin Theorem O
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6.4 Continuity of the derivative

We saw in Example that there exists differentiable functions /' : 7/ — R such that the deriva-
tive f° " is not continuous. However, the derivative does satisfy some important properties enjoyed by

continuous functions.

Theorem 6.4.1. Let f : [a,b] — R be differentiable and suppose that f'(a) < A < f'(b) (or f'(b) <
A < f(a)). Then there exists x € (a, b) such that ' (x) = A.

Proof: Assume that f"(2) < A < f(b) as the proof when f(2) > f"() is similar.

Take () = £(r) — Az. Then we have that ¢’(2) < 0 so by the definition of the derivative, there
exists #1 € (a, b) with g(#1) < g(). Similarly, ¢’(6) > 0 so there exists 7, € (4, b) with g(r2) < g(b). In
particular, 4, b are not minima of g. But ¢ must attain a minimum on [, &] by Theorem|s.3.3} so this
minimum must be at some x € (4, &). Then by Propositionwe have ¢/(x) = 0so f'(x) = A as
required. O

The same conclusion holds for continuous functions by Corollary [5.3.8} so this is saying that

derivatives satisfy the same intermediate value property.

Corollary 6.4.2. Letf : [a,b] — R be a differentiable function. Then f' cannot have any disconti-
nuities of the first kind.

Proof. Suppose that x were a discontinuity of the first kind of /’. Then we would be able to find an

interval containing x whose image under /” is not an interval, contradicting Theorem O

Example 6.4.3. The function

X x<0

fx) =

1+x x>0

cannot be the derivative of any function.

6.5 L’Hopital’s Theorem

To state L’Hopital’s theorem in proper generality, we need a notion of “limits at infinity.”

Definition 6.5.1. Let / : X — R be a function for X a metric space. Given 2 € X we write
limy_,, f(x) = oo if for all M1 € R there exists 9 > 0 such that

0<|x—a|<d=flx) > M.
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Similarly, we write lim,_,, f(x) = —oc if for all A € R there exists § > 0 such that
0<|x—al<d=f(x) <M.

Definition 6.5.2. Letf : / — X be a function where / C R and (4, 00) C 7 forsomez € R. Then

we write limy s f(x) = 2 if for all ¢ > 0 there exists M4 € R such that
x> M = dx(f(x),a) <e.

Similarly, we define lim,_, _ o f(x) = 4.

We also may write expressions such as lim,_ f(x) = 00 and lim,_ f(¥) = —00 when £ :

R — R which we leave to the reader to define rigorously.

Theorem 6.5.3 (L'Hopital’s Theorem). Letf; g : (a, b) — R bedifferentiable functions with g'(x) # 0
Sforall x € (a, b) where —00 < a < b < 0o. Then if

/
im f ; () _
x—a g'(x)
and we are in one of the following situations:
(z) lim,_, f(x) = lim,_,, g(x) = 0
(17) lim,_, g(x) = +00
then
lim £ =A.
x—a x)

Remark 6.5.4. The same result holds if we replace all limits as x — 2 with limits as x — &.

Proof. In case (ii) we will assume that lim,_,, g(x) = oo. The proof for the case lim,_,, g(x) = —o0
is similar.
First assume that —0o < 4 < coand let 4 < M’ < M. Then as f'(x)/g’(x) — A we may find

some ¢ € (a4, b) such that

!
a <x<c:>f/(x) <M.
g'(x)
Then given any 2 < x < y < ¢ by the generalized mean value theorem (Theorem we may find

t € (x, y) such that
O -f0) O
) —g0) gy MM

(6.5.1)
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If case (i) holds, then letting x — 4 and keeping y fixed we see that

f0)
Z0) <M

a<y<c=

If case (ii) holds, keep y fixed we may find ¢; € (4, y) such that for 2 < x < ¢; we have that g(x

and g(x) > 0. Then multiplying by [g(x) — g(¥))/e(x) we get that

1) <M —M’g—()’) +@.

g(x) glx)  glx)

Since the right hand side goes to M” as x — 4, we may find ¢, € (4, ¢1) such that

& _ o

a<x<c¢=—="——
g(x)

Combining (6.5.2)) and (6.5.3)) we see that for any 4 < M we may find ¢ € (4, ) such that

f)

a<x<c=—= <M
g(x)

Similarly, when —oo < 4 < o0, given M < A we may find ¢ € (4, b) such that

f)

a<x<c=M<——-.
g(x)

Combining these two results the claim follows.

(6.5.2)

) > ¢()

(6.5.3)

O]

A more down to earth proof may be given for the slightly less general statement: Suppose we have

f g : (4 b) — R differentiable functions and ¢ € (4, b) such that f(c) = g(c) = 0 and ¢/(c) # 0. Then

f)Vgx) = f(e)g' () asx — e
To do this, by the definition of the derivative, we may write




as required.
The hard part of Theorem is extending the above argument to work when ¢ is instead one of

the limit points 4 or b.
Example 6.5.5. Taking for granted at the moment that the derivative of In(x) is 1/x, we find that

lim M= lim &=0.
=00 X x—o0 1

6.6 Taylor’s theorem

Let f : I — R. We saw in previous sections that we may consider the derivative f° " of f where it
is defined. Having taken f”, we may then consider its own derivative (')’ (where it exists) which we
denote by f " or f () and call the second derivative of . Continuing this process of taking derivatives

where possible, we get a sequence
/ /! /1!
VARV

which we refer to as the bigher derivative of f. We denote the function obtained from f by taking the
derivative 7 times by £,

Note that in order for £ to be defined at a point x, F*~V must be differentiable at x which
requires £~V to be defined on a (possibly one-sided) neighborhood of x. This in turn requires £ ~2)

to be differentiable on a neighborhood of x.

Definition 6.6.1. Letf : / — R. We say that f is c*t iff(k) exists on / and is continuous.
We will write C¥(/) to denote the set of all C* functions / — R.

Example 6.6.2. C° functions are continuous functions, C! functions are differentiable functions

with continuous derivatives, etc... Since differentiable functions are continuous, we have that C* () €

ol ( [)‘

Example 6.6.3. Let £ > 2. The function

0 x=0

(x) =
f xFsin(l/x) x#0

is £ — 1 times differentiable, but f *#=1) is discontinuous at 0. Thus fis ck2,

Theorem 6.6.4 (Taylor’s Theorem). Let f : [a, b] — Rand n € N. Suppose that f =1 exists and is
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continuous on [a, b] and f ) exists on (a, b). For anya € |a, b) define

f8)=P@)+

B —a).

n!'

Proof. Since B # a, let M be the number satistying
f@) =P@)+M-E—-a)
and define g : [, 6] — R via
g(2) = f(2) — P(¢) — M(t — a)".
Since P(¢) is a polynomial of degree 7 — 1, we have that P"(z) = 0. Thus

4" = FP4) —nt - M

on (a, b) and so we are done if we may show that g(”) (£) = 0 for some & between 2 and j2.

Since P¥)() = f¥)(a) forall 0 < k& < 7 — 1 we have that

g@)=g"a) = = g" ) = 0.

Now, by our choice of M we also have that ¢g(8) = 0. Thus by the Mean Value Theorem we may find
& between « and 8 such that ¢/(£§) = 0. But then by and the Mean Value Theorem, we may
find & between & and « such that g(z)(fz) = 0. Continuing like this, we find forall 1 < # < 7 some

& (living between « and ) such that g(k)(fk) = 0. Taking £ = £, we are done.

Definition 6.6.5. Letf : [4, 5] — R and let P be as in the statement of Theorem|[6.6.4} We call P

the n Taylor polynomial of f (centered at o) and denote it by P, (x).

Taylor’s theorem gives us a way for determining, in some cases, that the Taylor polynomials ap-

proach our original function /" as the next example shows.
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Example 6.6.6. Suppose there exists a differentiable function /: R — R satisfying

f=r (6.6.2)
f(0)=1 (6.6.3)

Inductively applying (6.6.2)) we find that
o -f

for all 7 and thus the Taylor polynomials of / centered at 0 are given by

n—1 (k)(O) n—1 (O) n—1 x/e
P,(x) = Zf o K = Zf—'xk = o
k=0 k=0 k=0

Now, fixx € R. By Taylor’s theorem, for we may find £ € R with |£| < |x| such that

(n)
[f(x) — Pu(x)] = If,f)‘lxl” [F&)

= L (6.6.4)

Since f is differentiable it is continuous, so set

M= sup [f(Z) < ox.
|£1<]x]

Then (6.6.4)) gives that

f@) = lim Pyx)= (6.6:)

and hence f is uniquely determined.

Note that we do not yet have the tools to differentiate infinite series, so we cannot yet confirm that

the function f given by (6.6.5) satisfies /7 = £.

Example 6.6.7. Even when the Taylor polynomials converge, they may not converge to the value of

the original function. Consider the function f defined by

0 x<0
flx) =

eV x> 0.
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Assuming that %6" = ¢* and other basic properties of ¢*, one may show that f is infinitely differen-

tiable with

F0) =0

forall z > 0. Thus the Taylor polynomials of /" centered at 0 are given by P,(x) = 0 for all . It

follows that (2,(x)), always converges but not to f(x) unless x < 0.

Exercises

Exercise 6.1. Letf : I — R, C R aninterval, be a differentiable function with |f”(x)| < A1 forall
x €l

(i) Show that f is M-Lipschitz, i.e. that |f(x) — f(y)| < M|x — y| forallx, y € I.
(i) Deduce that f is uniformly continuous on /.

Exercise 6.2. Deduce as a special case of Exercise|6.1|thatif /' : 7 — R is a differentiable function

with f”(x) = 0, then f is constant.

Exercise 6.3. Let / : R — R be a differentiable function with |f/(x)| < A4 for some constant 4 < 1.

Then, given any 2 € R, show that the sequence (x,), defined by

Xn+1 =f(xn); X0 =4

converges to some x € R. Moreover, show that this x satisfies f(x) = x.

7 Integration

7.1 The Riemann integral
When one first encounters the Riemann integral, they often define it via Riemann sums as
b n—1
. b—a k
/ﬂf(x)w_ng%o;n.f <a+(b—a)-n>.

This corresponds to partitioning the interval [4, 4] into 7 even pieces and approximating the area un-

der f using rectangles, then letting the number of pieces in our partition go to infinity.
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This approach is useful in practice for computations, butitis too rigid of a theoretical definition to
be useful for proving theorems. To have a more workable definition, we need to consider // partitions,
not just evenly spaced ones, and we need to eliminate the choices of where we sample our function on

each piece.

Definition 7.r.1. Let [2, 4] C R beafinite interval. A partition is a finite sequence of pointsxy, . . ., x5
such that

a=x0<x<---<x,=0b

Given a partition P = {xo, ..., x, } as above, we write Ax; = x; — x;_1 for7 = 1,..., n. We define the
mesh of P, denoted mesh(2P), to be

mesh(2P) = max Ax;.
z

Letf : [4, 5] — R be abounded function and P a partition of [4, 4]. We define

URS) =Y Ax- sup f(x)
i=1

x€ [xiflxxl']

LPf) =) Ax- 6[inf ] ()
7=1

XC X —1,%

and then set
b
/ f(x)dx = inf{U(P, f) : P a partition of [, b] }
b
/ f(x)dx = sup{L(P, f) : P a partition of [, b] }.
These are referred to as the upper and lower Riemann integrals of f respectively.
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If the upper and lower Riemann integrals of /" happen to be equal, we say that /" is (Riemann)

/;fdx.

Remark 7.1.2. You should think of U(P, f) and L(2, f) as over- and under-estimates respectively of

integrable and denote the common value by

the area under f on the interval [4, b]. As the partition gets finer, for nice functions we expect the
extent to which these are over and under estimates to decrease. This is why the upper integral of £ is

defined using and infimum while the lower integral is defined using a supremum.

We ought first make sure that the lower and upper Riemann integrals are well-defined. For this,

suppose that m < f < M on [a, b], since f was assumed to be bounded. Then
m(b—a) < L(Pf) < U(B.f) < M(b— a)

so the lower and upper Riemann integrals are well-defined and finite.

Example 7.1.3. Consider the function f(x) = x* and leta > 0. For each z consider the partition

P, ={0,a/n,2a/n,...,a}. Since f is monotone increasing, we have that

L rak\?
L(P,,,f):Z(ﬂ) =
=0
37!—1
= Z/e-z

n
k=0

2> n(n—1)(2n —1)

3 6

Q

w2

N

and

k=1
3
k=1
_a Ant1)antl)
s 6 .
Then we have that 3
. _ _v
o VB f) = i 1)
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It follows that

SO

Definition 7.1.4. Let P and P* be partitions. We say that P* is a refinement of Pit P C P*.
Proposition 7.1.s. Let P* be a refinement of P. Then U(P*, f) < U(P, f) and L(P*, f) > L(P,f).

Proof. By induction, we may assume that 2* contains one more point than P. Let P = {x0, ..., %}
and P* = PU {y} where x; < y < x;41. Then we have that

U, f) — U2 f)
= (y =) sup f(x)+ (v —y) - sup flx) = (%41 — ) sup flx)

X€[%5,y) X€ [pxi41] X€ [265,%741]

Using that

sup f(x) < sup  flx)

xE€ [xz';)’] x€[x5,%:41]
sup f(x) < sup  f(x)
x€ [)/;xz'ﬂ] x€[x5,%:41]

we have that

s, f) = U f)
> [()/ — %) + (%41 _)') — (1 — )] - sup f(x)

x€ [xz';xz'+1 ]

as required.
The proof for L(—, f) is similar. O
Theorem 7.1.6. For all bounded f : [a, b] — R, we have that jj fdx < Lb fdx.

Proof. Let Py, P, be any two partitions and set P* = P; U P, which is a refinement of both P; and P».
Then by Propositionwe have that

L(P,f) < L(PY f) < UPY f) < U(Py, f).
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Keeping P fixed and taking the infimum over P, we get that

b
urf) < [ ras
Now taking the supremum over all P; the result follows. O

Theorem 7.1.7. A bounded function f : [a, b] — R is integrable if and only if for all ¢ > 0 there exists
a partition P of [a, b) such that U(P, f) — L(P,f) < e.

Proof. Suppose that the assumption holds. Fix ¢ > 0 and let 2 be such that U(P, f) — L(P,f) < «.

Then we have

b b
urp< [ far< [ ra< vy

SO

og/bfdx—/bfdxs U(Pf) — L(Pf) <«

Since £ was arbitrary, we find that Lb fdx = ff fdx as required.
Now suppose that / is integrable and fix ¢ > 0. We may then find partitions P;, P, such that

b
O§U(P1,f)—/fd,x<5/2
b a
Og/fdx—L(Pz,f)<s/2.
Thus letting P = Py U P, we have
0 < ULSf)— LLPS) SUPLLS) — L(Po,f) < ¢

as required. O
We take account of some related facts before moving on.

Proposition 7.1.8. Consider the property of a partition P that
UPf) — LBf) < (710

() If is satisfied for a partition P, then it is satisfied for all refinements of P.
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(ii) If bolds for P = {xq, ..., %, } and s;, t; € [x;-1, ;] then
D ) = f(e)|Ax < e
i=1

(iiz) If f is integrable and the hypotheses of (iz) bold, then

<é&

n b
S e — / F
i=1 “

Proof. (i) follows from Proposition 7.1.s| For (ii), notice that

[FGs:) = f&) < sup flx)— inf f(x)

x€E [xz'—bxl'] X< [xz'—lyxl']

$0

D f6) = fle)| A < URf) — LBf) <

=1

For (iii), we have that
LPf) <Y flt)Ax < UPf)
=1 ,
ur < [ far< v

from which the result follows. O

Proposition iii) gives us the computational freedom to compute the integral of many inte-
grable functions using left and right Riemann sums. However, the cost is that we must be able to
show our function £ is integrable with respect to our definition. For this, we have the following useful

theorems.

Theorem 7.1.9. Any continuous function f : [a, b] — R is integrable.
In fact, for every e > 0 there exists a 0 > 0 such that mesh(P) < 9 implies U(P, f) — L(P, f) < e.

Proof. The second claim implies the first via Theorem[7.1.7] Fix ¢ > 0. Since [4, b] is compact, f is
uniformly continuous by Theorem|s.5.4] Thus we may find some 9 > 0 such that

13

=l <0 = If@) —fO)l <
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Now let P = {xo,...., %, } beany partition of [, b] such that mesh(P) < 9. By Theorem|s.3.3} for cach

7, we may find 5, ¢, € [x;—1, x;] such that

fl)= sap flx)

x€ [xl'fl)xl']
t;)= inf .
f(&) e f(x)

Since mesh(P) < d, we have that |5; — #;| < d'so

Fe) = fle) < 5.
Thus B}
URf) = L(Pf) =Y (F(s:) = f(e)Ax,
=1
< d - Ax;
b—a ;
as required. O

Corollary 7.x.10. Let f : [a, b] — R be continuous, then

b _dn—l
[ o= S (as 00 E).
4 k=0

ie. [° Fdx may be computed using the left Riemann sum. Similarl , F may be computed with the right
Ja y be comp g y, f may be comp 1

Riemann sum, mz‘dpoz‘nt sums, etc...

Proof. By Theorem[7.1.9|we know that f'is integrable, and that partitions with sufficiently small mesh
satisfy . Thus we may compute the integral by taking evenly sized partitions of decreasing width,
and may sample any point in each sub-interval by Proposition iii). O

Theorem 7.x.11. Monotone functionsf : [a, b] — R are integrable.
In fact, for every e > 0 there exists a 0 > 0 such that mesh(P) < 9 implies U(P, f) — L(P,f) < e.

Proof. For simplicity, assume that f is monotone increasing. Let P be a partition. Since / is monotone
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increasing, we have that

sup f{x) = /(%)

[ —1,%7]

sup f(x) = f(xi—1)

[’Cz lxz]

U(Pu ) = L(Pu f) = > _(Fla) — flae—1))Ax;
k=1
< mesh(P) Y “(F(x) — f (1))
k=1
= mesh(P) - (F(b) — f(a)
Making mesh(P) sufficiently small, we have that U(P,, f) — L(P,, f) < e. O

Corollary 7.1.x2. Integralsof monotone functions may be computed using left Riemann sums, midpoint

sums, erc...
In fact, we may do slightly better than Theorem[7.1.9|
Theorem 7.1.13. A bounded function [ : [a, b] — R with finitely many discontinuities is integrable.

Proof. Suppose that m < f < M andlet yy, ..., y¢ be the discontinuity points of /. Choose disjoint
open intervals (v;, #,) each of length < & such that y; € («;, v;).

Then f is continuous on
K = [a, 0]\ | (w5 )
=1

which is a compact set. Hence £ is uniformly continuous on K so we may find a & > 0 such that if
|t — 35| < 9,85 € K, then |f(£) — f(5)| < &. Now choose a partition P as follows: every #; and v; is in
P, and all other endpoints are chosen so that Ax; < d provided x; # vy for some 7. Then just as in the
proof of Theorem|7.1.9we have that

n 4
U(P,f) — L(P,f) < Z sup f(x)— inf | FE)AG + Y (M — m)Avy
[ —1,2] o1 k=1
xﬁ/vj

<&M Awy+ (M — m)e

k=1
X T

<g-(b—a+0(M—m))
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and the right hand quantity may be made arbitrarily small. Thus £ is integrable by Theorem O

Remark 7.1.14. In fact, a function with only countably many discontinuities is also integrable. It
is possible to fully classify which functions are Riemann integrable and the answer turns out to be
those whose discontinuity set is “sparse enough” in some precise sense. See Lebesgue’s criterion for

Riemann integrability.

Theorem 7.1.35. Let f : [a, b] — R, m < f < M, be integrable and ¢ : [m, M] — R be continnous.
Then ¢ o f : [a, b] — R isintegrable.

Proof. Fixe > 0. Since [m, M] is compact, ¢ is uniformly continuous and we may find 0 > 0 such
that |s — 7| < dimplies |¢(s) — ¢(2)| < e.

Now, since /" is integrable we may find a partition P = {xy, ..., x, } with
U(Pf) = LP,f) < 9.

Let
M;= sup f(x), m;= inf f(x)

[JC[, I:xi] [xl.il’x{]

and define the analogous quantities 4] and m; for ¢ o f. We now break the indices7 = 1,..., z into
two cases. Let A4 be the set of those 7 such that M; — m; < 9 and let B be the remaining 7.

By construction of 9, if 7 € 4 then M} — m} < ¢. Now, we have that
P> URL)— LBS) >3 A
i€B

SO

Z Ax; < 9.

i€B

Let K = sup |¢(x)|. It follows that

UP,gof)—L(Pgof)=> (Mf —m)Ax;+ Y (Mf — m})Ax;
i€ed i€EB
<e- (b—a)+2K-0.

Since £ was arbitrary and we are free to shrink d, we see that ¢ o f is integrable by Theorem O

7.2 Some properties of the integral

Theorem 7.2.1. Letf, g : [a, b] — R be integrable functions.
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(1) Forallc d € R, ¢f + dg is integrable and

/ﬂb(cf+dg)dx:c/;fdx+d/;gdx.

/abfdxg/;gdx.

(ii7) Ifa < c < bithen f |, and f)|,q) are both integrable and

/ﬂbfdx:/;fdx+/[bfdx.
fre

Proof. For (i), it suffices to consider the cases ¢ = d = 1and d = 0. The remaining cases follow from

(i) If f < gon [a, b] then

(1) If |f(x)| < M on [a, b] then

< M(b — a).

these. The case of d = 0 is easy from definition, so we omit it.

Thus assume that ¢ = d = 1. For this, notice that for any partition P we have that
LPf)+ L(P.g) < LP.f +¢) < UPRf +g) < ULL) + U(D,g). (7.2.1)
Lete > 0. Since f and g are integrable, we may find partitions P; and P, such that
UPLf) = L(P,f) <& U(Pyg) = L(Prg) <= (7.2:2)
Let P = P; U P, so that holds for Py, P; replaced by P. Then implies that
U(Pf +g) — L(P.f +g) < 2

Since ¢ > 0 was arbitrary, we see that / + ¢ is integrable.

Moreover, using the same P as above, we have that

b
U(P,h)</bdx+e (h=fg)
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Thus implies that

b

b b
/(f+g)dx§U(Rf+g)§U(P,f)+U(P,g)</fdx+/gdx+2£.

Since ¢ > 0 was arbitrary, we see that

/ﬂb(f+g)dx§/ﬂbfdx+/ﬂbgdx.

Replacing /" and ¢ with —f and —g we get the reverse inequality, and so we are done with (i).

The proofs of (ii)-(iv) are omitted, but may be proven with similar strategies. O

Example 7.2.2. Letz € R and consider the function J, : R — R defined by

1 x=a
34()6):
0 xHa

Then J, is integrable over any interval by Theoremsince it has a single discontinuity. Moreover,

we can compute its integral as follows. Let [¢, 4] be any interval containing . Then for any £ > 0 we

d a—e a+e d
/ Sﬂdx=/ dex+/ é\ﬂdx+/ 0, dx
c cﬂﬁ a—¢ a+te
=/ 0,dx.

a+e
/ &ldx' < 2¢ (7.2.4)

have that

(7.23)

But |d,| < 1so0 we have that

by Theorem iv). Since ¢ > 0 was arbitrary, and imply that |’ d d,dx = 0. Since d,, is

zero away from a, this shows that the integral of 9, over any interval is 0.

Corollary 7.2.3. Letf : [a,b] — R be an integrable function and let g : [a, b] — R be a function
which differs from f at finitely many points. Then g is integrable and

l?w:l%m
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Proof. Lety, ..., ym be the points where f and ¢ disagree. We may write

m

g=f+ Z ¢i0y;

i=1

where ¢; = g(y;) — f (7). Then by Exampleand Theorem we have that ¢ is integrable and

b b m b
/ng/fﬁ+2h/awx
a a =1 a

=/;fdx

as required.

Example 7.2.4. Define the step function H,(x) as follows:

1 x>a
H,(x) =
0 x<0

which is integrable as it is monotone. Now consider the following “staircase” function given by

flx) = Z 27"Hy_-n(x)
n=1

which is also integrable as it is monotone. Notice also that

oo
0<f<> 27"=1

n=1

For each » € N we may write

A}u:lkﬂfw+l Fd

1-2—7
1

n—l1 1-27"
k=1 0

1-2—"

1

n—1
=) 2ttt -2+ Fdx.
k=1

1-2—7
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Since 0 < f < 1 we have that
1

0< Fdx <27
1-2-7

which goes to zero as 7 — 00. Thus, letting » — 00 in (7.2.5)), we get that

1 n—1
dx = lim 27k 7k — 27,
[y m 32t -2

Moreover,
n—1 o0
0< 2*”22* < 2*”22* =277 —50
k=1 k=1
SO

1 o]
/fdx= D 27 L
0 k=1 3

Theorem 7.2.5. Letf, ¢ : [a, b] — R be integrable. Then

(z) fgisintegrable

(i7) |f| is integrable and

/ﬂbfd,x </ﬂb]f\dx.

dfe=(f+e —(f -9~

Proof. For (i), we have that

By Theorem taking ¢(¢) = #2, we see that squares of integrable functions are integrable. Thus

the right hand side of is integrable by Theorem

For (ii), we have that ¢(x) = |x| is continuous, so |f| is integrable by Theorem Moreover,

f < |fland —f < |f] on [4, §] so (ii) follows from Theorem ii).

=3 The fundamental theorem of calculus

Theorem 7.3.1. Let f : [a, b] — R be integrable. Define F : [a, b] — R via

F(x) = / ) Fo)de

Then F is continuons and if f is continuous at a point xy, then F is differentiable at xo with F'(xg) =

S (xo)-
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Proof. Since f is integrable, it is bounded. Thus let || < M. Then we have that, forx > y,

/yxf(t)dt

It follows that F is M-Lipschitz, hence continuous.

[F(x) = F(y)l = < M(x = y).

Now suppose that f is continuous at xy. Fix ¢ > 0 and choose d > 0 such that

|x — xo| <0 = [f(x) — f(xo)| < e

Thenfora <s<¢<bandxg— 0 < st < xy + J we have

P — )| = | [ Vi <
This implies that F/(xg) = (o). .

Theorem 7.3.2 (Fundamental Theorem of Calculus). Suppose that f : [a, b] — R is integrable and
F:a,b) = Rissuchthat F' = f. Then

b
/ fdx = F(b) — F(a).

a

Proof. Lete > 0begiven. Then there exists a partition P = {x, ..., x, } such that U(P, ) — L(P, f) <

¢. By the mean value theorem, we may find points #; € [x,—_1, x;] such that
F(xz) - F(xz'—l) :f(tz‘)sz'-

It follows that

> " f(e)Ax; = F(b) — F(a).
i=1

However, Proposition[7.1.8(iii) then tells us that

<&

b
FO) - F@) - [ fds

Since ¢ > 0 was arbitrary, the result follows. O

Remark 7.3.3. The fundamental theorem of calculus tells us that integrals may be computed using

so-called “anti-derivatives” of our integrand £, i.e. functions F such that ' = f. It also tells us that if
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an anti-derivative exists, it 7ust be given by integrating.

On the other hand Theoremtells us that if £ happens to be continuous, then integrating f
does indeed give an anti-derivative. However, it is not always true that an integrable function has an
anti-derivative as Example[6.4.3|shows so the hypothesis that /' be continuous is necessary.

Example 7.3.4. We have that
d a3 _ 2
drv 3

Thus by the fundamental theorem of calculus,

a 3
/xzdx=bZ
0 3

which agrees with the computation in Example

Via the fundamental theorem of calculus, for every differentiation rule we get a corresponding
integration rule. The following two corollaries are consequences of the product rule and chain rule

for differentiation, respectively.

Theorem 7.3.5 (Integration by parts). Let ;g : [a, 6] — R be two differentiable functions with

integrable derivatives. Then

/f ) dv = F(D)glt) — /f

Proof. We have that
d
&f (x f (x)g f

where the right hand side is integrable as £, g are continuous and their derivatives are assumed to be

integrable. Thus by the fundamental theorem of calculus we have that

b
[ 100 + £ 0 s = F00) ~ Flalga)

from which the result follows. O

Theorem 7.3.6 (Change of variables). Let ¢ : [a, b] — [A, B] be a differentiable function with inte-
grable derivative and let - [A, B] — R be continuous. Then

[rocmorn- [ 1

105



Proof. ¢ is continuous, hence integrable, so f o ¢ is integrable by Theorem[7.1.15]since f'is continuous.

Moreover, because f is continuous it has an anti-derivative F via Theorem ‘We then have that

d /
3.1 (0) = f($(x))¢ (x)

by the chain rule, and the right hand side is integrable. Thus by the fundamental theorem of calculus

we have that ,
[ g d = Fpon - P
#(b)
= [ fd«
$(a)
as required. O

Example 7.3.7. Assume for now that %e’“ = ¢°. Then we have that

L, 1
/xex dx=/ —¢" du
0 0o 2

1
=£[51—€0]

=(e—1)2
where we used the substitution # = x% on the first step.

Exercises

Exercise 7.1. Consider the function

1 x=0
flx) = ; x =plg, pq € Z, p/qinreduced form, g >0
0 xeR\Q

b
Show that f is integrable on any interval and compute / fdx.

Exercise 7.2. Forasubset 4 C R let
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and set

&n(x) = 7 - Lioum)(x) — (7 + 1) - 10,1/(n41))(%).

Consider the function f : [0, 1] — R given by

F@) =3 g
n=1

(i) Show that f is well-defined and f(x) = 1(o1)(x)-

(i) Show that1; for [ an interval is integrable.

e

0o ]
Z/@M
n=1 0

and show they are not equal. Deduce that integration does not always commute with infinite sums.

(ili) Compute

and

Exercise 7.3. Show that there is no differentiable function f : R — R with integrable derivative
which satisfies /(x)f"(x) = 1 for all x.

b
Exercise 7.4. Show thatif / : [4, b)] — R is continuous with / > 0 and / fdx=0thenf = 0.
Exercise 7.5. Suppose f : [4, ] — R is integrable and f(x) = 0 for all x € [4, 5] N Q. Show that

/jfdx=o.

8 Sequences of functions

8.1 Pointwise convergence

Definition 8.1.1. Let X, ¥ be metric spaces and (f;,), a sequence of functions X — Y and f : X —
Y. We say that f, converges pointwise to f, written f,, — f pointwise, it for all x € X we have that

F@) = lim f,(x).

In this case we will also write lim, o /5 = f.
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We’ll show through examples that the notion of pointwise convergence is a very weak one—many
desirable properties such as continuity and differentiability may hold for each £, while not holding for
their pointwise limit.

Recall that a function f is continuous at a point x if lim,_, /() = f(x). Thus, if we assume
that each f,, is continuous and f, — f pointwise, then the question of whether £ is continuous at x

amounts to whether

lim lim f£,(¢) = lim lim £,(2),

t—X n—r00 n—r00 t—rX'
that is whether the two limits commute. Similarly, if £, — f pointwise and each f, is differentiable,
then the question of whether £ is differentiable with £, (x) — f’(x) amounts to a question about
commuting limits.
In the following examples, we show that many common operations do not commute with point-

wise limits.

Example 8.1.2. Consider double indexed set of numbers

m

Smn = .
m+n

Then we have that

lim s,,, =1
m—r0o0

for all » and

lim s,,, =0
n—r0o0

for all m. It follows that

lim lim s,,,=1#0= lim lim s,,
n—o0 m—r0oQ m—r0o0 n—r00

and thus the limits do not commute in this case.

Example 8.r.3. We can promote Example[8.1.2]to witness a discontinuous pointwise limit of contin-

uous functions. For this, consider the functions £, : [0, 00) — R given by

mx
fm(x) T 14 mx
Then each f,, is continuous and f,, — f where
1 ifx#0
flx) =
0 ifx=0

is discontinuous at 0.
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Example 8.1.4. Consider the functions £, : [0, 1] — R given by
() = ma(l — &7y

Then for 0 < x < 1we have that [l — x*| < 150 lim, f,(x) = 0, and for x = 0 we have £,,(0) = 0.
Thus £, — 0 pointwise.

However, notice that £, has anti-derivative —(1 — x%)"/2 so

/fn _ 1—x2)

! 1
ngngo/oﬂ(x)dx=2#0=/ Jim_7,(x)

Example 8.1.5. Consider

1
o 2

Thus

Then f, — 0 pointwise but

ﬂ(x) = cos(nx)

50 (f5/(x)), does not converge for any x, and certainly not to 0.

8.2 Uniform convergence

The previous section shows that in general one must use extreme caution when swapping the order
of limit operations. To be able to commute limiting operations, we need a notion of convergence that

is stronger than pointwise convergence.

Definition 8.2.1. Let X, ¥ be metric spaces and let (f;,), be a sequence of functions X — ¥ and let
[+ X — Y. We say that f, converges uniformly to f, written f,, — f uniformly, if for all ¢ > 0 there
existsan N € Nsuch thatforall z > N and x € X we have dy(f,,(x), f(x)) < e.

If f, : X — C are complex valued functions, then we say that ) _ f, converges uniformly if the

sequence of partial sums converges uniformly.

It is an easy check to see that if £, — f uniformly then f, — f pointwise. Indeed, pointwise
convergence lets the N occurring in Deﬁnition depend on both ¢ and x € X, whereas uniform
converges requires a single /N depending only on ¢ which works for all x € X.

Alternatively, one may formulate uniform convergence as: £, — f uniformly if and only if for all
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£ > 0 there exists N € N such that forall # > N we have

sup dy(fn(x), f(x)) <e.

x€X

Said differently, we have the following proposition.

Proposition 8.2.2. Letf, : X — Y, n € Nyandf : X — Y be functions and set

M, = sup dy(fu(x), f(x)).

xeX
Then f, — f uniformly if and only if M,, — 0 asn — oo.

Example 8.2.3. Let f,(x) = x”. Then f;, — 0 uniformly on [0, 1 — d] for any d > 0 but not on [0, 1).
Indeed, fixe > 0. Then

[folx)| <& <= |x]" <<
In(e) (8.2.1)
In(x)’

We wish to make this true for all x whenever » > N for some sufficiently large N. If x € [0,1 — 9]

> n>

then we may take
In(e)
In(1 — 9)

N >

so that £, — 0 uniformly on [0, 1 — d]. However,

In(¢) _

x—1— ln(x)

) cannot be made to hold forall z > N and x € [0, 1) for any fixed N € N. Thusf, — 0

pointwise but not uniformly on [0, 1).
We also would like a uniform notion of Cauchy-ness, which we define next.

Definition 8.2.4. Let X, Y be metric spaces and let (f,,), be a sequence of functions X — Y. We
say that (f;,), is uniformly Cauchy if for all ¢ > 0 there exists N € N such that for all #, » > N and
x € X we have dy(f,(x), fin(x)) < e.

Similar to uniform convergence, (f,), being uniformly Cauchy means that for every x € X the
sequence (f,(x)), is Cauchy and the N € Nappearing in the definition of Cauchy-ness may be chosen

independent of x.

Theorem 8.2.5. Let X, Y be metric spaces and (f,,), a sequence of functions X — Y.
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(z) If (f,)n is uniformly convergent, then it is uniformly Cauchy.
(17) If (f,)n is uniformly Cauchy and pointwise convergent, then it is uniformly convergent.
(177) If (f,)n is uniformly Cauchy and Y is complete, then (f,,), is uniformly convergent.

Proof. The proof of (i) is the same as the proof that every convergent sequence is Cauchy using that
the expressions appearing may be chosen uniformly to work for every point in X.

For (ii), let f, — f pointwise. Fix ¢ > 0. Then we may find N € N such that for », m > N and
x € X we have

dy (fu(x), fn(x)) < /2.

Then, taking the limit as 72 — 00 and using that dy is continuous, we find that for all » > N and

x € X we have
dy(fu(x), f(x) < &/2 <e

as required.
For (iii), suppose that (f,,), is uniformly Cauchy. Then for every x € X we have that (f,(x)), is
Cauchy and hence convergent since Y is complete. Thus we may build a function f : X — Y such

that f, — f pointwise and so we are done by (ii). O

Theorem 8.2.6 (Weierstrass M-test). Let f,, : X — C be a sequence of functions and suppose that

sup |fo(x)| < M, < o0
x€X

Joreachn. Ify ", M, < 0o, theny ., f, is uniformly convergent.

Proof. Let (5,), be the sequence of partial sums of ) _ f,. Then we have that for z > m

sup [s,(x) — sp.(x)| = sup
xeX xeX

> filw)

k=m+1

S

k=m+1

Since ) ., M, is convergent, the right hand side can be made arbitrarily small provided # and 2 are

sufficiently large. It follows that (s,), is uniformly Cauchy, hence uniformly convergent by Theorem

[8.2.{iii) since C is complete. O
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Example 8.2.7. Consider the power series
o0

xn

n

exp(x) = ) (8.2.2)

n=0
which has infinite radius of convergence. This series does not converge uniformly on all of R. Indeed,

it is not uniformly Cauchy on R. For any fixed N € N and x > 0 we have

m /e
> |2

k=N

Nl

which may be made arbitrarily large by making x sufficiently large.
However, the next best thing does hold. The series converges uniformly on [—R, R] for

any R € R. To see this, notice that

x"| R”
)
and o
b exp(R) < o0.
n=0

Thus the series (8.2.2)) is uniformly convergent on [—R, R] by the Weierstrass A1-test.

8.3 Behavior of continuity, integration and differentiation
8.3.1 Continuity

Theorem 8.3.x. Letf, : X — Y andf : X — Y and suppose f,, — [ uniformly. Fixx € X and
suppose that
lim f,,(¢) = 4,.

=X

Then (Ay), is Cauchy and
limf(z) = lim 4,

=X n— 0o

in the sense that one limit exists if and only if the other does, in which case they are equal.

Sazd differently, if (f,,), is uniformly convergent and x € X, then

lim lim f£,(¢) = lim lim £,(¢)

=X n—0o0 n—o0 t—x

Proof. Fixe > 0. Since (f,), uniformly convergent, it is uniformly Cauchy. Thus there exists N € N
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such that for n, m > N and ¢ € X we have that

Ay (f,(2), f(2)) < &/2.

Then taking the limit as # — x and using that dy is continuous, we get that
dy(An, Ay) < &2 < e

Thus (4,), is Cauchy.
Next, keep ¢ > 0 fixed. Since f,, — f uniformly and (4,), is Cauchy, we may find N € N such
that

dy(f(2), fn(2)) < &/3

forall# € X and for all n, m > N we have
dy(A4,, A,,) < &/3.
Then, forn > N,

dy(f(2), 4,) < dy(f(¢), fn(2)) + dy(fn(t), An) + dy (AN, 4,)
< ; +dy(fu(e), A

Now since fn(¢) — An ast — x, we may find a neighborhood V" of x such that dy(fn(2), An) < /3
whenever ¢ € V. It follows that for# € V and » > N we have

dy(f(¢), 4,) <e.

Since ¢ > 0 was arbitrary, the result follows. O

Theorem 8.3.2. Let X, Y be metric spaces and let f,, : X — Y be continunous functions with f, — f

uniformly. Then f is continuous.

Proof. This is an immediate consequence of Theorem|8.3.1] O
The converse to this theorem does not necessarily hold. That is to say, there may exist continuous

functions f, : X — Y andf : X — Y such thatf, — f pointwise but not uniformly. Under certain

restrictive situations, however, we do have a converse.

Proposition 8.3.3. Letfi > fo > f3 > -+ be a decreasing sequence of continuous function K — R
for K compact. If f,, — f pointwise for some continuous function [ : K — R, then f,, — f uniformly.
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Proof. Consider g, = f, — f. Then g, is continuous, non-negative and g1 > g» > g3 > ---
Moreover, it suffices to show that g, — 0 uniformly.
Fixe > 0. Let
K, ={x € K : g,(x) > ¢} = g, ([&, 0))

which is closed since g, is continuous. Thus K, C K is compact as it is a closed subset of a compact

space. Moreover, because g1 > g5 > ¢3 > -+ - we have that K; O K, O K3 O - --. Finally, we must

M K=o

neN

have that

since if x € (), K, then g,(x) > ¢ for all # contradicting that g,(x) — 0. However, by Lemma this
means that Ky = ) for some N € N. It follows that 0 < g,(x) < s forallx € X and z > N. Thus
g» — 0 uniformly. ]

Example 8.3.4. The compactness assumption in Proposition is necessary. Indeed,

1
nx +1

Salx) =
decreases pointwise to 0 on (0, 1) but not uniformly.

8.3.2 Integration

Theorem 8.3.5. Suppose that f,, : [a, b] — R are integrable functions and f,, — f uniformly. Then f

is integrable and

b b
[rae= jim [ e
Proof. Set
s = sup [f,(x) — ()

so thate, — 0as f, — f uniformly. Then we have that

fo—an Zf<futen (8.3.1)

so f is bounded as the f;, are. Moreover, (8.3.1) implies that

/ﬂb(fn—gn)dxg/;fdxg/jfdxg/ab(fnﬂn)dx (8.3.2)
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SO

Og/jfdx—/;fdxgz,sn(b—a).

Letting » — oo we see that fj fdx= Lb f dxso f is integrable.
Moreover, (8.3.2) also shows that

/;fdx—/jﬂdx

so letting # — 00 the result follows. O

S gn(b - ﬂ)

Corollary 8.3.6. Suppose that f, : a, b] — R are integrable and
@)= ful®)
n=0
where the series converges uniformly. Then f is integrable and

/ﬂbfdx::io/jﬂdx.

8.3.3 Differentiation

The sequence of functions

that we encountered in Example[8.1.s|in fact converges to 0 uniformly. However, the sequence (f;),
of derivatives does not converge at a7y point as we saws. Thus we need stronger hypotheses to control

the derivatives.

Theorem 8.3.7. Let (f,,), be a sequence of differentiable functions [a, b] — R. Suppose that (f},),
converges uniformly and for some xo € [a, b] we have that (f,(x0)), converges. Then (f,,), converges

uniformly to some [ : [a, b] — R and

f’(x) = lim f,f(x)

n—roQ

Proof- Fixe > 0. (f,)), is uniformly Cauchy and (f,,(x0)),, is Cauchy, so we may find N' € N such that

for all , m > N we have

|[fn(x0) — fin(o)| < &/2 (8.3.3)
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and

If51(2) = £l 20—2) (8:3.4)

forallz € [, b].
Applying the mean value theorem to £, — f,, we find using that

elt

50) = Fule) = 0+ 0] < 55 < 5 (535)

forallz, x € [a, b], provided n, m > N. It follows that for all 2, m > N and x € [, b] we have

|fn(x @) < [falx — fa(x0) + fn(x0)| + [ful0) = fin(x0)|

<é

by combining (8.3.3) and (8.3.5)). Thus (f,,), is uniformly Cauchy and therefore uniformly convergent,

say with f, — f .
Now fix x € [4, b] and define

¢ (t) ﬁi(t f , ¢(x) — f(t) *f(X)

—x t—x
on [, 6] \ {x}. Now, the first inequality in (8.3.5) shows that for z, m > N we have

13

|¢n(t) - ¢m(t)| < Z(b - d)'

Thus (¢,), converges uniformly on [4, 6] \ {x}. Moreover, ¢, — ¢ pointwise since f,, — £, so
¢» — ¢ uniformly.
By Theorem|8.3.1 we find that
f(x) = lim (z) = lim lim ¢,(¢) = hrn f O

t—x n—00 t—x

Example 8.3.8. Requiring the convergence of (f,,), at at least on point xy € [4, ] in Theorem

is necessary. Indeed, if one were to drop that assumption, then the sequence

ful®) = n

of constant functions becomes a counterexample.
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8.4 DPower series

We now apply the results of the previous section to study power series.

Theorem 8.4.1. Let
o0
f@)=) alx—a)
n=0

be a power series with radius of convergence R. Then for all r < R, f converges uniformly on B,(e).

Proof. We have that

sup |eu(x — a)”| = |ca| 7"
xEB(a)

Moreover, notice that the power series
oo

>fal

n=0

also has radius of convergence R. Thus

o
Z |7 < o0
n=0

since 7 < R, and hence /" converges uniformly on B,(«) by the Weierstrass A1-test. O

Lemma 8.4.2. Let ), c,(x — a)" be a power series with radius of convergence R. Then the power series

Z ney(x — a) !

n=1
also has radius of convergence > R.

Proof. By translating, assume thatz = 0. Now, take any %y € Bz(0) and choose some y € Bz(0) with

|%0| < |]. Then for 7 sufficiently large we have that

n

X0
<1

)

n

since |xp/y| < 1, and thus for 7 sufficiently large we have that

|nenxg| = leny”| - [n(eoy)"] < leny”|: (8.4.1)
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Butsince [y| < R we have that
oo

>

n=0

converges absolutely. Thus by comparison and using we have that

oo

E nCyXg

n=1

1

converges absolutely. Since x was arbitrary, we find that ) | 7c,x” "' converges on Bg(0) and thus

has radius of convergence > R. O

Theorem 8.4.3. Let
f6) =) e —a)
n=0

have radius of convergence R. Then f is differentiable on Br(a) with
£ =Y nele —
n=1

Proof. It suffices to prove the result on balls B,(«) for any » < R. Thus fix » < R.

Let (s,), be the sequence of partial sums of /. Then we have that (s,),, is the sequence of partial

oo
Z ney(x — a) L
n=1

Combining Lemma and Theoremwe see that (s},), converges uniformly on B,(«). More-
over, (s,), converges uniformly to f on B,(«) also by Theorem 8.4.1] It follows then from Theorem
that £ is differentiable on B,(«) with

sums for the series

fl) = lim 5(x) =Y nea(x — )"

n— 00
n=1
as required. ]
Example 8.4.4. Consider again
oo xn
exp(x) = e
n=0
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Then by Theorem we have that

(8.4.2)

By Example[6.6.6} we know that exp(x) is therefore the #nigue function satisfying (8.4.2). Thus any
familiar results one may have heard of about the exponential function can be deduced from

alone. We give an example of this in the following theorem.

Theorem 8.4.5. Forall x, y € R we bave that

exp(x +y) = exp(x) exp(y).
Proof. Fixy € R and consider the function

g(x) = exp(x + ) exp(—x).

Then we have by the chain rule that

£'(x) = exp(x + y) exp(—x) — exp(x + ) exp(—x)

=0.
It follows that ¢ is a constant function, so
exp(x + y) exp(—x) = g(x) = g(0) = exp(y)

forallx, y € R.
Letting y = 0 in we get that

exp(x) exp(—x) = L
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Thus multiplying both sides of by exp(x) the result follows. O

8.5 (C(K) and alternative perspectives

We can phrase the previous sections in terms of familiar language.

Definition 8.5.1. Let X be a metric space. Let B(X) be the set of bounded functions X — R and let
C(X) be the set of continuous, bounded functions X — R.

If X = I is an interval, define Z([) to be the set of Riemann integrable functions / — R.

Remark 8.5.2. If K is compact then by Theoremall continuous functions K — R are bounded,

so C(K) is just the set of continuous functions K — R.
For general X, it is clear from definition that we have
C(X) C B(X).
For X = I an interval, we have by Theoremthat
C(1) € Z2(1) < BX).

We now define a function || - ||oo : B(X) — R called the sup-zorm which is given by

[Flloo = sup [/(x)]-

xeX

Note that ||f|| o is well-defined since f* € B(X) is bounded.

The sup-norm turns B(X) into a metric space via the metric

d(f;) = |If — glloo

and thus the subsets C(X) and Z([) also become metric spaces via the same metric. From here on out,

whenever we write C(X), B(X) or Z(I) it will be assumed to have this metric.

Proposition 8.5.3. Let (f,), be a sequence in B(X) and f € B(X). Then

(i) fn — f uniformly if and only if f,, — f in B(X).
(17) (fn)n 25 uniformly Cauchy if and only if (f,,), is Cauchy in B(X).

Proof. (i) is an immediate consequence of Proposition 8.2.2]and (ii) may be proven similarly. O
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With the viewpoint, if we consider only bounded functions then Theorem follows from
general results about convergent and Cauchy sequences in metric spaces. Moreover, the theorems in
the previous section involving continuity and integrability may be encapsulated as follows.
Theorem 8.5.4. (7) B(X) is complete.

(iz) C(X) C B(X) is a closed subspace.

(i) H(I) C B(I) is a closed subspace.

Proof. (i) follows from Theorem iii) which tells us that uniformly Cauchy sequences of func-
tions X — R are uniformly convergent.

For (ii), suppose that (£, ), is a sequence of bounded, continuous functions with £, — f in B(X).
Then by Theorem 8.3.2) we have that f is continuous, so f € C(X). Thus C(X) C B(X) is closed.

For (iii), suppose that (f,), is a sequence of integrable functions / — R with £, — f in B(]).

Then by Theorem [8.3.5| we have that £ is integrable, so f € Z2(I). Thus Z(I) C B(I) is closed as
required. O

Theorem 8.5.5. The integral
b
/ : X([a, b]) = R
is (b — a)-Lipschitz, in particular uniformly continuous.

Proof. Letf, g € Z([a, b]). Then we have that

[ras [cas < | [ir-0a

< sup [f(x) — glx)| - (6 —a)

=(b—a)-|f —gllo

so the integral is (b — 4)-Lipschitz. O

Combining Theorem iii) with Theorem we may deduce the full statement of Theorem
using the sequence definition of continuity.
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Exercises

Exercise 8.1. Consider the sequence of functions £, : R — R given by

1 ifx>n
Jo(%) = 1 00)(x) =

0 ifx<n

Find a function f : R — R such that f, — f pointwise. Is this convergence uniform?

Exercise 8.2. Suppose that fi > fo > f3 > - - - are continuous functions [, 4] — R with f, — 0

pointwise. Does it follow that
b
/ fndx — 02
a
Prove or give a counterexample.

Exercise 8.3. We say that a sequence (f,), of functions X — R is uniformly bounded if there exists
an M such that

sup [fu()] < M
xEX

for all 2. Show that a uniformly convergent sequence of bounded functions is uniformly bounded.

Exercise 8.4. Show that if (f,,), and (g,), are sequences of bounded functions X — R with £, — £
and g, — ¢ uniformly, then f,¢, — f¢ uniformly. Show that this is not necessarily the case if we drop

the assumption that the £,’s and g,,’s are bounded.

9 Advanced topics

9.1 The Stone-Weierstrass theorem

In Section |6.6|saw a potential method for approximating infinitely differentiable functions by poly-
nomials using Taylor polynomials. However, for this method to work we need our function (i) to be
infinitely differentiable and (ii) have bounds on its higher derivatives so that Taylor’s error term van-
ishes. It turns out, however, that if we allow ourselves the freedom approximate with 27y polynomial,

not just Taylor’s polynomials, then both of these issues vanish.

Theorem 9.1.x (Weierstrass). Iff is a continuous function [a, b] — R, then there exists a sequence of
polynomials (Py,), with P, — [ uniformly.
Put differently, polynomials are dense in C([a, b]).
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Proof. Assume for convenience that [4, 6] = [0, 1], as the same proof works for a general interval
with minor modification. Moreover, we may assume that /(0) = /(1) = 0 since we may consider the

function
g(x) = f(x) = £(0) + x(£(0) — f(1))

which satisfies ¢(0) = ¢(1) = 0. If P, — g uniformly, then P, + f — ¢ — funiformlyand P, + f — ¢
are still polynomials.
Since £(0) = £(1) = 1, we may extend / to a continuous function R — R by setting / to be zero

outside of [0, 1]. Since f is only non-zero on [0, 1], which is compact, f is then uniformly continuous
onR.
Forn € N, set

Qu(%) = cu(1 — &%)
where ¢, is chosen such that
1
| owa-1
~1

Now,
1 1 V\/n
/(l—xz)”deZ/(l—xz)”deZ/ (1—x%)"dx
0 0

-1
1/\/n
> / (1 — nx®)dx
T
=37
1
T Vn

where we have used that (1 — x*)* > 1 — nx* on (0, 1). Thus follows by considering

(9.1.1)

b(x) = (1 — x*)" — (1 — nx?)

which satisfies 5(0) = 0 and /'(x) > 0 on (0, 1). It follows then from and the definition of ¢,
that

€ < /1.

Using this bound, for any ¢ > 0 we have that, on [4, 1],

0 < Qux) < V(1 — 82"

s0 Q, — 0 uniformly on [0, 1].
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Now set .
P = [ frs 0.0
forx € [0,1]. Since f is zero outside (0, 1), we have that
1—x 1
P,(x) = flx+12)Qu(r)dr = /0 F(u)Qu(n — x)du

—X

where the last inequality comes from making the change of variables # = # — x. Since Q, is a polyno-
mial, the last expression shows that P,(x) is a polynomial. We will show that 2, — f uniformly.

Fix e > 0 and choose 1 > § > 0 such that

o=yl <3 = |f@) — £0)| < 2

and set M = sup |f(x)|. We then have for any 0 < x < 1 that

1
|Pu(x) — fx)] = ’/_l[f(xw) — f(x)]Qn(r) dr
1
< [ e+ —r)- oo
-1
- c P 1
§2]l/1/1 Qn(r)dt+2/§Qn(t)dt+2M/5 Q,(2)dr
1 13
< 4]\/[/ Q,(2)dr + >
3

Since Q, — 0 uniformly on [, 1] this expression is < £ whenever # is sufficiently large. Thus P, — £

uniformly. O

Our goal for the rest of this section is to extract precisely what properties of polynomials were

necessary in proving Theoremand thereby prove its generalization due to Stone.

Definition 9.1.2. Let &/ C C(K). We say that &7 is an algebra if for all /; ¢ € 7 and ¢ € R we have
that (i) / + g, (ii) f¢ and (iii) ¢/ belong to <7

Proposition 9.1.3. Let &/ C C(K) be an algebra. Then of C C(K) is also an algebra.

Proof. Letf, g € /. Then we may find sequences (f,), and (g,), in & with f, — fand g, — g.

However, we then have that

Jotgn =8 fagn 2 fo =
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Since 7 is an algebra, all of these sequences belong to &7 Thus f + g, fg, of € o asrequired. [

Definition 9.1.4. Let &/ C C(K)be an algebra. We say that o7 separates points if for any two distinct
points x1, x, € K we may find some f* € o7 with f(x) 7 f(x2).
We say that o7 vanishes at no point of K if for every x € K there exists some /' € &7 with f(x) # 0.

Example 9.1.5. The set of polynomials in C([4, &]) is an algebra which separates points and vanishes
at no point of [4, b]. Indeed, for vanishing the constant function 1 never vanishes. For separating

points, the polynomial p(x) = x separates any two distinct points.

Lemma 9.1.6. Ler &/ C C(K) be an algebra which separates points and vanishes at no point of K. Then

given any two distinct points x1, x, € K and any two ¢, ¢y € R, there exists f € of with

f(xl) = f(xz) = ().

Proof. The hypotheses give us functions g, b, k# € .27 such that

glv) # g(x2),  blx1) 70, k(x2) # 0.
Set
u=gk—glxk v=gh—glx)h
sothatu, v € of and u(x1) = v(xz) = 0, #(x2) # 0, v(x1) # 0. Then let

Qu

€ . O
u(x2)

_av
St

4

Theorem 9.1.7 (Stone-Weierstrass). Let K be compact and o/ C C(K) an algebra which separates
points and vanishes on no points of K. Then ' is dense in C(K).

We will prove this via a series of lemmas.

Lemma 9.1.8. For cvery interval [—a, a] there exists a sequence of polynomials P, with P,(0) = 0 such

that P, — | - | uniformly on [—a, a].

Proof. f(x) = |x| is continuous on [—4, 4] so by Theorem|o.L.1 there exists a sequence of polynomials
(Py), with P, — f uniformly on [—4, 4]. Since f(0) = 0 we must have that 2,(0) — 0. Thus set

Then P;(0) = 0 and P, — f uniformly as required. Ul
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Lemma 9.1.9. Ler o/ be asin Tloeoremand let B =of Iff € Bthen|f| € B.

Proof. Leta = sup |[f(x)| and let ¢ > 0 be fixed. By Lemmawe may find real numbers ¢y, ..., ¢,

such that

n

Z fi)’i =l

=1

<é¢

forally € [—a, a]. Since 4 is an algebra by Proposition we have that

g= Z ¢f e B
i=1
Moreover, by definition of «, we have that

lglx) = [F)l <&

forallx € K, ie. ||g — |[fllloo < & Sincee > 0 was arbitrary, we have that |f| € Z = % as
required. N

Lemma 9.r.10. Let & be as in Tbeoremand let B = of. Iff,g € B then max(f, g) € B and
min(f, g) € A.

Proof. We have that

max(fg) - _ftg g Ifzgl

and

mmfg f+g [f;g‘

so the result follows from Lemmal9.1.9] O

Lemma 9.r.1x. Let of beasin Tbeoremand let B = df. Fixe > 0andx € K and let f € C(K)
Then there exists a_function g € 9B such that g(x) = f(x) and g(t) > f(t) — ¢ forallt € K.

Proof. Since &/ C 9B, 9 also separates points and does not vanish on any point of K. Thus for every
y € K, by Lemma we may find some b, € % such that

=), B =f0).

Since b, is continuous, there exists a neighborhood /, of y such that
t)>f(t) —¢ (9.1.2)
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forall # € /. Since K is compact, we may write

K=],U---Uj, (9.1.3)

for some yy, ..., ¥, € K.
Now set

g=max(hy,..., h,).

By Lemmal9.1.10|we have that ¢ € 8. Moreover, we have that g(x) = f(x) and g(¢) > f{(z) — & for all
t € K by and (9.1.2). O

Proof of Theorem[p.1.7] Fixe > 0 andlet f € C(K). By Lemmaly..ujwe may find for every x € K a
function g, € % = o such that g,(x) = f(x) and g(¢) > f(¢) — eforallz € K.

By the continuity of gy, there exists a neighborhood V7 of x such that

g:(t) <f() +¢ (9.1.4)

forall z € /. Since K is compact we may write
K=Vy,U---UV,, (9.15)
forsome xg...,x, € K. Then set
g =min(gy,...,g,) € B.

By construction of the g,’s, we have that

8(e) > f(e) — e
forall 7 € K. Moreover, by and we have that

g(t) < f(z) +¢

forallz € K. Thus ||g — f|loc < &
Since ¢ was arbitrary, we see that f* € B =B as required. ]

We now discuss some applications of this theorem.
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Definition 9.r.12. Definesin : R — R and cos : R — R via the power series

2n+1

oe) o)
sm = Z 272 + 1 COS = Z
n=

n=0

2n

One may check that sin and cos indeed have infinite radius of convergence and by Theorem
we see that

sin’(x) = cos(x), cos'(x) = — sin(x).

Notice also that

exp(ix) = cos(x) + 7 sin(x)
by regrouping the terms in the power series for exp(zx), which is valid as exp(sx) is convergent.

Proposition 9.1.13. Get o, 8 € R the following relations hold:
() cos(a + B) = cos(a) cos(8) — sin(«) sin(p)
(77) sin(a + f8) = sin(a) cos(8) + sin(f) cos(a).
Proof. By Theorem|8.4.5|we have that
cos(a + ) + i sin(a + B) = exp(i(a + f))

= exp(ia) exp(z8)

= (cos(e) + i sin(e))(cos(£) + 7 sin(B))
Performing this multiplication and comparing the real and imaginary parts then gives the result. [J
Corollary 9.1.14. Given a, B € R the following relations hold:

(i) sin(a)sin(f) = = [cos « — ) — cos(a+ )]

(%) cos(@)cos(f) = 5 ~ [cos(a + ) + cos(a — )]

1
(177) sin(a) cos(f) = > [sin(a +B) + sin(a — ﬂ)]
Proof. A direct check using the sum formulas of Proposition O]

One may then show that sin has a #nique zero in (0, 2) one we define 7 € R to be twice the value
of this zero, i.e. so that 772 € (0, 2) and sin(z/2) = 0. One may then confirm using the sum formulas

in Proposition that sin and cos are 2z-periodic, i.e. that
sin(x + 27) = sin(x), cos(x + 27) = cos(x)
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forallx € R.
Theorem 9.1.15. Let
o = {Z ¢, cos(kmx) + Z by sin(krx) : m,m € N, ¢, by € R}
k=0 k=1

be the set of all linear combinations of sin and cos with non-negative integer frequencies. Then < is
dense in C([0, 1]).

Proof. We show first that & is an algebra. It is clear that & is closed under scalar multiplication and
addition. The fact that ¢ is closed under multiplication follows from Corollary[o.r.14]

By Stone-Weierstrass, it suffices then to show that o7 separates points and vanishes at no point of
[4, b]. The latter condition is true since the constant function 1 = cos(0) belongs to 27. Second, we

have that cos(zx) € . is injective on [0, 1] hence %7 separates points. O

This theorem is the basis for expecting Fourier analysis to be possible.

Another neat application is the following.

Theorem 9.1.36. Let [ : [a, b] — R be continuons and suppose that

/a ’ Fl)"de =0

foralln > 0. Then f = 0.

Proof. By linearity of the integral, this implies that fﬂb fp dx = 0 forall polynomials p. But polynomials
are dense in C([4, ]) so let p, — f uniformly. Then we have that fp, — £ uniformly and thus by
Theorem|8.3.5|we have that

O=/dbfpndx—>/ﬂbf2dx.

Hence we have that [ ’ £%dx = 0and since /2 is continuous and non-negative, this forces > = 0 so
a

that f = 0. ]

9.2 The Baire category theorem

Definition 9.2.1. We say that a metric space X is a Bazre space if the countable intersection of open

dense sets in X is dense.

Before discussing the main theorem, we give an alternative formulation of what it means to be a

Baire space.
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Definition 9.2.2. Let X be a metric space and £ C X. Define the interior of Einterior, denoted by
E°, to be the set

E° = {x € E : Janeighborhood U of x with U C E}.

Remark 9.2.3. One easily checks that £° is open and that it is the /argest open contained in E. In

particular, a set £ is open if and only if £° = E.

Definition 9.2.4. We say thata set £ C X is nowhere dense if E° = 0. Alternatively, £ is nowhere

dense if £° is dense.

Proposition 9.2.5. A space X is a Baire space if and only if the countable union of nowhere dense closed

sets is nowhere dense.

Proof. Take complements in the usual definition of a Baire space. L]
We now have the main result.

Theorem 9.2.6 (Baire Category Theorem). Every complete metric space is a Baire space.
For this we need some preliminary definitions and results.

Definition 9.2.7. Let (X, d)beametric space and £ C X be a non-empty subset. Define the diameter
of E, denoted by diam £, to be

diam E = sup d(x, y).
xy€E

Proposition 9.2.8. Let X be a complete metric space and suppose that Ey O Ey D E3 D - - - isa nested

sequence of non-empty closed sets with diam E,, — 0. Then (1, E, is non-empty.

Proof. Let(x,), be any sequence such thatx, € E,. Fixe > 0andlet N € Nbe such thatdiam Ex <

¢. Since the E,,’s are nested, for all , m > N we have that x,, x,, € Ex and thus
A%, %) < diam En < .

Hence (), is Cauchy and so x,, — x for some x since X is complete.
Now, for every N € N we have that (x,),>n is a sequence in Ex converging to x. Since Ep is

closed we have thatx € Ey and thusx € (1), E, as required. ]

Proof of Theorem|p.2.d Let {U, }, be open dense subsets in X. Let U be any open of X. Our goal is

to show that

Un( U, #0.
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To do this we construct a sequence of points (x,), and radii (»,), with 7, — 0 such that

Brl(xl) 2 B}’z(xZ) 2 BV3(x3) 2 tt

with the additional property that B, (x,) C U, for all » and B,,(x;) C U. It then follows from

Proposition that
0% (B SUN[(Us

as required.
To do this, since U is dense, we may find x; € U N U;. Since U N U] is open there exists some

¢ < 2such that B,(x) € U N U;. Then take 7 = ¢/2 < 1. By construction we have that

Brl(xl) g Bg(xl) g un []1

Now suppose x,—1 and 7,1 have been constructed. Then since U, is dense we have that there exists
some x, € B,, (x,—1) N U,. Moreover, since B,, ,(x,—1) N U, is open we may find some ¢ < 2/
such that B,(x,) C B,, ,(x,—1) N U,. Thensetr, = ¢/2 < 1/n. It follows that

Br (xn) g Bg(xn) g Brn,1(xn—1) N Un-

n

The sequences (x,), and (7,,), then satisfy our desired properties. O
We now need to strengthen this result.
Theorem 9.2.9. Open subsets of complete metric spaces are Baire spaces.

Proof. Let X be a complete metric space and U C X be open. Given a closed set £ C X define

= inf d(x, y).
PE(X) }25 (%)

One may show that g is 1-Lipschitz and pg(x) = 0 if and only if ¥ € E since E is closed.

Now define a map
p: U —— X xR

u —— (u, 1/py<(n)).

This map is continuous and injective. The image @(U) is closed as well. Indeed, suppose that

(ttnr pue(,) ") = (a, b).
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Now, if 2 € U* then py,(,) — pu,(a) = 0 which contradicts py, (#,) ' — b. Thusa € U and so
by continuity pye(1,) ™" — pye(a)~!. Hence

(,b) = (4, pue(a) ™) € (V).

so @(U) is closed.
It follows that U = @(U) where the inverse map is projection zy : X x R — X. But p(U) is
a closed subset of the complete metric space X X R, hence complete. Thus ¢(U) is a Baire space by

Theoremand since being a Baire space is a topological property, we see that U is a Baire space. [
This has some immediate corollaries.

Theorem 9.2.10. Let X be a complete metric space and let (F,), be a countable collection of closed subsets
which cover X. Then ), F,) is a dense open subset of X.

Proof. The fact that | J,, £y is open is clear, so we need only show that it is dense.

Let U be a non-empty open set of X. Then we have that

U= U(U N Fy). (9.2.1)
Since U is a Baire space by Theoremwe know that not every U N F, can be nowhere dense in U,
as otherwise the union  J (U N F,) would be nowhere dense in U contradicting (9.2.1).

Write inty £ for the interior of £ viewed as a subset of X. Then the above shows that we may find
some N such thatint;(U N Fy) # 0. But U is open in X so inty;(U N Fy) is an open in X contained
in both U and Fp;. Thus

0 #inty; (U N Fy) C U Ninty Fy.

It follows that U N Y, Fyy # Dso U, F, is dense in X. O

Corollary 9.2.1x. The set of isolated points in a countable complete metric space is dense. In particular,

a complete metric space with no isolated points is uncountable.

Proof. Let X be a countable complete metric space. Then X is a Baire space by Theorem Let
I C X be the set of isolated points of X, i.e. the collection of points x € X such that {x} is open.
Then for every x € X \ I we have that X \ {x} is a dense open set. Then as X is a Baire space and

countable we have that

(] X\ {x}=1

xeX\/

is dense. O
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Since R is has no isolated points, this gives an alternative proof that R is uncountable.

Theorem 9.2.12 (Baire’s Simple Limit Theorem). Let X, Y be metric spaces with X complete. If f,,

X — Y are continunous with f,, — f pointwise, then the continuity points of f are dense in X.
Proof. Forevery n € Nand e > 0, define

Foe={x € X :Vp > n, dy(fu(x), f(x)) < ¢}.
Notice that

Foe = ({x € X : dy(fu(x). f(x)) < ¢}

p>n

is the intersection of closed sets since the f,,’s are continuous, so each £, is closed. Moreover, since

f» — [ pointwise we have that each sequence (f,,(x)), is Cauchy so

X =R,
It follows from Theorem|[9.2.10]that the set
o.=Jr.

is an open dense subset of X

Next, we show that for every p € (), there exists a neighborhood ¥ of p such that

x € V= dy(f(p) f(x)) < 3.

For this, suppose that p € F,, . Since £, is continuous and F,,, is open, there exists a neighborhood

of p contained in £, such that

x € V= dy({,(p) fn(x)) <
Since V' C F,,, we have that for all m > » that

x € V = dy(fulx), fu(x)) < e
Letting m — 00 we find that

x € V = dy(fu(x),f(x)) < e
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Thus by the triangle inequality we find that for all x € 7" we have

dy(f(p).f(x) < dy(f(p). f2(p)) + dy(£lp), fu (%)) + dy (fu(x), (x))

<ée+te+e

=3¢

as required.
It follows then that f is continuous an the set (), 1/, which is dense as each Q, is an open dense
set and X is a Baire space by Theorem O

Corollary 9.2.03. Let f : [a,b] — R be a differentiable function. Then f' is continuons an a dense
subset of [a, b].

Proof. We have that

fles ) =1

pointwise. Moreover, each difference quotient on the left is continuous since f is continuous. Thus

by Theorem ' is continuous on a dense subset of [, ]. O

The following theorem may also be proven using the Baire Category Theorem.

Theorem 9.2.14. The set of no-where differentiable functions are dense in C([a, b]).

Exercises

Exercise 9.1 (f). Let / : R — R be an infinitely differentiable function such that for every x € R
there exists an z € N with f )(x) = 0. Show that f is a polynomial.

134



References

[Rud64] Walter Rudin. Principles of Mathematical Analysis, volume 3. McGraw-Hill New York,
1964.

135



Index

B(X), 20
B,(x), 23
C(X), 20

C*, 88

ck(), 88

E°, 130
L(P,f), 92
UL f); 92
X=Y,72
[, fds, 92
;liam E, 130
idy4, 16

inf S, 10

J? fd, 93

lim S, 26

lim,, x,,, 41
lim, - f(x) =777
i, (), 63
liminf, s,, 48
limsup s,, 48
mesh(P), 92
S, 29

sup.S, 10

J. fdx, 02
£ S66
f(x), 80
f(”)’ 38
gof,16
k-cell, 37

X, — X, 26

absolute convergence, 51

Baire space, 129

Cauchy sequence, 44
clopen, 29
closed ball, 27
closed function, 70
closed set, 26
closure, 29
closure, 29
compact set, 30
compactness, 30
complete metric space, 46
conditional convergence, 59
connected space, 38
continuity, 64
uniform, 75
continuous, 64
atp, 64
function, 64
converges, 41

countable, 17

Dedekind cut, 13
dense, 33
derivative, 81
differentiable, 8o
atx, 8o
discontinuous, 64
atp, 64
discrete metric, 22

diverges, 41

field,

additive identity, §

multiplicative identity, 6

function, 16



C*, 88

bijective, 17

closed, 70

differentiable, 8o
homeomorphism, 72
injective, 16

integrable, 93

inverse, 17

Lipschitz, 68

monotone, 78
monotone decreasing, 78
monotone increasing, 78
open, 72

surjective, 16

uniformly continuous, 75

geometric series, 53

homeomorphic spaces, 72

homeomorphism, 72

infimum, 10

infin

ite series, 50

partial sum, so

integrable, 93

inter

ior, 130

isolated point, 63

least-upper-bound property, 11

limit

limit

at infinity, 86

of functions, 107, 109
pointwise, 107

to infinity, 85
uniform, 109

point, 63

Lipschitz, 68
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local extremum, 83

local maximum, 83

mesh
of partition, 92

metric space, 21
bounded, 37
complete, 46
connected, 38
homeomorphic, 72
metric, 22
separable, 34

monotone sequence, 46

neighborhood, 25

nowhere dense, 130

open ball, 23
open cover, 30
subcover, 30
open function, 72
open set, 23
open ball, 23
open cover, 30
ordered field, 10
negative, 10
positive, 10

ordered set, 9

partial sum, so
partition
of interval, 92

refinement, 94

pointwise convergence, 107

power series, 58

radius of convergence, 58

product metric, 36



radius of convergence, 58

Riemann integral

conditionally convergent, 59

geometric, 53

lower, 92 power series, 58
upper, 92 simple discontinuity, 77
subspace metric, 22
separable, 34 p ’

subspace topology, 22
sequence, 26 P pology

Cauchy, 44 supremum, 10

converges, 26 Taylor polynomial, 89

lower limit, 48 topological property, 74

monotonically decreasing, 46
monotonically increasing, 46 uncountable, 17
of functions, 107, 109 uniform continuity, 75
rearrangement, 59 uniform convergence, 109
upper limit, 48 uniformly Cauchy sequence, 110
sequentially compact, 32 upper bound, 10

series, 50 least upper bound, 10

absolute convergence, s1 supremum, 10
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