
Homework 6

Due by Thursday August 1st at 11:59pm on Gradescope.
The following textbook problems are suggested for review but should not be submitted:

5.2, 5.15, 5.25, 5.27, 6.4, 6.5, 6.8, 6.10.

Exercise 1. Let f : R → R be a differentiable function with |f ′(x)| ≤ A for some constant A < 1.
Then, given any a ∈ R, show that the sequence (xn)n defined by

xn+1 = f (xn), x0 = a

converges to some x ∈ R. Moreover, show that this x satisfies f (x) = x.

Solution. By a previous homework problem,we know that f isA-Lipschitz. Thus, notice that ifn ≥ 1
then we have that

|xn+1 − xn| = |f (xn) − f (xn−1)|

≤ A|xn − xn−1|.

By induction this tells us that
|xn+1 − xn| ≤ An|x1 − x0|.

It follows that for n ≥ mwe have that

|xn+1 − xm| ≤ |xn+1 − xn| + |xn − xn−1| + · · · + |xm+1 − xm|

≤ (An + An−1 + · · · + Am) · |x1 − x0|

= |x1 − x0| ·
n∑

k=m

Ak.

(†)

Since A < 1,
∑

n An is a convergent geometric series so the right hand side of (†) may be made arbi-
trarily small provided n,m are sufficiently large. Thus (xn)n is Cauchy and hence convergent.

Say that xn → x. Since xn+1 = f (xn), taking limits of both sides we get that

x = lim
n→∞

xn+1 = lim
n→∞

f (xn) = f (x)

where for the second inequality we used that f is continuous.
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Exercise 2. Consider the function

f (x) =


1 x = 0
1
q x = p/q, p, q ∈ Z, p/q in reduced form, q > 0

0 x ∈ R \Q.

Show that f is integrable on any interval and compute
∫ b

a
f dx.

Solution. Fix ε > 0. ChooseN sufficiently large so that 1/N < ε. Let

SN =
{
p
q

: p, q ∈ Z, |q| ≤ N
}
.

Then for x ∈ R \ SN we have that |f (x)| ≤ 1/N < ε.
Now, given two distinct x, y ∈ SN we have that |x− y| ≥ 1/N 2. Thus as [a, b] is finite length, we

must have SN ∩ [a, b] is finite so let

SN ∩ [a, b] = {q1, . . . , qℓ}.

Now choose a partition P = {x0, . . . , xn} of SN such that every qj belongs in (xi−1, xi) for some i and
for all i = 1, . . . , n if qj ∈ [xi−1, xi] for some j then Δxi < ε/ℓ .

LetA be the set of indices i such that [xi−1, xi] intersects SN andB the remaining indices. If i ∈ A
then we have that

sup
x∈[xi−1,xi]

f (x) · Δxi ≤ ε/ℓ

since sup f (x) ≤ 1. If i ∈ B then we have that

sup
x∈[xi−1,xi]

f (x) · Δxi ≤ ε · Δxi .

Thus
U (P, f ) =

∑
i∈A

sup
x∈[xi−1,xi]

f (x) · Δxi +
∑
i∈B

sup
x∈[xi−1,xi]

f (x) · Δxi

≤ |A|ε/ℓ + ε
∑
i∈B

Δxi

≤ ε + ε(b− a).
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Finally, by the density of irrationals we know that L(P, f ) = 0. Thus

0 ≤ U (P, f ) − L(P, f ) ≤ ε · (1 + b− a).

Since ε > 0 was arbitrary we see that f is integrable.
Now, by the density of the irrationals we know that L(P, f ) = 0 for every partition P. Thus∫ b

a
f dx =

∫ b

a
f, dx = sup

P
L(P, f ) = 0.

Exercise 3. For a subset A ⊆ R let

1A(x) =

1 x ∈ A

0 x ̸∈ A

and set
gn(x) = n · 1(0,1/n)(x) − (n + 1) · 1(0,1/ (n+1))(x).

Consider the function f : [0, 1] → R given by

f (x) =
∞∑
n=1

gn(x).

(i) Show that f is well-defined and f (x) = 1(0,1)(x).

(ii) Show that 1I for I an interval is integrable.

(iii) Compute ∫ 1

0
f dx

and
∞∑
n=1

∫ 1

0
gn dx

and show they are not equal. Deduce that integration does not always commute with infinite sums.

Solution. (i) f is defined via an infinite series, so we need to check that this converges for f to be
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well-defined. To do this, we look at the partial sums. Notice that

n∑
k=0

gk(x) = (1(0,1)(x) − 2 · 1(0,1/2)(x)) + (2 · 1(0,1/2)(x) − 3 · 1(0,1/3)(x))+

· · · + (n · 1(0,1/n)(x) − (n + 1) · 1(0,1/ (n+1))(x))

= 1(0,1)(x) − (n + 1) · 1(0,1/ (n+1))(x),

(‡)

since the sum is telescoping. Now, for a fixed x ∈ [0, 1], when n is sufficiently large we have that
x ̸∈ (0, 1/n) so

n · 1(0,1/n)(x) = 0.

Thus
∑

n gn(x) converges and f (x) = 1(0,1)(x) by (‡).

(ii) If I is an interval, then 1I has at most two discontinuities occuring at the potential endpoints of
I . Thus 1I is integrable.

(iii) Since 1 and 1(0,1)(x) disagree at only two values on [0, 1] we have that∫ 1

0
f dx =

∫ 1

0
1 dx = 1.

On the other hand, notice that∫ 1

0
1(0,1/n)(x) dx =

∫ 1/n

0
1 dx +

∫ 1

1/n
0 dx

=
1
n
.

Thus ∫ 1

0
gn dx = n · 1

n
− (n + 1) · 1

n + 1
= 0.

It follows that ∫ 1

0

∞∑
n=1

gn(x) dx = 1 ̸= 0 =
∞∑
n=1

∫ 1

0
gn(x) dx

so integrals do not necessarily commute with infinite sums.

Exercise 4. Show that there is no differentiable function f : R → Rwith integrable derivativewhich
satisfies f (x)f ′(x) = 1 for all x.

4



Solution. Suppose f were such a function. For x < 0 we get by integration by parts that∫ 0

x
f (t)f ′(t) dt = f (0)2 − f (x)2 −

∫ 0

x
f ′(t)f (t) dt.

Thus

f (0)2 − f (x)2 = 2
∫ 0

x
f (t)f ′(t) dt = −2x

where the last equality is because f (t)f ′(t) = 1. Hence

f (x)2 = 2x + f (0)2

but letting x be sufficiently negative, the left hand side in non-negative whereas the right hand side is
negative, a contradiction.

Exercise 5. Show that if f : [a, b] → R is continuous with f ≥ 0 and
∫ b

a
f dx = 0 then f = 0.

Solution. Suppose that x0 ∈ [a, b] is such that f (x0) > 0. Then as f is continuous, we may find an
interval [c, d] ⊆ [a, b] of positive length containing x0 on which f > f (x0)/2. Then

f (x) ≥ f (x0)
2

· 1[c,d](x)

on [a, b] so ∫ b

a
f, dx ≥ f (x0)

2

∫ b

a
1[c,d](x) dx =

f (x0)
2

· (d− c) > 0

a contradiction.

Exercise 6. Suppose f : [a, b] → R is integrable and f (x) = 0 for all x ∈ [a, b] ∩ Q. Show that∫ b

a
f dx = 0.

Solution. Fix ε > 0. Then there exists a partition P = {x0, . . . , xn}withU (P, f ) − L(P, f ) < ε. Since
the rationals are dense, for each i = 1, . . . , nwe may find a rational ti ∈ [xi−1, xi]. We then have that

n∑
i=1

f (ti)Δxi = 0

since f (ti) = 0 for all i. But ∣∣∣∣∣
n∑
i=1

f (ti)Δxi −
∫ b

a
f dx

∣∣∣∣∣ < ε
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so ∣∣∣∣∣
∫ b

a
f dx

∣∣∣∣∣ < ε.

Since ε > 0 was arbitrary, the result follows.
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